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For a given set A denote by P>0A the family of all non-empty
subsets of A.

For any n-ary operation ω : An → A we define the complex (or
power) operation ω : P>0A

n → P>0A in the following way:

ω(A1, . . . ,An) := {ω(a1, . . . , an) | ai ∈ Ai},

where ∅ 6= A1, . . . ,An ⊆ A.

The power (complex or global) algebra of an algebra (A,Ω) is
the algebra (P>0A,Ω).
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The complex operation is a natural generalization of the
multiplication of cosets of a subgroup of a group introduced by
Frobenius.

Besides group theory, power operations appeared also in other
algebraic theories. For example, the set of ideals of a distributive
lattice (L,∨,∧) again forms a lattice, where meets and joins are
precisely the power operations of ∨ and ∧. In formal language
theory the product of two languages is the power operation of
concatenation of words.
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Closely related to power algebras of sets are complex algebras of
subalgebras.

Let AS be the set of all (non-empty) subalgebras of (A,Ω).
In general, the family AS has not to be closed under complex
operations. However if it does, (AS ,Ω) is a subalgebra of the
algebra (P>0A,Ω) and is called the algebra of subalgebras of
(A,Ω).

For example, if an algebra (A,Ω) is entropic, i.e. any two of its
operations commute, then its algebra of subalgebras is always
defined.
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Some properties of an algebra (A,Ω) may remain invariant under
power construction but obviously not all of them.

In particular, not all identities true in (A,Ω) will be satisfied in
(P>0A,Ω) or in (AS ,Ω).

For example, the power algebra of a group is not again a group
[Grätzer and Lakser, 1988].
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For an arbitrary variety V, let VΣ denote the variety generated by
power algebras of algebras in V,

i.e.,

VΣ := HSP({(P>0A,Ω) | (A,Ω) ∈ V}).

If additionally for every algebra in V, its algebra of subalgebras is
defined, let VS denote the variety generated by algebras of
subalgebras of algebras in V, i.e.,

VS := HSP({(AS ,Ω) | (A,Ω) ∈ V}).

This happens for example in the case V is entropic, i.e. consists
of entropic algebras.

It is clear that, VS ⊆ VΣ.

Moreover, V ⊆ VΣ, because every algebra (A,Ω) can be embedded
into (P>0A,Ω) by x 7→ {x}.
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G. Grätzer and H. Lakser determined the identities satisfied by the
variety VΣ in relation to identities true in V.

We call a term t of the language of a variety V linear, if every
variable occurs in t at most once. An identity t ≈ u is called
linear, if both terms t and u are linear.

Theorem (Grätzer and Lakser, 1988)

Let V be a variety of algebras. The variety VΣ satisfies precisely
those identities resulting through identification of variables from
the linear identities true in V.

Corollary (Grätzer and Lakser, 1988)

Let V be a variety of algebras. Then VΣ = V if and only if V is
defined by a set of linear identities.
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A general similar characterization for varieties VS is still not
known. Though VS satisfies the linear identities true in V, it is
usually very difficult to determine which non-linear identities true
in V are also satisfied in VS.

An algebra (A,Ω) is idempotent if each singleton is a subalgebra,
i.e. the following identities are satisfied in (A,Ω) for every n-ary
ω ∈ Ω

ω(x , . . . , x) ≈ x .

A variety V of algebras is called idempotent if every algebra in V

is idempotent.
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Note that the property of entropicity may also be expressed by
means of identities:

ω(ϕ(x11, . . . , xn1), . . . , ϕ(x1m, . . . , xnm)) ≈
ϕ(ω(x11, . . . , x1m), . . . , ω(xn1, . . . , xnm)).

for every m-ary ω ∈ Ω and n-ary ϕ ∈ Ω.

It is known that for an idempotent and entropic variety V, the
variety VS is also idempotent and entropic [Romanowska and
Smith, 1981].

Since entropic identities are linear it follows that in this case the
variety VΣ is entropic too, but very rarely is again idempotent.
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By Grätzer-Lakser Theorem an idempotent law is satisfied in the
variety VΣ if and only if it is a consequence of linear identities true
in V.

On the other hand, if V is idempotent, then V ⊆ VS ⊆ IV ⊆ VΣ,
where IV is the idempotent subvariety of VΣ.

But the inclusion V ⊆ VS does not hold in general. For example,
for the variety A of Abelian groups (A, ·,−1 ) defined as inverse
semigroups, AS is idempotent and entropic [Pilitowska, 1998],
whence A * AS. This example also shows that the variety VS can
be idempotent, while V is not.

If a variety V is defined by a set of linear identities, then VS ⊆ V.
Hence, if an idempotent variety V is defined by a set of linear
identities, then VS = V.
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Conjecture (Pilitowska, 1996)

An idempotent variety V, in which every algebra has the algebra of
subalgebras, coincides with VS if and only if V has a basis
consisting of idempotent and linear identities.

This statement for non-idempotent varieties is false. Let V be the
non-idempotent variety of entropic groupoids satisfying (xx)y = xy
and y(xx) = yx . It was shown by Adaricheva, Pilitowska and
Stanovský (2008) that V = VS and V satisfies the two non-linear
identities which cannot be deduced from any set of linear identities
true in V.

Pilitowska, Zamojska-Dzienio Modes and modals



Conjecture (Pilitowska, 1996)

An idempotent variety V, in which every algebra has the algebra of
subalgebras, coincides with VS if and only if V has a basis
consisting of idempotent and linear identities.

This statement for non-idempotent varieties is false. Let V be the
non-idempotent variety of entropic groupoids satisfying (xx)y = xy
and y(xx) = yx . It was shown by Adaricheva, Pilitowska and
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Hence very natural classes for investigating algebras of subalgebras
are varieties of modes - idempotent and entropic algebras. Modes
and algebras of subalgebras of modes were introduced and
investigated in detail by A. Romanowska and J.D.H. Smith, e.g.
monographs Modal theory (1985) and Modes (2002).

We proved the following theorem.

Theorem (Main Theorem)

Let M be a variety of modes and let the variety MΣ be locally
finite. The variety MS satisfies precisely the consequences of the
idempotent and linear identities true in M.
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Let (A,Ω) be an algebra. The set P>0A also carries a join
semilattice structure under the set-theoretical union ∪. By adding
the operation ∪ to the set of fundamental operations of the power
algebra of (A,Ω) we obtain the extended power algebra
(P>0A,Ω,∪).

B. Jónsson and A. Tarski proved that complex operations
distribute over the union ∪, i.e. for each n-ary operation ω ∈ Ω
and non-empty subsets A1, . . . ,Ai , . . . ,An,Bi of A

ω(A1, . . . ,Ai ∪ Bi , . . . ,An) =

ω(A1, . . . ,Ai , . . . ,An) ∪ ω(A1, . . . ,Bi , . . . ,An),

for any 1 ≤ i ≤ n.
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Power algebras have also the following two elementary properties
for any non-empty subsets Ai ⊆ Bi and Aij of A for 1 ≤ i ≤ n,
1 ≤ j ≤ r :

ω(A1, . . . ,An) ⊆ ω(B1, . . . ,Bn),

ω(A11, . . . ,An1) ∪ . . . ∪ ω(A1r , . . . ,Anr ) ⊆
ω(A11 ∪ . . . ∪ A1r , . . . ,An1 ∪ . . . ∪ Anr ).

It is easy to see that both properties hold also for all derived
operations t and we obtain the inclusion

t(A1, . . . ,Ai , . . . ,An) ∪ t(A1, . . . ,Bi , . . . ,An) ⊆
t(A1, . . . ,Ai ∪ Bi , . . . ,An)

that generalizes the distributive law.
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Let (P>0M,Ω,∪) be the extended power algebra of a mode
(M,Ω).

Denote by I a (quasi)variety of all idempotent τ -algebras of type
τ : Ω∪· {∪} → N.

Then ConI(P>0M) is the set of all congruence relations γ on
(P>0M,Ω,∪), such that the quotient (P>0M

γ ,Ω) is idempotent.

ConI(P>0M) is an algebraic subset of the lattice of all congruences
of (P>0M,Ω,∪). The least element in (ConI(P>0M),⊆) is called
the I-replica congruence of (P>0M,Ω,∪).
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For 1 ≤ i ≤ k and k ≥ 2, let ti be mi -ary terms. By the
composition term t1 ◦ t2 ◦ . . . ◦ tk of the terms t1, t2, . . . , tk is
meant an m := m1 · . . . ·mk -ary term defined by the rule:

t1 ◦ t2(x1, . . . , xm1) := t1(t2(x1), . . . , t2(xm1)),
t1 ◦ . . . ◦ tk(x1, . . . , x r ) := t1 ◦ . . . ◦ tk−1(tk(x1), . . . , tk(x r )),

where r = m1 · . . . ·mk−1 and x i = (xi1, . . . , ximk
), for i = 1, . . . , r .

Note that for a mode (M,Ω) and a non-empty subset X of M

t1 ◦ . . . ◦ tk(X , . . . ,X ) = tσ(1) ◦ . . . ◦ tσ(k)(X , . . . ,X ),

for any permutation σ of the set {1, . . . , k}.

For any derived operation t, we have X ⊆ t(X , . . . ,X ).
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Remark

Let (M,Ω) be a mode. For 1 ≤ i ≤ k, let ti be mi -ary terms and
∅ 6= X ⊆ M. For the composition term t = t1 ◦ t2 ◦ . . . ◦ tk we have

ti (X ,X , . . . ,X︸ ︷︷ ︸
mi

) ⊆ t(X ,X , . . . ,X︸ ︷︷ ︸
m1·...·mk

),

for each 1 ≤ i ≤ k.

Now we define a binary relation ρ on the set P>0M in the
following way:

X ρ Y ⇔ there exist a k-ary term t and an m-ary term s

both of type Ω such that

X ⊆ t(Y ,Y , . . . ,Y ) and Y ⊆ s(X ,X , . . . ,X ).
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Theorem

Let (M,Ω) be a mode. The relation ρ is the I-replica congruence
of (P>0M,Ω,∪).

Note that if B is a subalgebra of (P>0M,Ω,∪) then the restriction
ρB := ρ ∩ B2 is a congruence on (B,Ω,∪). Moreover, for every
X ∈ B and Ω-term t, t(X , . . . ,X ) ∈ B. Hence, ρB is the I-replica
congruence of (B,Ω,∪).

Let P<ω
>0 M be the set of all finite non-empty subsets of a mode

(M,Ω). Then P<ω
>0 M is a subalgebra of the extended power

algebra (P>0M,Ω,∪).
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Let (M,Ω) be a mode and let ∅ 6= X ⊆ M and ∆ ⊆ Ω. For any
n ∈ N let us define sets X [n]∆ in the following way:

X [0]∆ := X ,

X [n+1]∆ :=
⋃

δ∈∆

δ(X [n]∆ , . . . ,X [n]∆) = (X [n]∆)[1]∆ .

If ∆ = Ω we will use the abbreviated notation X [n] instead of X [n]Ω .

It is well known that
〈X 〉 =

⋃
n∈N

X [n],

where 〈X 〉 denotes the subalgebra of (M,Ω) generated by X .
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As proved by A. Romanowska and J.D.H. Smith (1981), for each
n-ary complex operation ω ∈ Ω and non-empty subsets X1, . . . ,Xn

of M
〈ω(X1, . . . ,Xn)〉 = ω(〈X1〉, . . . , 〈Xn〉).

In particular, if the subsets X1, . . . ,Xn are finite, then the
subalgebra ω(〈X1〉, . . . , 〈Xn〉) is finitely generated.

Now we define the second binary relation on the set P>0M:

X α Y ⇔ 〈X 〉 = 〈Y 〉.
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Theorem

For a mode (M,Ω), the relation α belongs to the set ConI(P>0M).

Lemma

Let (M,Ω) be a mode, ∆ be a finite subset of Ω and
γ ∈ ConI(P>0M). Then X γ X [n]∆ , for any n ∈ N.

Theorem

Let (M,Ω) be a mode. The congruences α and ρ restricted to the
subalgebra P<ω

>0 M of (P>0M,Ω,∪) coincide:

αP<ω
>0 M = ρP<ω

>0 M .
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As was shown by A. Romanowska and J.D.H. Smith (1981), if
(M,Ω) is a mode, then the algebra (MS ,Ω) of all non-empty
subalgebras of (M,Ω) is a mode satisfying each linear identity true
in (M,Ω). So, if M is a variety of modes, then
MS = HSP({(MS ,Ω) | (M,Ω) ∈ M}) is also a variety of modes
satisfying each linear identity true in M. But the mode (MS ,Ω)
may also satisfy some non-linear identities.
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Example

Consider the groupoid G = ({a, b, c , d}, ·) with the following
multiplication table:

· a b c d

a a a b b
b b b a a
c d d c c
d c c d d

The groupoid satisfies the identity: x = (xy)y and has 7
subalgebras: {a}, {b}, {c}, {d}, {a, b}, {c , d}, G . Note that
({a}G )G = {a, b} 6= {a}, so (GS , ·) does not satisfy the identity
x = (xy)y . However, straightforward calculations show that it
satisfies the non-linear identity: xy = ((xy)y)y , true also in (G , ·).
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Definition

A modal is an algebra (M,Ω,+) such that (M,Ω) is a mode,
(M,+) is a (join) semilattice with semilattice order ≤, i.e.
x ≤ y ⇔ x + y = y , and the operations ω ∈ Ω distribute over +
i.e.

ω(x1, . . . , xi + yi , . . . , xn) =

= ω(x1, . . . , xi , . . . , xn) + ω(x1, . . . , yi , . . . , xn).

For a given algebra (A,Ω), the set AS of all non-empty
subalgebras of (A,Ω) forms a (join) semilattice (AS ,+), where +
is obtained by setting

A1 + A2 := 〈A1 ∪ A2〉,

for any A1,A2 ∈ AS .
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A1 + A2 := 〈A1 ∪ A2〉,

for any A1,A2 ∈ AS .

Pilitowska, Zamojska-Dzienio Modes and modals



A. Romanowska and J.D.H. Smith proved that in the case of
modes, these two structures, mode and semilattice, are related by
distributive laws. In this way, for all modes (M,Ω) one obtains the
algebras (MS ,Ω,+) that provide basic examples of modals.

Other examples of modals are given by quotient algebras
(P>0M

γ ,Ω,∪), where γ ∈ ConI(P>0M).

Let MP be the set of all finitely generated subalgebras of a mode
(M,Ω). The algebra (MP,Ω,+) is a subalgebra of the modal
(MS ,Ω,+) and for any variety M of modes, the variety
MP := HSP({(MP,Ω) | (M,Ω) ∈ M}) is a subvariety of MS.

Pilitowska, Zamojska-Dzienio Modes and modals



A. Romanowska and J.D.H. Smith proved that in the case of
modes, these two structures, mode and semilattice, are related by
distributive laws. In this way, for all modes (M,Ω) one obtains the
algebras (MS ,Ω,+) that provide basic examples of modals.

Other examples of modals are given by quotient algebras
(P>0M

γ ,Ω,∪), where γ ∈ ConI(P>0M).

Let MP be the set of all finitely generated subalgebras of a mode
(M,Ω). The algebra (MP,Ω,+) is a subalgebra of the modal
(MS ,Ω,+) and for any variety M of modes, the variety
MP := HSP({(MP,Ω) | (M,Ω) ∈ M}) is a subvariety of MS.

Pilitowska, Zamojska-Dzienio Modes and modals



A. Romanowska and J.D.H. Smith proved that in the case of
modes, these two structures, mode and semilattice, are related by
distributive laws. In this way, for all modes (M,Ω) one obtains the
algebras (MS ,Ω,+) that provide basic examples of modals.

Other examples of modals are given by quotient algebras
(P>0M

γ ,Ω,∪), where γ ∈ ConI(P>0M).

Let MP be the set of all finitely generated subalgebras of a mode
(M,Ω). The algebra (MP,Ω,+) is a subalgebra of the modal
(MS ,Ω,+) and for any variety M of modes, the variety
MP := HSP({(MP,Ω) | (M,Ω) ∈ M}) is a subvariety of MS.

Pilitowska, Zamojska-Dzienio Modes and modals



Theorem

Let (M,Ω) be a mode. The quotient algebra (P>0M
α,Ω,∪) is

isomorphic to the modal (MS ,Ω,+) of all non-empty subalgebras
of (M,Ω).

Corollary

Let (M,Ω) be a mode. The quotient algebra (P<ω
>0 Mα,Ω,∪) is

isomorphic to the modal (MP,Ω,+) of all finitely generated
subalgebras of (M,Ω).
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Let V be a variety of algebras. By Grätzer-Lakser Theorem, the
variety VΣ = HSP({(P>0A,Ω) | (A,Ω) ∈ V}) satisfies precisely
the consequences of the linear identities holding in V. The same
proof applies to its subvariety

VΣ<ω := HSP({(P<ω
>0 A,Ω) | (A,Ω) ∈ V})

of power algebras of finite subsets.

Corollary

Let V be a variety of algebras. The varieties VΣ and VΣ<ω

coincide.
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Let M be a variety of Ω-modes and consider the variety

ρMΣ∪
<ω := HSP({(P<ω

>0 Mρ,Ω,∪) | (M,Ω) ∈ M}).

Lemma

Let (M,Ω) be a mode and B be a subalgebra of (P<ω
>0 M,Ω,∪).

The I-replica of (B,Ω,∪) belongs to the variety ρMΣ∪
<ω.
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Let J be any set and let for each j ∈ J, (Mj ,Ω) ∈ M. One obtains
that the relation ρu defined on the set

∏
j∈J P<ω

>0 Mj in the
following way:

X ρu Y ⇔ there exist a k-ary Ω-term t and an m-ary Ω-term s

such that for each j ∈ J

X (j) ⊆ t(Y (j), . . . ,Y (j)) and
Y (j) ⊆ s(X (j), . . . ,X (j))

is the I-replica of (
∏

j∈J P<ω
>0 Mj ,Ω,∪).
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Lemma

Let M be a variety of Ω-modes, J be a finite set and let for each
j ∈ J, (Mj ,Ω) ∈ M. The mapping

h : (
∏
j∈J

P<ω
>0 Mj)

ρu →
∏
j∈J

P<ω
>0 Mρ

j ; X ρu 7→
∏
j∈J

X (j)ρ

is an embedding of ((
∏

j∈J P<ω
>0 Mj)

ρu ,Ω,∪) into
(
∏

j∈J P<ω
>0 Mρ

j ,Ω,∪).

If a set J is not finite then Lemma is not longer true.
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Corollary

Let M be a variety of Ω-modes, J be a finite set and let for each
j ∈ J, (Mj ,Ω) ∈ M. The I-replica of (

∏
j∈J P<ω

>0 Mj ,Ω,∪) belongs
to the variety ρMΣ∪

<ω.

Let MΣ∪
<ω denote the variety generated by extended power

algebras of finite subsets of algebras from M, i.e.,

MΣ∪
<ω := HSP({(P<ω

>0 M,Ω,∪) | (M,Ω) ∈ M})

and let IMΣ∪
<ω denote the idempotent subvariety of MΣ∪

<ω.
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It is known, that

IMΣ∪
<ω = HSP({FIMΣ∪<ω

(n) | n ∈ N}),

where FIMΣ∪<ω
(n) denotes the free IMΣ∪

<ω-algebra on n generators
and each free algebra FIMΣ∪<ω

(n) is the idempotent replica of the

free MΣ∪
<ω-algebra FMΣ∪<ω

(n).

If the variety MΣ∪
<ω is locally finite then, for each n ∈ N,

FMΣ∪<ω
(n) ∈ HSPfin({(P<ω

>0 M,Ω,∪) | (M,Ω) ∈ M}).

Hence, the idempotent replica of FMΣ∪<ω
(n) belongs to the variety

ρMΣ∪
<ω.
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Theorem

Let M be a variety of Ω-modes such that MΣ∪
<ω is locally finite.

Then
IMΣ∪

<ω = ρMΣ∪
<ω.

The following three varieties of modals:

ρMΣ∪
<ω,

HSP({(MP,Ω,+) | (M,Ω) ∈ M}), and

HSP({(P<ω
>0 Mα,Ω,∪) | (M,Ω) ∈ M})

coincide.
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In particular they satisfy the same identities involving the
operations of Ω. Hence for varieties

ρMΣ<ω := HSP({(P<ω
>0 Mρ,Ω) | (M,Ω) ∈ M}),

αMΣ<ω := HSP({(P<ω
>0 Mα,Ω) | (M,Ω) ∈ M})

we obtain

MΣ = MΣ<ω ⊇ ρMΣ<ω = αMΣ<ω = MP.

Theorem

Let M be a variety of modes such that the variety MΣ∪
<ω is locally

finite. Then
MS = MP.
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Let (A,Ω,∪) ∈ MΣ∪
<ω be an algebra generated by a set X ⊆ A.

An element a ∈ A is said to be in disjunctive form if it is a sum of
a finite number of elements from 〈X 〉, where 〈X 〉 denotes the
subalgebra of (A,Ω) generated by X .

Lemma (Disjunctive Form Lemma)

Let M be a variety of Ω-modes and (A,Ω,∪) ∈ MΣ∪
<ω be an

algebra generated by a set X ⊆ A. For each a ∈ A, there exist
a1, . . . , ap ∈ 〈X 〉 such that a = a1 ∪ . . . ∪ ap.
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Theorem

Let M be a variety of Ω-modes. The variety MΣ<ω is locally finite
if and only if the variety MΣ∪

<ω is locally finite.

Theorem (Main Theorem)

Let M be a variety of modes such that the variety MΣ is locally
finite. The variety MS satisfies precisely the consequences of the
idempotent and linear identities true in M.

Corollary

Let M be a variety of modes such that the variety MΣ is locally
finite. Then M = MS if and only if M is defined only by
idempotent and linear identities.
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Question

Is the result true in more general case, i.e. for an arbitrary variety
of modes?

The assumption of the local finiteness of MΣ is not essential.
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