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For a lattice L, let L∂ denote the dual lattice of L. For an element
a ∈ L, we put ↓a = {x ∈ L | x ≤ a}.

Definition

A pair 〈X ,C 〉, where X is a set and C : P(X ) → P(X ) is an
operator on X , is a closure space, if the following conditions hold
for all A ⊆ B ⊆ X :

1 A ⊆ C (A);

2 C 2(A) = C (A);

3 C (A) ⊆ C (B).

A set A ⊆ X is closed, if C (A) = A.
The closure space 〈X ,C 〉 is algebraic, if
C (A) =

⋃
{C (F ) | F ⊆ A is finite} for any A ⊆ X .
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Let L(X ,C ) denote the set of all closed subsets of X . Ordered by
inclusion, it forms a complete lattice, where∧

i∈I

Ai =
⋂
i∈I

Ai ;
∨
i∈I

Ai = C
(⋃
i∈I

Ai
)

for any set {Ai ∈ L(X ,C ) | i ∈ I}.

We call lattices of the form L(X ,C ) closure lattices.

Theorem

A lattice is complete if and only if it is isomorphic to a closure
lattice.

Theorem

A lattice is algebraic if and only if it is isomorphic to the closure
lattice of an algebraic closure space.

Semenova, Zamojska-Dzienio Axiomatizable classes



Let L(X ,C ) denote the set of all closed subsets of X . Ordered by
inclusion, it forms a complete lattice, where∧

i∈I

Ai =
⋂
i∈I

Ai ;
∨
i∈I

Ai = C
(⋃
i∈I

Ai
)

for any set {Ai ∈ L(X ,C ) | i ∈ I}.

We call lattices of the form L(X ,C ) closure lattices.

Theorem

A lattice is complete if and only if it is isomorphic to a closure
lattice.

Theorem

A lattice is algebraic if and only if it is isomorphic to the closure
lattice of an algebraic closure space.

Semenova, Zamojska-Dzienio Axiomatizable classes



Let L(X ,C ) denote the set of all closed subsets of X . Ordered by
inclusion, it forms a complete lattice, where∧

i∈I

Ai =
⋂
i∈I

Ai ;
∨
i∈I

Ai = C
(⋃
i∈I

Ai
)

for any set {Ai ∈ L(X ,C ) | i ∈ I}.

We call lattices of the form L(X ,C ) closure lattices.

Theorem

A lattice is complete if and only if it is isomorphic to a closure
lattice.

Theorem

A lattice is algebraic if and only if it is isomorphic to the closure
lattice of an algebraic closure space.

Semenova, Zamojska-Dzienio Axiomatizable classes



Let L(X ,C ) denote the set of all closed subsets of X . Ordered by
inclusion, it forms a complete lattice, where∧

i∈I

Ai =
⋂
i∈I

Ai ;
∨
i∈I

Ai = C
(⋃
i∈I

Ai
)

for any set {Ai ∈ L(X ,C ) | i ∈ I}.

We call lattices of the form L(X ,C ) closure lattices.

Theorem

A lattice is complete if and only if it is isomorphic to a closure
lattice.

Theorem

A lattice is algebraic if and only if it is isomorphic to the closure
lattice of an algebraic closure space.

Semenova, Zamojska-Dzienio Axiomatizable classes



Definition

Let L be a complete lattice. A subset A ⊆ L is a complete meet
subsemilattice of L, if

∧
X ∈ A for any X ⊆ A.

A complete meet subsemilattice A ⊆ L is an algebraic subset of
L, if

∨
X ∈ A for any non-empty up-directed subset X of A.

A binary relation R on a meet semilattice 〈S ,∧〉 is distributive, if
for any a, b, c ∈ S relation (c , a ∧ b) ∈ R implies that c = a′ ∧ b′

for some a′, b′ ∈ S such that (a′, a) ∈ R and (b′, b) ∈ R.
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For a meet semilattice 〈S ,∧, 1〉 with unit and for any binary
relation R ⊆ S2, let Sub(S ,R) denote the set of all R-closed
subsemilattices of S ;

that is, X ∈ Sub(S ,R) if and only if the
following conditions hold:

-
∧

F ∈ X for all finite F ⊆ X ;

- b ∈ X and (a, b) ∈ R imply a ∈ X .

For a complete lattice L, let Subc(L,R) denote the set of all
complete R-closed meet subsemilattices of L, while Sp(L)
denotes the set of all algebraic subsets of L.

We write Sub(L) instead of Sub(L,=) and Subc(L) instead of
Subc(L,=).

Ordered by inclusion, those sets form complete lattices.
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Then lattice meet is just set-theoretic intersection. As for join, the
following lemma holds.

Lemma

Let L be a meet semilattice and let R ⊆ L2 be a distributive
relation. Then the following holds.

1 A ∨ B = {a ∧ b | a ∈ A, b ∈ B} for all A,B ∈ Sub(L,R).

2 If L is a complete lattice, then
A ∨ B = {a ∧ b | a ∈ A, b ∈ B} for all A,B ∈ Subc(L,R).

3 If L is an upper continuous complete lattice, then
A ∨ B = {a ∧ b | a ∈ A, b ∈ B} for all A,B ∈ Sp(L).
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For an arbitrary signature σ, let K(σ) denote the class of all
structures of signature σ.

Let also T(σ) denote the variety of σ-structures defined by the
identity ∀xy x = y .

V(K) = HSP(K) = HPsS(K) = HPs(K),

Q(K) = LsPsS(K) = LsPs(K).

A class K ⊆ K(σ) is a

[finitary]

prevariety, if
K = SP(K) = PsS(K)

[K = SPω(K) = Pωs S(K), respectively]

.

According to B. Banaschewski and H. Herrlich, a class is a
prevariety if and only if it can be defined by infinite implications.
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Definition (Gorbunov)

Let K′ ⊆ K ⊆ K(σ). Then K′ is K-

[quasi-]

equational, if
K′ = K ∩Mod(Σ) for some set Σ of

[quasi-]

identities of signature
σ.

Definition

Let K′ ⊆ K ⊆ K(σ). Then K′ is a

[finitary]

K-prevariety, if
K′ = K ∩ A for some

[finitary]

prevariety A ⊆ K(σ).

Equivalently, K′ is a

[finitary]

K-prevariety if and only if
K′ = K ∩ SP(K′)

[K′ = K ∩ SPω(K′), respectively]

.

Semenova, Zamojska-Dzienio Axiomatizable classes



Definition (Gorbunov)

Let K′ ⊆ K ⊆ K(σ). Then K′ is K-[quasi-]equational, if
K′ = K ∩Mod(Σ) for some set Σ of [quasi-] identities of signature
σ.

Definition

Let K′ ⊆ K ⊆ K(σ). Then K′ is a

[finitary]

K-prevariety, if
K′ = K ∩ A for some

[finitary]

prevariety A ⊆ K(σ).

Equivalently, K′ is a

[finitary]

K-prevariety if and only if
K′ = K ∩ SP(K′)

[K′ = K ∩ SPω(K′), respectively]

.

Semenova, Zamojska-Dzienio Axiomatizable classes



Definition (Gorbunov)

Let K′ ⊆ K ⊆ K(σ). Then K′ is K-[quasi-]equational, if
K′ = K ∩Mod(Σ) for some set Σ of [quasi-] identities of signature
σ.

Definition

Let K′ ⊆ K ⊆ K(σ). Then K′ is a

[finitary]

K-prevariety, if
K′ = K ∩ A for some

[finitary]

prevariety A ⊆ K(σ).

Equivalently, K′ is a

[finitary]

K-prevariety if and only if
K′ = K ∩ SP(K′)

[K′ = K ∩ SPω(K′), respectively]

.

Semenova, Zamojska-Dzienio Axiomatizable classes



Definition (Gorbunov)

Let K′ ⊆ K ⊆ K(σ). Then K′ is K-[quasi-]equational, if
K′ = K ∩Mod(Σ) for some set Σ of [quasi-] identities of signature
σ.

Definition

Let K′ ⊆ K ⊆ K(σ). Then K′ is a [finitary] K-prevariety, if
K′ = K ∩ A for some [finitary] prevariety A ⊆ K(σ).

Equivalently, K′ is a

[finitary]

K-prevariety if and only if
K′ = K ∩ SP(K′)

[K′ = K ∩ SPω(K′), respectively]

.

Semenova, Zamojska-Dzienio Axiomatizable classes



Definition (Gorbunov)

Let K′ ⊆ K ⊆ K(σ). Then K′ is K-[quasi-]equational, if
K′ = K ∩Mod(Σ) for some set Σ of [quasi-] identities of signature
σ.

Definition

Let K′ ⊆ K ⊆ K(σ). Then K′ is a [finitary] K-prevariety, if
K′ = K ∩ A for some [finitary] prevariety A ⊆ K(σ).

Equivalently, K′ is a

[finitary]

K-prevariety if and only if
K′ = K ∩ SP(K′)

[K′ = K ∩ SPω(K′), respectively]

.

Semenova, Zamojska-Dzienio Axiomatizable classes



Definition (Gorbunov)

Let K′ ⊆ K ⊆ K(σ). Then K′ is K-[quasi-]equational, if
K′ = K ∩Mod(Σ) for some set Σ of [quasi-] identities of signature
σ.

Definition

Let K′ ⊆ K ⊆ K(σ). Then K′ is a [finitary] K-prevariety, if
K′ = K ∩ A for some [finitary] prevariety A ⊆ K(σ).

Equivalently, K′ is a [finitary] K-prevariety if and only if
K′ = K ∩ SP(K′) [K′ = K ∩ SPω(K′), respectively].

Semenova, Zamojska-Dzienio Axiomatizable classes



Let Lv(K) denote the class of all K-equational subclasses of K,

while Lq(K) denotes the class of all K-quasi-equational subclasses
of K.

Let also Lp(K)

[Lpω(K), respectively]

denote the class of all

[finitary]

K-prevarieties.

Ordered with respect to inclusion, all the three form complete
lattices.
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Let σ = {pi | i ∈ I} be a signature consisting of unary relation
symbols only.

Furthermore, for any set X ⊆ I , let AX denote a structure from
T(σ) such that AX |= ∀x pi (x) iff i ∈ X .

T(σ) consists of isomorphic copies of structures AX , X ⊆ I .

Semenova, Zamojska-Dzienio Axiomatizable classes



Let σ = {pi | i ∈ I} be a signature consisting of unary relation
symbols only.

Furthermore, for any set X ⊆ I , let AX denote a structure from
T(σ) such that AX |= ∀x pi (x) iff i ∈ X .

T(σ) consists of isomorphic copies of structures AX , X ⊆ I .

Semenova, Zamojska-Dzienio Axiomatizable classes



Let σ = {pi | i ∈ I} be a signature consisting of unary relation
symbols only.

Furthermore, for any set X ⊆ I , let AX denote a structure from
T(σ) such that AX |= ∀x pi (x) iff i ∈ X .

T(σ) consists of isomorphic copies of structures AX , X ⊆ I .

Semenova, Zamojska-Dzienio Axiomatizable classes



Lemma

For any signature σ = {pi | i ∈ I} containing unary relation
symbols only, the following statements hold:

1 For any sets X ,Y ⊆ I , AY ∈ H(AX ) if and only if X ⊆ Y ;

2 For any set X ⊆ I , S(AX ) = {AX};
3 If Xj ⊆ I for any j ∈ J, then

∏
j∈J AXj

∼= AX , where
X =

⋂
j∈J Xj .
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Let 〈X ,C 〉 be a closure space. We put

σ(X ) = {px | x ∈ X}.

Let Σ(X ,C ) consist of (in general infinite) implications of the form

∀x
∧
a∈A

pa(x) → pb(x), A ⊆ X , b ∈ C (A).

If the set X is finite, then the signature σ(X ) is finite, while
Σ(X ,C ) becomes a finite set of quasi-identities.

The class Mod
(
Σ(X ,C )

)
is a prevariety.
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The class K(X ,C ) = Mod
(
Σ(X ,C )

)
∩ T

(
σ(X )

)
is also a

prevariety.

Lemma

For any closure space 〈X ,C 〉, the class K(X ,C ) consists of
isomorphic copies of structures AB , where B ∈ L(X ,C ).

Semenova, Zamojska-Dzienio Axiomatizable classes



The class K(X ,C ) = Mod
(
Σ(X ,C )

)
∩ T

(
σ(X )

)
is also a

prevariety.

Lemma

For any closure space 〈X ,C 〉, the class K(X ,C ) consists of
isomorphic copies of structures AB , where B ∈ L(X ,C ).

Semenova, Zamojska-Dzienio Axiomatizable classes



Suppose now that 〈X ,C 〉 is an algebraic closure space. Let
∆(X ,C ) consist of quasi-identities of the form

∀x
∧
a∈A

pa(x) → pb(x), A ⊆ X is finite, b ∈ C (A).

If the set X is finite, then the set ∆(X ,C ) is finite too.

The class Mod
(
∆(X ,C )

)
is a quasivariety.

Therefore, the class A(X ,C ) = Mod
(
∆(X ,C )

)
∩ T

(
σ(X )

)
is also

a quasivariety.

Lemma

For any algebraic closure space 〈X ,C 〉, the class A(X ,C ) consists
of isomorphic copies of structures AB , where B ∈ L(X ,C ).
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Proposition (Gorbunov)

For any complete lattice L, there are a signature σ consisting only
of unary relation symbols and a prevariety K ⊆ T(σ) such that
L∂ ∼= Lv

(
K

)
and Subc(L) ∼= Lp

(
K

)
= Lq

(
K

)
.

Sketch of proof: Since the lattice L is complete, there is a closure
space 〈X ,C 〉 such that L∂ ∼= L(X ,C ).

Let σ = σ(X ) and let K = K(X ,C ). Then K is a prevariety.

Let ψ : L → L(X ,C ) be an isomorphism. The class K consists of
isomorphic copies of structures Aψ(a), where a ∈ L.

Semenova, Zamojska-Dzienio Axiomatizable classes



Proposition (Gorbunov)

For any complete lattice L, there are a signature σ consisting only
of unary relation symbols and a prevariety K ⊆ T(σ) such that
L∂ ∼= Lv

(
K

)
and Subc(L) ∼= Lp

(
K

)
= Lq

(
K

)
.

Sketch of proof: Since the lattice L is complete, there is a closure
space 〈X ,C 〉 such that L∂ ∼= L(X ,C ).

Let σ = σ(X ) and let K = K(X ,C ). Then K is a prevariety.

Let ψ : L → L(X ,C ) be an isomorphism. The class K consists of
isomorphic copies of structures Aψ(a), where a ∈ L.

Semenova, Zamojska-Dzienio Axiomatizable classes



Proposition (Gorbunov)

For any complete lattice L, there are a signature σ consisting only
of unary relation symbols and a prevariety K ⊆ T(σ) such that
L∂ ∼= Lv

(
K

)
and Subc(L) ∼= Lp

(
K

)
= Lq

(
K

)
.

Sketch of proof: Since the lattice L is complete, there is a closure
space 〈X ,C 〉 such that L∂ ∼= L(X ,C ).

Let σ = σ(X ) and let K = K(X ,C ).

Then K is a prevariety.

Let ψ : L → L(X ,C ) be an isomorphism. The class K consists of
isomorphic copies of structures Aψ(a), where a ∈ L.

Semenova, Zamojska-Dzienio Axiomatizable classes



Proposition (Gorbunov)

For any complete lattice L, there are a signature σ consisting only
of unary relation symbols and a prevariety K ⊆ T(σ) such that
L∂ ∼= Lv

(
K

)
and Subc(L) ∼= Lp

(
K

)
= Lq

(
K

)
.

Sketch of proof: Since the lattice L is complete, there is a closure
space 〈X ,C 〉 such that L∂ ∼= L(X ,C ).

Let σ = σ(X ) and let K = K(X ,C ). Then K is a prevariety.

Let ψ : L → L(X ,C ) be an isomorphism. The class K consists of
isomorphic copies of structures Aψ(a), where a ∈ L.

Semenova, Zamojska-Dzienio Axiomatizable classes



Proposition (Gorbunov)

For any complete lattice L, there are a signature σ consisting only
of unary relation symbols and a prevariety K ⊆ T(σ) such that
L∂ ∼= Lv

(
K

)
and Subc(L) ∼= Lp

(
K

)
= Lq

(
K

)
.

Sketch of proof: Since the lattice L is complete, there is a closure
space 〈X ,C 〉 such that L∂ ∼= L(X ,C ).

Let σ = σ(X ) and let K = K(X ,C ). Then K is a prevariety.

Let ψ : L → L(X ,C ) be an isomorphism. The class K consists of
isomorphic copies of structures Aψ(a), where a ∈ L.

Semenova, Zamojska-Dzienio Axiomatizable classes



Define a map ϕ : L(X ,C ) → Lv(K) by the rule

ϕ : B 7→ {AF ∈ T(σ) | F ∈ L(X ,C ) and B ⊆ F}, B ∈ L(X ,C ).

It is well-defined and establishes a dual isomorphism, whence
L∂ ∼= Lv

(
K

)
.

Define a map ϕ′ : Subc(L) → Lp(K) by the rule

ϕ′ : B 7→ {Aψ(b) ∈ T(σ) | b ∈ B}, B ∈ Subc(L).

It is well-defined and is a lattice isomorphism, whence
Subc(L) ∼= Lp(K).

ϕ′(B) is closed under the operator Ls ∩K for any B ∈ Subc(L),
whence ϕ′(B) ∈ Lq(K). Therefore, Lp(K) = Lq(K).
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Theorem (Gorbunov)

Let K be a prevariety and let K′ ⊆ K be l-projectively complete in
K. Then for any non-empty subclass A ⊆ K,

Q(A) ∩K′ = (Ls ∩K′)(Ps ∩K′)(S ∩K′)(A).

In particular, a non-empty subclass A ⊆ K′ is K′-quasi-equational
if and only if A is closed under operators Ls ∩K′, S ∩K′, and
Ps ∩K′.

Corollary

For any complete upper continuous lattice L, there is a signature σ
consisting only of unary relation symbols and a prevariety
K ⊆ T(σ) such that Sp(L) embeds into Lq

(
K

)
.
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Proposition

For any meet semilattice 〈S ,∧, 1〉 with unit, there is a signature σ
consisting only of unary relation symbols and a finitary prevariety
K ⊆ T(σ) such that Sub(S) ∼= Lpω(K).

Sketch of proof: Let σ = {pa | a ∈ S} consist of unary relation
symbols and let the class K consist of isomorphic copies of
structures A↓b, where b ∈ S .
The class K is a finitary prevariety: for any n < ω and for any b0,
. . . , bn−1 ∈ S , one has A↓b0 × . . .×A↓bn−1

∼= A↓b, where
b = b0 ∧ . . . ∧ bn−1, while S(A↓a) = {A↓a} for any a ∈ S .

Define a map ϕ : Sub(S) → Lpω(K) by the rule

ϕ : B 7→ {A↓b ∈ T(σ) | b ∈ B}, B ∈ Sub(S).

It is a lattice isomorphism.
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Proposition (Gorbunov, Tumanov)

For any complete dually algebraic lattice L, there are a signature σ
consisting only of unary relation symbols and a quasivariety
K ⊆ T(σ) such that L ∼= Lv

(
K

)
.

Sketch of proof: Since the dual lattice L∂ is algebraic, there is an
algebraic closure space 〈X ,C 〉 such that L∂ ∼= L(X ,C ).

Let σ = σ(X ) and let K = A(X ,C ). Then K is a quasivariety.

We define a map ϕ : L(X ,C ) → Lv(K) by the rule

ϕ : B 7→ {AF ∈ T(σ) | F ∈ L(X ,C ) and B ⊆ F}, B ∈ L(X ,C ).

Then ϕ establishes a dual isomorphism between L(X ,C ) and
Lv(K).
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It was shown by V. A. Gorbunov that for any quasivariety K, the
lattice Lv(K) is complete and dually algebraic.

Corollary

The class of complete dually algebraic lattices coincides with the
class of lattices of relative equational classes of quasivarieties.
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Definition (Pal’chunov)

Let K be a class of structures of signature σ and let ∆ be a set of
first-order sentences of the same signature. A class K′ is
axiomatizable in K relatively to ∆, if K′ = K ∩Mod(Σ) for
some set Σ ⊆ ∆.

A class K ⊆ K(σ) is axiomatizable if and only if it is axiomatizable
in K(σ) relatively to the set of all first-order sentences.

Furthermore, for any set ∆ of sentences and any class K ⊆ K(σ),
the set of all axiomatizable in K classes relatively to ∆ forms a
complete lattice A(K,∆).
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Corollary

For any complete lattice L, there are a signature σ, a prevariety
K ⊆ K(σ), and a set ∆ of first-order sentences of the same
signature such that L ∼= A(K,∆).

Proof.

Take σ and K as in the proof of Proposition and take the set of all
identities of signature σ as ∆.

Corollary was proved by D. E. Pal’chunov only for at most
countable complete lattices L. This has lead him to ask whether
any complete lattice is isomorphic to a lattice of relatively
axiomatizable classes, cf. Problem 1 in [D. E. Pal’chunov, Lattices
of relatively axiomatizable classes, Lecture Notes in Artificial
Intelligence, 4390 (2007), 221–239.]

Semenova, Zamojska-Dzienio Axiomatizable classes



Corollary

For any complete lattice L, there are a signature σ, a prevariety
K ⊆ K(σ), and a set ∆ of first-order sentences of the same
signature such that L ∼= A(K,∆).

Proof.

Take σ and K as in the proof of Proposition and take the set of all
identities of signature σ as ∆.

Corollary was proved by D. E. Pal’chunov only for at most
countable complete lattices L. This has lead him to ask whether
any complete lattice is isomorphic to a lattice of relatively
axiomatizable classes, cf. Problem 1 in [D. E. Pal’chunov, Lattices
of relatively axiomatizable classes, Lecture Notes in Artificial
Intelligence, 4390 (2007), 221–239.]

Semenova, Zamojska-Dzienio Axiomatizable classes



Corollary

For any complete lattice L, there are a signature σ, a prevariety
K ⊆ K(σ), and a set ∆ of first-order sentences of the same
signature such that L ∼= A(K,∆).

Proof.

Take σ and K as in the proof of Proposition and take the set of all
identities of signature σ as ∆.

Corollary was proved by D. E. Pal’chunov only for at most
countable complete lattices L. This has lead him to ask whether
any complete lattice is isomorphic to a lattice of relatively
axiomatizable classes, cf. Problem 1 in [D. E. Pal’chunov, Lattices
of relatively axiomatizable classes, Lecture Notes in Artificial
Intelligence, 4390 (2007), 221–239.]

Semenova, Zamojska-Dzienio Axiomatizable classes



Corollary

The class of complete dually algebraic lattices coincides with the
class of lattices of the form A(K,∆), where K is a quasivariety and
∆ is a set of first-order sentences.

Corollary

For any finite lattice L, there are a finite signature σ and a set ∆
of first-order sentences of σ such that L ∼= A(K(σ),∆).

The latter Corollary was proved by D. E. Pal’chunov.
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Proposition (Gorbunov, Tumanov)

For any complete algebraic lattice L, there is a signature σ
consisting only of unary relation symbols and a quasivariety
K ⊆ T(σ) such that Sp(L) ∼= Lq

(
K

)
and Subc(L) ∼= Lp

(
K

)
.

Sketch of proof: There is an algebraic closure space 〈X ,C 〉 such
that L ∼= L(X ,C ); let ψ : L → L(X ,C ) be an isomorphism. Let
σ = σ(X ) and let K = A(X ,C ). Then K is a quasivariety. The
class K consists of isomorphic copies of structures Aψ(a), where
a ∈ L.

We define a map ϕ : Subc(L) → Lp(K) by the rule

ϕ : B 7→ {Aψ(b) ∈ T(σ) | b ∈ B}, B ∈ Sp(L).

Then ϕ is well-defined and it is a lattice isomorphism, whence
Subc(L) ∼= Lp

(
K

)
. Moreover, the restriction of ϕ on Sp(L) defines

an isomorphism from Sp(L) onto Lq(K).
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It is known that quasivariety lattices are completely
join-semidistributive and dually algebraic (V. A. Gorbunov). In
contrast, lattices of the form Lq(K) and Lp(K), where K is a
prevariety, are neither join-semidistributive nor even lower
continuous.

Corollary

There are prevarieties K such that neither Lq(K) nor Lp(K) embed
into a quasivariety lattice.
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