Axiomatizable classes of structures

Marina V. Semenova¹ Anna Zamojska-Dzienio²

¹Institute of Mathematics of the Siberian Branch of Russian Academy of Sciences ²Faculty of Mathematics and Information Science, Warsaw University of Technology

Novosibirsk, October 2011

Definition

A pair $\langle X, C \rangle$, where X is a set and $C: \mathcal{P}(X) \to \mathcal{P}(X)$ is an operator on X, is a **closure space**, if the following conditions hold for all $A \subseteq B \subseteq X$:

- A ⊆ C(A);
 C²(A) = C(A);
- $O C(A) \subseteq C(B).$

Definition

A pair $\langle X, C \rangle$, where X is a set and $C: \mathcal{P}(X) \to \mathcal{P}(X)$ is an operator on X, is a **closure space**, if the following conditions hold for all $A \subseteq B \subseteq X$:

A ⊆ C(A);
C²(A) = C(A);
C(A) ⊆ C(B).
A set A ⊆ X is closed, if C(A) = A.

Definition

A pair $\langle X, C \rangle$, where X is a set and $C: \mathcal{P}(X) \to \mathcal{P}(X)$ is an operator on X, is a **closure space**, if the following conditions hold for all $A \subseteq B \subseteq X$:

 $A \subseteq C(A);$

2
$$C^{2}(A) = C(A);$$

$$C(A) \subseteq C(B).$$

A set $A \subseteq X$ is **closed**, if C(A) = A. The closure space $\langle X, C \rangle$ is **algebraic**, if $C(A) = \bigcup \{C(F) \mid F \subseteq A \text{ is finite}\}$ for any $A \subseteq X$.

$$\bigwedge_{i\in I} A_i = \bigcap_{i\in I} A_i; \quad \bigvee_{i\in I} A_i = C(\bigcup_{i\in I} A_i)$$

for any set $\{A_i \in \mathbb{L}(X, C) \mid i \in I\}$.

$$\bigwedge_{i\in I} A_i = \bigcap_{i\in I} A_i; \quad \bigvee_{i\in I} A_i = C(\bigcup_{i\in I} A_i)$$

for any set $\{A_i \in \mathbb{L}(X, C) \mid i \in I\}$.

We call lattices of the form $\mathbb{L}(X, C)$ closure lattices.

$$\bigwedge_{i\in I} A_i = \bigcap_{i\in I} A_i; \quad \bigvee_{i\in I} A_i = C(\bigcup_{i\in I} A_i)$$

for any set $\{A_i \in \mathbb{L}(X, C) \mid i \in I\}$.

We call lattices of the form $\mathbb{L}(X, C)$ closure lattices.

Theorem

A lattice is complete if and only if it is isomorphic to a closure lattice.

$$\bigwedge_{i\in I} A_i = \bigcap_{i\in I} A_i; \quad \bigvee_{i\in I} A_i = C(\bigcup_{i\in I} A_i)$$

for any set $\{A_i \in \mathbb{L}(X, C) \mid i \in I\}$.

We call lattices of the form $\mathbb{L}(X, C)$ closure lattices.

Theorem

A lattice is complete if and only if it is isomorphic to a closure lattice.

Theorem

A lattice is algebraic if and only if it is isomorphic to the closure lattice of an algebraic closure space.

Definition

Let *L* be a complete lattice. A subset $A \subseteq L$ is a **complete meet subsemilattice** of *L*, if $\bigwedge X \in A$ for any $X \subseteq A$.

Definition

Let *L* be a complete lattice. A subset $A \subseteq L$ is a **complete meet subsemilattice** of *L*, if $\bigwedge X \in A$ for any $X \subseteq A$.

A complete meet subsemilattice $A \subseteq L$ is an **algebraic subset** of L, if $\bigvee X \in A$ for any non-empty up-directed subset X of A.

Definition

Let *L* be a complete lattice. A subset $A \subseteq L$ is a **complete meet subsemilattice** of *L*, if $\bigwedge X \in A$ for any $X \subseteq A$.

A complete meet subsemilattice $A \subseteq L$ is an **algebraic subset** of L, if $\bigvee X \in A$ for any non-empty up-directed subset X of A.

A binary relation R on a meet semilattice $\langle S, \wedge \rangle$ is **distributive**, if for any $a, b, c \in S$ relation $(c, a \wedge b) \in R$ implies that $c = a' \wedge b'$ for some $a', b' \in S$ such that $(a', a) \in R$ and $(b', b) \in R$. For a meet semilattice $\langle S, \wedge, 1 \rangle$ with unit and for any binary relation $R \subseteq S^2$, let Sub(S, R) denote the set of all *R*-closed subsemilattices of *S*;

- $\bigwedge F \in X$ for all finite $F \subseteq X$;
- $b \in X$ and $(a, b) \in R$ imply $a \in X$.

- $\bigwedge F \in X$ for all finite $F \subseteq X$;
- $b \in X$ and $(a, b) \in R$ imply $a \in X$.

For a complete lattice L, let $Sub_c(L, R)$ denote the set of all **complete** R-**closed meet subsemilattices** of L, while Sp(L) denotes the set of all algebraic subsets of L.

- $\bigwedge F \in X$ for all finite $F \subseteq X$;
- $b \in X$ and $(a, b) \in R$ imply $a \in X$.

For a complete lattice L, let $Sub_c(L, R)$ denote the set of all **complete** R-**closed meet subsemilattices** of L, while Sp(L) denotes the set of all algebraic subsets of L.

We write Sub(L) instead of Sub(L,=) and $Sub_c(L)$ instead of $Sub_c(L,=)$.

- $\bigwedge F \in X$ for all finite $F \subseteq X$;
- $b \in X$ and $(a, b) \in R$ imply $a \in X$.

For a complete lattice L, let $Sub_c(L, R)$ denote the set of all **complete** R-**closed meet subsemilattices** of L, while Sp(L) denotes the set of all algebraic subsets of L.

We write Sub(L) instead of Sub(L,=) and $Sub_c(L)$ instead of $Sub_c(L,=)$.

Ordered by inclusion, those sets form complete lattices.

- - E + - E +

Then lattice meet is just set-theoretic intersection. As for join, the following lemma holds.

Then lattice meet is just set-theoretic intersection. As for join, the following lemma holds.

Lemma

Let L be a meet semilattice and let $R \subseteq L^2$ be a distributive relation. Then the following holds.

- $A \lor B = \{a \land b \mid a \in A, b \in B\} \text{ for all } A, B \in \mathsf{Sub}(L, R).$
- ② If L is a complete lattice, then $A \lor B = \{a \land b \mid a \in A, b \in B\}$ for all A, B ∈ Sub_c(L, R).
- **③** If *L* is an upper continuous complete lattice, then $A \lor B = \{a \land b \mid a \in A, b \in B\}$ for all *A*, *B* ∈ Sp(*L*).

Let also $T(\sigma)$ denote the variety of σ -structures defined by the identity $\forall xy \ x = y$.

Let also $T(\sigma)$ denote the variety of σ -structures defined by the identity $\forall xy \ x = y$.

$$V(K) = HSP(K) = HP_sS(K) = HP_s(K),$$

Let also $T(\sigma)$ denote the variety of σ -structures defined by the identity $\forall xy \ x = y$.

$$V(K) = HSP(K) = HP_sS(K) = HP_s(K),$$

 $\mathbf{Q}(\mathbf{K}) = \mathbf{L}_{s}\mathbf{P}_{s}\mathbf{S}(\mathbf{K}) = \mathbf{L}_{s}\mathbf{P}_{s}(\mathbf{K}).$

Let also $T(\sigma)$ denote the variety of σ -structures defined by the identity $\forall xy \ x = y$.

$$V(K) = HSP(K) = HP_sS(K) = HP_s(K),$$

$$\mathbf{Q}(\mathbf{K}) = \mathbf{L}_{s}\mathbf{P}_{s}\mathbf{S}(\mathbf{K}) = \mathbf{L}_{s}\mathbf{P}_{s}(\mathbf{K}).$$

A class $\mathbf{K} \subseteq \mathbf{K}(\sigma)$ is a **prevariety**, if $\mathbf{K} = \mathbf{SP}(\mathbf{K}) = \mathbf{P}_s \mathbf{S}(\mathbf{K})$

Let also $T(\sigma)$ denote the variety of σ -structures defined by the identity $\forall xy \ x = y$.

$$V(K) = HSP(K) = HP_sS(K) = HP_s(K),$$

$$\mathbf{Q}(\mathbf{K}) = \mathbf{L}_{s}\mathbf{P}_{s}\mathbf{S}(\mathbf{K}) = \mathbf{L}_{s}\mathbf{P}_{s}(\mathbf{K}).$$

A class $\mathbf{K} \subseteq \mathbf{K}(\sigma)$ is a [finitary] prevariety, if $\mathbf{K} = \mathbf{SP}(\mathbf{K}) = \mathbf{P}_s \mathbf{S}(\mathbf{K})$ [$\mathbf{K} = \mathbf{SP}^{\omega}(\mathbf{K}) = \mathbf{P}_s^{\omega} \mathbf{S}(\mathbf{K})$, respectively].

Let also $T(\sigma)$ denote the variety of σ -structures defined by the identity $\forall xy \ x = y$.

$$V(K) = HSP(K) = HP_sS(K) = HP_s(K),$$

$$\mathbf{Q}(\mathbf{K}) = \mathbf{L}_{s}\mathbf{P}_{s}\mathbf{S}(\mathbf{K}) = \mathbf{L}_{s}\mathbf{P}_{s}(\mathbf{K}).$$

A class $\mathbf{K} \subseteq \mathbf{K}(\sigma)$ is a [finitary] prevariety, if $\mathbf{K} = \mathbf{SP}(\mathbf{K}) = \mathbf{P}_s \mathbf{S}(\mathbf{K})$ [$\mathbf{K} = \mathbf{SP}^{\omega}(\mathbf{K}) = \mathbf{P}_s^{\omega} \mathbf{S}(\mathbf{K})$, respectively].

According to B. Banaschewski and H. Herrlich, a class is a prevariety if and only if it can be defined by infinite implications.

Let $\mathbf{K}' \subseteq \mathbf{K} \subseteq \mathbf{K}(\sigma)$. Then \mathbf{K}' is \mathbf{K} - $\mathbf{K}' = \mathbf{K} \cap \operatorname{Mod}(\Sigma)$ for some set Σ of

equational, if identities of signature

 $\sigma.$

Let $\mathbf{K}' \subseteq \mathbf{K} \subseteq \mathbf{K}(\sigma)$. Then \mathbf{K}' is \mathbf{K} -[quasi-]equational, if $\mathbf{K}' = \mathbf{K} \cap \mathsf{Mod}(\Sigma)$ for some set Σ of [quasi-] identities of signature σ .

Semenova, Zamojska-Dzienio Axiomatizable classes

-∰ ► < ≣ ►

Let $\mathbf{K}' \subseteq \mathbf{K} \subseteq \mathbf{K}(\sigma)$. Then \mathbf{K}' is \mathbf{K} -[quasi-]equational, if $\mathbf{K}' = \mathbf{K} \cap Mod(\Sigma)$ for some set Σ of [quasi-] identities of signature σ .

Definition

Let $\mathbf{K}' \subseteq \mathbf{K} \subseteq \mathbf{K}(\sigma)$. Then \mathbf{K}' is a **K-prevariety**, if $\mathbf{K}' = \mathbf{K} \cap \mathbf{A}$ for some prevariety $\mathbf{A} \subseteq \mathbf{K}(\sigma)$.

Let $\mathbf{K}' \subseteq \mathbf{K} \subseteq \mathbf{K}(\sigma)$. Then \mathbf{K}' is \mathbf{K} -[quasi-]equational, if $\mathbf{K}' = \mathbf{K} \cap Mod(\Sigma)$ for some set Σ of [quasi-] identities of signature σ .

Definition

Let $\mathbf{K}' \subseteq \mathbf{K} \subseteq \mathbf{K}(\sigma)$. Then \mathbf{K}' is a [finitary] K-prevariety, if $\mathbf{K}' = \mathbf{K} \cap \mathbf{A}$ for some [finitary] prevariety $\mathbf{A} \subseteq \mathbf{K}(\sigma)$.

Let $\mathbf{K}' \subseteq \mathbf{K} \subseteq \mathbf{K}(\sigma)$. Then \mathbf{K}' is \mathbf{K} -[quasi-]equational, if $\mathbf{K}' = \mathbf{K} \cap Mod(\Sigma)$ for some set Σ of [quasi-] identities of signature σ .

Definition

Let $\mathbf{K}' \subseteq \mathbf{K} \subseteq \mathbf{K}(\sigma)$. Then \mathbf{K}' is a [finitary] K-prevariety, if $\mathbf{K}' = \mathbf{K} \cap \mathbf{A}$ for some [finitary] prevariety $\mathbf{A} \subseteq \mathbf{K}(\sigma)$.

Equivalently, \mathbf{K}' is a \mathbf{K} -prevariety if and only if $\mathbf{K}' = \mathbf{K} \cap \mathbf{SP}(\mathbf{K}')$

Let $\mathbf{K}' \subseteq \mathbf{K} \subseteq \mathbf{K}(\sigma)$. Then \mathbf{K}' is \mathbf{K} -[quasi-]equational, if $\mathbf{K}' = \mathbf{K} \cap \mathsf{Mod}(\Sigma)$ for some set Σ of [quasi-] identities of signature σ .

Definition

Let $\mathbf{K}' \subseteq \mathbf{K} \subseteq \mathbf{K}(\sigma)$. Then \mathbf{K}' is a [finitary] K-prevariety, if $\mathbf{K}' = \mathbf{K} \cap \mathbf{A}$ for some [finitary] prevariety $\mathbf{A} \subseteq \mathbf{K}(\sigma)$.

Equivalently, \mathbf{K}' is a [finitary] \mathbf{K} -prevariety if and only if $\mathbf{K}' = \mathbf{K} \cap \mathbf{SP}(\mathbf{K}')$ [$\mathbf{K}' = \mathbf{K} \cap \mathbf{SP}^{\omega}(\mathbf{K}')$, respectively].

Let Lv(K) denote the class of all K-equational subclasses of K,

Let Lv(K) denote the class of all K-equational subclasses of K, while Lq(K) denotes the class of all K-quasi-equational subclasses of K.

Let Lv(K) denote the class of all K-equational subclasses of K, while Lq(K) denotes the class of all K-quasi-equational subclasses of K.

Let also Lp(K) K-prevarieties. denote the class of all

Let Lv(K) denote the class of all K-equational subclasses of K, while Lq(K) denotes the class of all K-quasi-equational subclasses of K.

Let also Lp(K) [$Lp^{\omega}(K)$, respectively] denote the class of all [finitary] K-prevarieties.
Let Lv(K) denote the class of all K-equational subclasses of K, while Lq(K) denotes the class of all K-quasi-equational subclasses of K.

Let also Lp(K) [$Lp^{\omega}(K)$, respectively] denote the class of all [finitary] K-prevarieties.

Ordered with respect to inclusion, all the three form complete lattices.

Let $\sigma = \{p_i \mid i \in I\}$ be a signature consisting of unary relation symbols only.

AP ► < E ►

Let $\sigma = \{p_i \mid i \in I\}$ be a signature consisting of unary relation symbols only.

Furthermore, for any set $X \subseteq I$, let \mathcal{A}_X denote a structure from $\mathbf{T}(\sigma)$ such that $\mathcal{A}_X \models \forall x \ p_i(x)$ iff $i \in X$.

Let $\sigma = \{p_i \mid i \in I\}$ be a signature consisting of unary relation symbols only.

Furthermore, for any set $X \subseteq I$, let \mathcal{A}_X denote a structure from $\mathbf{T}(\sigma)$ such that $\mathcal{A}_X \models \forall x \ p_i(x)$ iff $i \in X$.

 $\mathbf{T}(\sigma)$ consists of isomorphic copies of structures \mathcal{A}_X , $X \subseteq I$.

Lemma

For any signature $\sigma = \{p_i \mid i \in I\}$ containing unary relation symbols only, the following statements hold:

1 For any sets $X, Y \subseteq I$, $A_Y \in \mathbf{H}(A_X)$ if and only if $X \subseteq Y$;

Lemma

For any signature $\sigma = \{p_i \mid i \in I\}$ containing unary relation symbols only, the following statements hold:

- **1** For any sets $X, Y \subseteq I$, $A_Y \in \mathbf{H}(A_X)$ if and only if $X \subseteq Y$;
- **2** For any set $X \subseteq I$, $\mathbf{S}(\mathcal{A}_X) = \{\mathcal{A}_X\}$;

Lemma

For any signature $\sigma = \{p_i \mid i \in I\}$ containing unary relation symbols only, the following statements hold:

- **1** For any sets $X, Y \subseteq I$, $A_Y \in \mathbf{H}(A_X)$ if and only if $X \subseteq Y$;
- **2** For any set $X \subseteq I$, $\mathbf{S}(\mathcal{A}_X) = \{\mathcal{A}_X\}$;
- If $X_j \subseteq I$ for any $j \in J$, then $\prod_{j \in J} A_{X_j} \cong A_X$, where $X = \bigcap_{j \in J} X_j$.

・同 ト ・ヨ ト ・ヨ ト … ヨ

$$\sigma(X) = \{p_x \mid x \in X\}.$$

(4日) (4日) (4

$$\sigma(X) = \{p_x \mid x \in X\}.$$

Let $\Sigma(X, C)$ consist of (in general infinite) implications of the form

$$\forall x \ \bigwedge_{a \in A} p_a(x) \to p_b(x), \quad A \subseteq X, \ b \in C(A).$$

$$\sigma(X) = \{p_x \mid x \in X\}.$$

Let $\Sigma(X, C)$ consist of (in general infinite) implications of the form

$$\forall x \ \bigwedge_{a \in A} p_a(x) \to p_b(x), \quad A \subseteq X, \ b \in C(A).$$

If the set X is finite, then the signature $\sigma(X)$ is finite, while $\Sigma(X, C)$ becomes a finite set of quasi-identities.

$$\sigma(X) = \{p_x \mid x \in X\}.$$

Let $\Sigma(X, C)$ consist of (in general infinite) implications of the form

$$\forall x \ \bigwedge_{a \in A} p_a(x) \to p_b(x), \quad A \subseteq X, \ b \in C(A).$$

If the set X is finite, then the signature $\sigma(X)$ is finite, while $\Sigma(X, C)$ becomes a finite set of quasi-identities.

The class $Mod(\Sigma(X, C))$ is a prevariety.

The class $\mathbf{K}(X, C) = Mod(\Sigma(X, C)) \cap \mathbf{T}(\sigma(X))$ is also a prevariety.

э

・聞き ・ ヨキ・ ・ ヨキ

The class $\mathbf{K}(X, C) = Mod(\Sigma(X, C)) \cap \mathbf{T}(\sigma(X))$ is also a prevariety.

Lemma

For any closure space $\langle X, C \rangle$, the class $\mathbf{K}(X, C)$ consists of isomorphic copies of structures \mathcal{A}_B , where $B \in \mathbb{L}(X, C)$.

・ 同 ト ・ 三 ト ・

$$\forall x \ \bigwedge_{a \in A} p_a(x) \to p_b(x), \quad A \subseteq X \text{ is finite}, \ b \in C(A).$$

$$\forall x \ \bigwedge_{a \in A} p_a(x) \to p_b(x), \quad A \subseteq X \text{ is finite}, \ b \in C(A).$$

If the set X is finite, then the set $\Delta(X, C)$ is finite too.

$$\forall x \ \bigwedge_{a \in A} p_a(x) \to p_b(x), \quad A \subseteq X \text{ is finite}, \ b \in C(A).$$

If the set X is finite, then the set $\Delta(X, C)$ is finite too.

The class $Mod(\Delta(X, C))$ is a quasivariety.

$$\forall x \ \bigwedge_{a \in A} p_a(x) \to p_b(x), \quad A \subseteq X \text{ is finite}, \ b \in C(A).$$

If the set X is finite, then the set $\Delta(X, C)$ is finite too.

The class $Mod(\Delta(X, C))$ is a quasivariety.

Therefore, the class $\mathbf{A}(X, C) = Mod(\Delta(X, C)) \cap \mathbf{T}(\sigma(X))$ is also a quasivariety.

$$\forall x \ \bigwedge_{a \in A} p_a(x) \to p_b(x), \quad A \subseteq X \text{ is finite}, \ b \in C(A).$$

If the set X is finite, then the set $\Delta(X, C)$ is finite too.

The class $Mod(\Delta(X, C))$ is a quasivariety.

Therefore, the class $\mathbf{A}(X, C) = Mod(\Delta(X, C)) \cap \mathbf{T}(\sigma(X))$ is also a quasivariety.

Lemma

For any algebraic closure space $\langle X, C \rangle$, the class $\mathbf{A}(X, C)$ consists of isomorphic copies of structures \mathcal{A}_B , where $B \in \mathbb{L}(X, C)$.

For any complete lattice L, there are a signature σ consisting only of unary relation symbols and a prevariety $\mathbf{K} \subseteq \mathbf{T}(\sigma)$ such that $L^{\partial} \cong Lv(\mathbf{K})$ and $Sub_{c}(L) \cong Lp(\mathbf{K}) = Lq(\mathbf{K})$.

-∰ ► < ≣ ►

For any complete lattice L, there are a signature σ consisting only of unary relation symbols and a prevariety $\mathbf{K} \subseteq \mathbf{T}(\sigma)$ such that $L^{\partial} \cong Lv(\mathbf{K})$ and $Sub_c(L) \cong Lp(\mathbf{K}) = Lq(\mathbf{K})$.

Sketch of proof: Since the lattice *L* is complete, there is a closure space $\langle X, C \rangle$ such that $L^{\partial} \cong \mathbb{L}(X, C)$.

For any complete lattice L, there are a signature σ consisting only of unary relation symbols and a prevariety $\mathbf{K} \subseteq \mathbf{T}(\sigma)$ such that $L^{\partial} \cong Lv(\mathbf{K})$ and $Sub_c(L) \cong Lp(\mathbf{K}) = Lq(\mathbf{K})$.

Sketch of proof: Since the lattice *L* is complete, there is a closure space $\langle X, C \rangle$ such that $L^{\partial} \cong \mathbb{L}(X, C)$.

Let $\sigma = \sigma(X)$ and let $\mathbf{K} = \mathbf{K}(X, C)$.

For any complete lattice L, there are a signature σ consisting only of unary relation symbols and a prevariety $\mathbf{K} \subseteq \mathbf{T}(\sigma)$ such that $L^{\partial} \cong Lv(\mathbf{K})$ and $Sub_c(L) \cong Lp(\mathbf{K}) = Lq(\mathbf{K})$.

Sketch of proof: Since the lattice *L* is complete, there is a closure space $\langle X, C \rangle$ such that $L^{\partial} \cong \mathbb{L}(X, C)$.

Let $\sigma = \sigma(X)$ and let $\mathbf{K} = \mathbf{K}(X, C)$. Then \mathbf{K} is a prevariety.

For any complete lattice L, there are a signature σ consisting only of unary relation symbols and a prevariety $\mathbf{K} \subseteq \mathbf{T}(\sigma)$ such that $L^{\partial} \cong Lv(\mathbf{K})$ and $Sub_c(L) \cong Lp(\mathbf{K}) = Lq(\mathbf{K})$.

Sketch of proof: Since the lattice *L* is complete, there is a closure space $\langle X, C \rangle$ such that $L^{\partial} \cong \mathbb{L}(X, C)$.

Let $\sigma = \sigma(X)$ and let $\mathbf{K} = \mathbf{K}(X, C)$. Then **K** is a prevariety.

Let $\psi: L \to \mathbb{L}(X, C)$ be an isomorphism. The class **K** consists of isomorphic copies of structures $\mathcal{A}_{\psi(a)}$, where $a \in L$.

伺 ト く ヨ ト く ヨ ト

 $\varphi \colon B \mapsto \{ \mathcal{A}_F \in \mathbf{T}(\sigma) \mid F \in \mathbb{L}(X, C) \text{ and } B \subseteq F \}, \quad B \in \mathbb{L}(X, C).$

 $\varphi \colon B \mapsto \{ \mathcal{A}_F \in \mathbf{T}(\sigma) \mid F \in \mathbb{L}(X, C) \text{ and } B \subseteq F \}, \quad B \in \mathbb{L}(X, C).$

It is well-defined and establishes a dual isomorphism, whence $L^{\partial} \cong Lv(\mathbf{K})$.

・ 同 ト ・ ヨ ト ・ ヨ ト ・ ヨ

 $\varphi \colon B \mapsto \{ \mathcal{A}_F \in \mathbf{T}(\sigma) \mid F \in \mathbb{L}(X, C) \text{ and } B \subseteq F \}, \quad B \in \mathbb{L}(X, C).$

It is well-defined and establishes a dual isomorphism, whence $L^{\partial} \cong Lv(\mathbf{K})$.

Define a map φ' : $Sub_c(L) \rightarrow Lp(\mathbf{K})$ by the rule

$$\varphi' \colon B \mapsto \{ \mathcal{A}_{\psi(b)} \in \mathbf{T}(\sigma) \mid b \in B \}, \quad B \in \mathsf{Sub}_c(L).$$

▲冊 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ○ 臣 ○ の Q (や

 $\varphi \colon B \mapsto \{ \mathcal{A}_F \in \mathbf{T}(\sigma) \mid F \in \mathbb{L}(X, C) \text{ and } B \subseteq F \}, \quad B \in \mathbb{L}(X, C).$

It is well-defined and establishes a dual isomorphism, whence $L^{\partial} \cong Lv(\mathbf{K})$.

Define a map $\varphi' \colon \operatorname{Sub}_c(L) \to \operatorname{Lp}(K)$ by the rule

$$\varphi' \colon B \mapsto \{ \mathcal{A}_{\psi(b)} \in \mathsf{T}(\sigma) \mid b \in B \}, \quad B \in \mathsf{Sub}_{c}(L).$$

It is well-defined and is a lattice isomorphism, whence $Sub_c(L) \cong Lp(\mathbf{K})$.

・ 同 ト ・ ヨ ト ・ ヨ ト ・ ヨ

 $\varphi \colon B \mapsto \{ \mathcal{A}_F \in \mathbf{T}(\sigma) \mid F \in \mathbb{L}(X, C) \text{ and } B \subseteq F \}, \quad B \in \mathbb{L}(X, C).$

It is well-defined and establishes a dual isomorphism, whence $L^{\partial} \cong Lv(\mathbf{K})$.

Define a map φ' : $Sub_c(L) \rightarrow Lp(\mathbf{K})$ by the rule

$$\varphi' \colon B \mapsto \{ \mathcal{A}_{\psi(b)} \in \mathsf{T}(\sigma) \mid b \in B \}, \quad B \in \mathsf{Sub}_{c}(L).$$

It is well-defined and is a lattice isomorphism, whence $Sub_c(L) \cong Lp(\mathbf{K})$.

 $\varphi'(B)$ is closed under the operator $L_s \cap K$ for any $B \in Sub_c(L)$, whence $\varphi'(B) \in Lq(K)$. Therefore, Lp(K) = Lq(K).

伺下 くほと くほと しほ

Theorem (Gorbunov)

Let K be a prevariety and let $K' \subseteq K$ be *I*-projectively complete in K. Then for any non-empty subclass $A \subseteq K$,

$$\mathbf{Q}(\mathbf{A}) \cap \mathbf{K}' = (\mathbf{L}_s \cap \mathbf{K}')(\mathbf{P}_s \cap \mathbf{K}')(\mathbf{S} \cap \mathbf{K}')(\mathbf{A}).$$

In particular, a non-empty subclass $\mathbf{A} \subseteq \mathbf{K}'$ is \mathbf{K}' -quasi-equational if and only if \mathbf{A} is closed under operators $\mathbf{L}_s \cap \mathbf{K}'$, $\mathbf{S} \cap \mathbf{K}'$, and $\mathbf{P}_s \cap \mathbf{K}'$.

Theorem (Gorbunov)

Let K be a prevariety and let $K' \subseteq K$ be *I*-projectively complete in K. Then for any non-empty subclass $A \subseteq K$,

$$\mathbf{Q}(\mathbf{A}) \cap \mathbf{K}' = (\mathbf{L}_s \cap \mathbf{K}')(\mathbf{P}_s \cap \mathbf{K}')(\mathbf{S} \cap \mathbf{K}')(\mathbf{A}).$$

In particular, a non-empty subclass $\mathbf{A} \subseteq \mathbf{K}'$ is \mathbf{K}' -quasi-equational if and only if \mathbf{A} is closed under operators $\mathbf{L}_s \cap \mathbf{K}'$, $\mathbf{S} \cap \mathbf{K}'$, and $\mathbf{P}_s \cap \mathbf{K}'$.

Corollary

For any complete upper continuous lattice L, there is a signature σ consisting only of unary relation symbols and a prevariety $\mathbf{K} \subseteq \mathbf{T}(\sigma)$ such that Sp(L) embeds into Lq(\mathbf{K}).

For any meet semilattice $\langle S, \wedge, 1 \rangle$ with unit, there is a signature σ consisting only of unary relation symbols and a finitary prevariety $\mathbf{K} \subseteq \mathbf{T}(\sigma)$ such that $\mathrm{Sub}(S) \cong \mathrm{Lp}^{\omega}(\mathbf{K})$.

/₽ ► < ≡ ►

For any meet semilattice $\langle S, \wedge, 1 \rangle$ with unit, there is a signature σ consisting only of unary relation symbols and a finitary prevariety $\mathbf{K} \subseteq \mathbf{T}(\sigma)$ such that $\mathrm{Sub}(S) \cong \mathrm{Lp}^{\omega}(\mathbf{K})$.

Sketch of proof: Let $\sigma = \{p_a \mid a \in S\}$ consist of unary relation symbols and let the class **K** consist of isomorphic copies of structures $A_{\downarrow b}$, where $b \in S$.

For any meet semilattice $\langle S, \wedge, 1 \rangle$ with unit, there is a signature σ consisting only of unary relation symbols and a finitary prevariety $\mathbf{K} \subseteq \mathbf{T}(\sigma)$ such that $\mathrm{Sub}(S) \cong \mathrm{Lp}^{\omega}(\mathbf{K})$.

Sketch of proof: Let $\sigma = \{p_a \mid a \in S\}$ consist of unary relation symbols and let the class **K** consist of isomorphic copies of structures $A_{\downarrow b}$, where $b \in S$. The class **K** is a finitary prevariety: for any $n < \omega$ and for any b_0 , ..., $b_{n-1} \in S$, one has $A_{\downarrow b_0} \times \ldots \times A_{\downarrow b_{n-1}} \cong A_{\downarrow b}$, where $b = b_0 \wedge \ldots \wedge b_{n-1}$, while $\mathbf{S}(A_{\downarrow a}) = \{A_{\downarrow a}\}$ for any $a \in S$.

For any meet semilattice $\langle S, \wedge, 1 \rangle$ with unit, there is a signature σ consisting only of unary relation symbols and a finitary prevariety $\mathbf{K} \subseteq \mathbf{T}(\sigma)$ such that $\mathrm{Sub}(S) \cong \mathrm{Lp}^{\omega}(\mathbf{K})$.

Sketch of proof: Let $\sigma = \{p_a \mid a \in S\}$ consist of unary relation symbols and let the class **K** consist of isomorphic copies of structures $\mathcal{A}_{\downarrow b}$, where $b \in S$. The class **K** is a finitary prevariety: for any $n < \omega$ and for any b_0 , \ldots , $b_{n-1} \in S$, one has $\mathcal{A}_{\downarrow b_0} \times \ldots \times \mathcal{A}_{\downarrow b_{n-1}} \cong \mathcal{A}_{\downarrow b}$, where $b = b_0 \wedge \ldots \wedge b_{n-1}$, while $\mathbf{S}(\mathcal{A}_{\downarrow a}) = \{\mathcal{A}_{\downarrow a}\}$ for any $a \in S$.

Define a map $\varphi \colon \operatorname{Sub}(S) \to \operatorname{Lp}^{\omega}(\mathbf{K})$ by the rule

$$\varphi \colon B \mapsto \{ \mathcal{A}_{\downarrow b} \in \mathbf{T}(\sigma) \mid b \in B \}, \quad B \in \mathsf{Sub}(S).$$

伺 ト イヨト イヨト

For any meet semilattice $\langle S, \wedge, 1 \rangle$ with unit, there is a signature σ consisting only of unary relation symbols and a finitary prevariety $\mathbf{K} \subseteq \mathbf{T}(\sigma)$ such that $\mathrm{Sub}(S) \cong \mathrm{Lp}^{\omega}(\mathbf{K})$.

Sketch of proof: Let $\sigma = \{p_a \mid a \in S\}$ consist of unary relation symbols and let the class **K** consist of isomorphic copies of structures $A_{\downarrow b}$, where $b \in S$. The class **K** is a finitary prevariety: for any $n < \omega$ and for any b_0 , ..., $b_{n-1} \in S$, one has $A_{\downarrow b_0} \times \ldots \times A_{\downarrow b_{n-1}} \cong A_{\downarrow b}$, where $b = b_0 \wedge \ldots \wedge b_{n-1}$, while $\mathbf{S}(A_{\downarrow a}) = \{A_{\downarrow a}\}$ for any $a \in S$.

Define a map $\varphi \colon \operatorname{Sub}(S) \to \operatorname{Lp}^{\omega}(\mathbf{K})$ by the rule

$$\varphi \colon B \mapsto \{ \mathcal{A}_{\downarrow b} \in \mathbf{T}(\sigma) \mid b \in B \}, \quad B \in \mathsf{Sub}(S).$$

伺 ト く ヨ ト く ヨ ト

It is a lattice isomorphism.

Proposition (Gorbunov, Tumanov)

For any complete dually algebraic lattice L, there are a signature σ consisting only of unary relation symbols and a quasivariety $\mathbf{K} \subseteq \mathbf{T}(\sigma)$ such that $L \cong Lv(\mathbf{K})$.
For any complete dually algebraic lattice L, there are a signature σ consisting only of unary relation symbols and a quasivariety $\mathbf{K} \subseteq \mathbf{T}(\sigma)$ such that $L \cong Lv(\mathbf{K})$.

Sketch of proof: Since the *dual* lattice L^{∂} is algebraic, there is an algebraic closure space $\langle X, C \rangle$ such that $L^{\partial} \cong \mathbb{L}(X, C)$.

For any complete dually algebraic lattice L, there are a signature σ consisting only of unary relation symbols and a quasivariety $\mathbf{K} \subseteq \mathbf{T}(\sigma)$ such that $L \cong Lv(\mathbf{K})$.

Sketch of proof: Since the *dual* lattice L^{∂} is algebraic, there is an algebraic closure space $\langle X, C \rangle$ such that $L^{\partial} \cong \mathbb{L}(X, C)$.

Let $\sigma = \sigma(X)$ and let $\mathbf{K} = \mathbf{A}(X, C)$. Then **K** is a quasivariety.

For any complete dually algebraic lattice L, there are a signature σ consisting only of unary relation symbols and a quasivariety $\mathbf{K} \subseteq \mathbf{T}(\sigma)$ such that $L \cong Lv(\mathbf{K})$.

Sketch of proof: Since the *dual* lattice L^{∂} is algebraic, there is an algebraic closure space $\langle X, C \rangle$ such that $L^{\partial} \cong \mathbb{L}(X, C)$.

Let $\sigma = \sigma(X)$ and let $\mathbf{K} = \mathbf{A}(X, C)$. Then **K** is a quasivariety.

We define a map $\varphi \colon \mathbb{L}(X, C) \to \mathsf{Lv}(\mathsf{K})$ by the rule

 $\varphi \colon B \mapsto \{ \mathcal{A}_F \in \mathbf{T}(\sigma) \mid F \in \mathbb{L}(X, C) \text{ and } B \subseteq F \}, \quad B \in \mathbb{L}(X, C).$

Then φ establishes a dual isomorphism between $\mathbb{L}(X, C)$ and $Lv(\mathbf{K})$.

▲ □ ▶ ▲ □ ▶ ▲ □ ▶ →

It was shown by V.A. Gorbunov that for any quasivariety K, the lattice Lv(K) is complete and dually algebraic.

It was shown by V.A. Gorbunov that for any quasivariety ${\bf K},$ the lattice $Lv({\bf K})$ is complete and dually algebraic.

Corollary

The class of complete dually algebraic lattices coincides with the class of lattices of relative equational classes of quasivarieties.

Definition (Pal'chunov)

Let **K** be a class of structures of signature σ and let Δ be a set of first-order sentences of the same signature. A class **K**' is **axiomatizable in K relatively to** Δ , if **K**' = **K** \cap Mod(Σ) for some set $\Sigma \subseteq \Delta$.

Definition (Pal'chunov)

Let **K** be a class of structures of signature σ and let Δ be a set of first-order sentences of the same signature. A class **K**' is **axiomatizable in K relatively to** Δ , if **K**' = **K** \cap Mod(Σ) for some set $\Sigma \subseteq \Delta$.

A class $\mathbf{K} \subseteq \mathbf{K}(\sigma)$ is axiomatizable if and only if it is axiomatizable in $\mathbf{K}(\sigma)$ relatively to the set of all first-order sentences.

Definition (Pal'chunov)

Let **K** be a class of structures of signature σ and let Δ be a set of first-order sentences of the same signature. A class **K**' is **axiomatizable in K relatively to** Δ , if **K**' = **K** \cap Mod(Σ) for some set $\Sigma \subseteq \Delta$.

A class $\mathbf{K} \subseteq \mathbf{K}(\sigma)$ is axiomatizable if and only if it is axiomatizable in $\mathbf{K}(\sigma)$ relatively to the set of all first-order sentences.

Furthermore, for any set Δ of sentences and any class $\mathbf{K} \subseteq \mathbf{K}(\sigma)$, the set of all axiomatizable in \mathbf{K} classes relatively to Δ forms a complete lattice $\mathbb{A}(\mathbf{K}, \Delta)$.

For any complete lattice L, there are a signature σ , a prevariety $\mathbf{K} \subseteq \mathbf{K}(\sigma)$, and a set Δ of first-order sentences of the same signature such that $L \cong \mathbb{A}(\mathbf{K}, \Delta)$.

For any complete lattice L, there are a signature σ , a prevariety $\mathbf{K} \subseteq \mathbf{K}(\sigma)$, and a set Δ of first-order sentences of the same signature such that $L \cong \mathbb{A}(\mathbf{K}, \Delta)$.

Proof.

Take σ and **K** as in the proof of Proposition and take the set of all identities of signature σ as Δ .

For any complete lattice L, there are a signature σ , a prevariety $\mathbf{K} \subseteq \mathbf{K}(\sigma)$, and a set Δ of first-order sentences of the same signature such that $L \cong \mathbb{A}(\mathbf{K}, \Delta)$.

Proof.

Take σ and **K** as in the proof of Proposition and take the set of all identities of signature σ as Δ .

Corollary was proved by D. E. Pal'chunov only for at most countable complete lattices L. This has lead him to ask whether any complete lattice is isomorphic to a lattice of relatively axiomatizable classes, cf. Problem 1 in [*D. E. Pal'chunov*, Lattices of relatively axiomatizable classes, Lecture Notes in Artificial Intelligence, **4390** (2007), 221–239.]

The class of complete dually algebraic lattices coincides with the class of lattices of the form $\mathbb{A}(\mathbf{K}, \Delta)$, where **K** is a quasivariety and Δ is a set of first-order sentences.

The class of complete dually algebraic lattices coincides with the class of lattices of the form $\mathbb{A}(\mathbf{K}, \Delta)$, where **K** is a quasivariety and Δ is a set of first-order sentences.

Corollary

For any finite lattice L, there are a finite signature σ and a set Δ of first-order sentences of σ such that $L \cong \mathbb{A}(\mathbf{K}(\sigma), \Delta)$.

The class of complete dually algebraic lattices coincides with the class of lattices of the form $\mathbb{A}(\mathbf{K}, \Delta)$, where **K** is a quasivariety and Δ is a set of first-order sentences.

Corollary

For any finite lattice L, there are a finite signature σ and a set Δ of first-order sentences of σ such that $L \cong \mathbb{A}(\mathbf{K}(\sigma), \Delta)$.

The latter Corollary was proved by D.E. Pal'chunov.

For any complete algebraic lattice L, there is a signature σ consisting only of unary relation symbols and a quasivariety $\mathbf{K} \subseteq \mathbf{T}(\sigma)$ such that $\operatorname{Sp}(L) \cong \operatorname{Lq}(\mathbf{K})$ and $\operatorname{Sub}_{c}(L) \cong \operatorname{Lp}(\mathbf{K})$.

For any complete algebraic lattice L, there is a signature σ consisting only of unary relation symbols and a quasivariety $\mathbf{K} \subseteq \mathbf{T}(\sigma)$ such that $\operatorname{Sp}(L) \cong \operatorname{Lq}(\mathbf{K})$ and $\operatorname{Sub}_{c}(L) \cong \operatorname{Lp}(\mathbf{K})$.

Sketch of proof: There is an algebraic closure space $\langle X, C \rangle$ such that $L \cong \mathbb{L}(X, C)$; let $\psi \colon L \to \mathbb{L}(X, C)$ be an isomorphism. Let $\sigma = \sigma(X)$ and let $\mathbf{K} = \mathbf{A}(X, C)$. Then \mathbf{K} is a quasivariety. The class \mathbf{K} consists of isomorphic copies of structures $\mathcal{A}_{\psi(a)}$, where $a \in L$.

For any complete algebraic lattice L, there is a signature σ consisting only of unary relation symbols and a quasivariety $\mathbf{K} \subseteq \mathbf{T}(\sigma)$ such that $\operatorname{Sp}(L) \cong \operatorname{Lq}(\mathbf{K})$ and $\operatorname{Sub}_c(L) \cong \operatorname{Lp}(\mathbf{K})$.

Sketch of proof: There is an algebraic closure space $\langle X, C \rangle$ such that $L \cong \mathbb{L}(X, C)$; let $\psi \colon L \to \mathbb{L}(X, C)$ be an isomorphism. Let $\sigma = \sigma(X)$ and let $\mathbf{K} = \mathbf{A}(X, C)$. Then \mathbf{K} is a quasivariety. The class \mathbf{K} consists of isomorphic copies of structures $\mathcal{A}_{\psi(a)}$, where $a \in L$.

We define a map $\varphi \colon \operatorname{Sub}_c(L) \to \operatorname{Lp}(\mathbf{K})$ by the rule

$$\varphi \colon B \mapsto \{ \mathcal{A}_{\psi(b)} \in \mathbf{T}(\sigma) \mid b \in B \}, \quad B \in \mathsf{Sp}(L).$$

Then φ is well-defined and it is a lattice isomorphism, whence $\operatorname{Sub}_{c}(L) \cong \operatorname{Lp}(\mathbf{K})$. Moreover, the restriction of φ on $\operatorname{Sp}(L)$ defines an isomorphism from $\operatorname{Sp}(L)$ onto $\operatorname{Lq}(\mathbf{K})$.

It is known that quasivariety lattices are completely join-semidistributive and dually algebraic (V. A. Gorbunov). In contrast, lattices of the form Lq(\mathbf{K}) and Lp(\mathbf{K}), where \mathbf{K} is a prevariety, are neither join-semidistributive nor even lower continuous.

It is known that quasivariety lattices are completely join-semidistributive and dually algebraic (V. A. Gorbunov). In contrast, lattices of the form Lq(\mathbf{K}) and Lp(\mathbf{K}), where \mathbf{K} is a prevariety, are neither join-semidistributive nor even lower continuous.

Corollary

There are prevarieties K such that neither Lq(K) nor Lp(K) embed into a quasivariety lattice.