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Epigenetic decision making

@ It is a stochastic process that helps
cells to decide between different and
functionally important fates.

@ |t is controlled by genetic networks.
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Epigenetic decision making

Timing matters!

@ It is a stochastic process that helps
cells to decide between different and
functionally important fates.

@ |t is controlled by genetic networks.
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Epigenetic decision making Timing matters!

* Where important! Main idea.

* Paradigmatic genetic switch - Speed dependent
cellular decision making

* Another form of signalling

* Genetic switch regulating differentiation of immune
cells

* Multidimensional genetic switch
* Conclusions and Open questions

* Example of timing regulated by quorum-sensing




Epigenetic genetic decision.VWhere important:

* |n synthetic genetic switches and logical circuits

Construction of a genetic toggle "

switch in Escherichia coli T
Timothy S. Gardner*t, Charles R. Cantor* & James J. Collins* T Promoter 2 |
NATURE|VOL 403|20 JANUARY 2000 | - Y

e artificial genetic modules
e consist of a limited number of genes

e designed to operate isolated from the rest of the cellular

machinery
e test system for special functions of natural gene networks

e greatly reduced complexity of natural networks
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Epigenetic genetic decision.VVWhere important:

in Introduction to

Molecular Medicine

and Gene Therapy

* |n the design of genetic
therapies Sdied by

Thomas K. Kresina. Ph.D.




Where important:

Understanding of natural cell differentiation circuits

e DNA Methylation

, O signature is different in
progenitors in immune cancer in networks

systems (Graf 2008) responsible for stem cell
— differentiation

Differentiation of

Myeloid branch

Macrophages, Normal stem cell Cancer precursor with
granulocytes reversible repression aberrant DNA methylation

Erythrocytes,
platelets

Ve From M.Widschwendter et
al, Nature Genetics (2006)
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Design of therapies:

Parameters Noise?
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Design of therapies:
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Let us consider paradigmatic genetic switch

The Genetic Switch in Bacteriophage A

Inducer 2

1

Promoter 1

Repressor 2 ' — I Repressor 1 Reporter

T Promoter 2 |

T

Inducer 1

Fraction of pTAK11
| ligh stat
_:}: . v N B .‘
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GFP fluoresce

500 200 400 10! 10¢ ) 800
Side cell Side Co Side Cell
scattering counts scattenng counts scattering ounts

T. Gardner, C. Cantor, J.J. Collins , "Construction of a genetic toggle switch in
Escherechia coli”’, Nature, 2000.
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Let us consider the paradigmatic genetic switch:
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Mathematical model:

1+ bexXQQ

Activation or inhibition: ¢(Xx% Y% =x

Phosporylation by
external signals

Fx(51,82) = ax + k1.xS51 + ko x5

TeX® = Fx(51,52)X —dxX®
oY = Fy(S1,5)Y —dyY®

x =1 (20 Sl 4o THID ' P

T

1
—7-_ (FX(SLSQ)X —dXXa) +UXY§X(t)
: 1
Fe el -t
1

a0 (Fy(Sl,SQ)Y—I-(lYYa) +UY,X§Y(t)?
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Mathematical model:

1+ bexXQQ

Activation or inhibition: ¢(Xx% Y% =x

Phosporylation by
external signals

Fx(51,82) = ax + k1.xS51 + ko x5

= Fx(51,52)X —dxX*

= Fy (S51,52)Y —dyY*
1

& Sieovind
T

gy o (FX(SLSQ)X —dXXa) +UXY£X(t)

ey (Fy(Sl,SQ)Y—F(lYYa)+UY,X§Y(t)$

Wednesday, 12 December 12



Mathematical model:

1+ exbyx X*?

Activation or inhibition: G(X,Y?)

Phosporylation by
external signals

X = —{e{x"¥)
1
Ta
Vo (O e

S (Fy(Sl,SQ)Y‘l‘dYYa) +UY,X£Y(t)>

Dephosporylation
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Mathematical model:

Activation or inhibition:

Phosporylation by
external signals

1+ bexxaz

Fx(51,52) = ax + k1,X51U+ ko, x S9
Mutual Inhibition:

TeX® = Fx(51,52)X —dxX®
oY® = Fy(S1,5)Y —dyY®

in (FX(SLSQ)X —dXXa)+OX,Y§X(t)

——  (Fy(51,5)Y +dyY?) + oy, xéy (t).
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H.H. McAdams, A.

Genetlc regulatlon at the nanomolar scale Arkin 1999

Fig. 1. Intrinsic and extrinsic

A
SCIENCE VOL 297 16 AUGUST 2002 ;P,t,,;,,:;mfgm : :

] |
==

(cfp. shown in green;

= shown in red) controll —> _ 5 o
identical regulatory sequenc- ( )
es. Cells with the same

amount of each protein ap-
pear yellow, whereas cells ex-
pnsshg more of one fluores-

cent protein than the other

Stochastic Gene Expression in @  appear red or green (&) In
the absence of intrinsic noise,

Single Ceu the two fluorescent proteins E
T

fluctuate in a correlated fash-
124 1 2 ion over time in a cell
Michael B. Elowitz, : Amold J. Levine,” Eric D. Siggia, (left). Thus, in a on,
eter S. Swain each cell will have the same
amount of both proteins, al-
though that amount will dif-
fer from cell to cell because
of extrinsic noise (right). (B)
ession of the two

may become uncormrelated in individual cells because of intrinsic noise (left), giving rise to a
population in which some cells express more of one fluorescent protein than the other.
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Mathematical model:

1+ C)(b)(.Xa2

Activation or inhibition: ¢(Xx*v?) =nx

Phosporylation by
external signals

Fx(51,52) = ax + /31,X51u+ ko, x S9

TeX® = Fx(51,52)X —dxX®
.Y® = Fy(S1,5)Y —dyY®

. Noise:
X = (s Ry
i 5
1
——  (Fx(51,5)X —dxX?) +
_—
Y = —(G(Y*,X*)-Y)-

1
- (Fy (51,52)Y +dyY*?) +
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Mathematical model:

1+ C)(l))()(a2

Activation or inhibition: ¢(Xx*v?) =nx

Phosporylation by
external signals

Fx(S1,8:) = ax + k‘1,X51U+ ko, x So

TeX® = Fx(51,52)X —dxX®
oY® = Fy(S1,5)Y —dyY®

Noise:
£ - Latena £)

1 a
——  (Fx(51,52)X —dxX )+
it s %(G(Y“,X“)@

1
- (Fy (51,52)Y +dyY*?) +

Degradation
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FIG. 2: Parameter analysis of the decision genetic switch
with external stimulation. a) Phase diagram for X in space

So we have bifurcation, noise and asymmetry

What is known from statistical physics?

Chiral Symmetry Breaking in Nonequilibrium Systems

D. K. Kondepudi and G. W, Nelson
Center for Studies in Slatistical Mechanics, University of Texas at Austin, Austin, Texas 78712
(Received 14 June 1982)
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R is the ratio Ph/(Ph+Pl) where Ph is the probability
to choose the upper branch, Pl - the lower one.
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Speed- dependent Cellular decision making

Asymmetry Ratio
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Speed- dependent Cellular decision making
Asymmetry

Ratio

4

(t/t)

- 6 8 10 SPeed

FIG. 4: Effect of timescale differences and noise on SACDM.
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In genetic decision networks:

* natural noise and asymmetry
* decision depends on the scenario, choosing the branch

and speed of the decision making

g>0
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More realistic form of signals

@ [he signals take the following form

2 T 5 10
5(t) = —=te o 4
1(2) 0% T T xet
a t 10
S:(t) = 5te % A

i
05 1+ et
@  is a parameter which determines the speed.
» Increasing 6 decreases the speed.

(14)

(15)

S1(¢), S2(¢)
R
R

AAAAAAAAA

P A A A A
. . . - - » ’ ' ’ .

(k) (1) #;=0.5-10

i :

(m) #;=0.001-5

Wednesday, 12 December 12



Avadable online at www sciencedirect.com
“+.* ScienceDirect R oo

Devdopmental Biclogy 305 (2007) 695 -713

www.elseviercomSocate'ydbio
Genomes & Developmental Control
Bifurcation dynamics in lineage-commitment in bipotent progenitor cells

Sui Huang ™*, Yan-Ping Guo °, Gillian May ®, Tariq Enver ®

The model of genetic switch has the following form

Xm - ale" blrgl
dt 2+ XJ C R+ Xy s (o)

T s Wi k2X2 (17)
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@ Supercritical pitchfork bifurcation

Symmetric case Asymmetric case

@ Subcritical pitchfork bifurcation
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@ To study the effect of noise, we put the equations in Langevin
form.
@ To study the effect of speed, we compute the ratio R.

n n
dt — rm+ XXy T .
d] 1 bl 2
n n
dX2 B 32X2 | bgrb2
d_ — X e X7 k2X2 + 0'262 (19)
L i + A I T A
B —— =Ny
1 L d S | &
:-“_ 5 | ;“b w | z o5} \
4 // | 4 WA, | d b
azb ‘ = ’ \M,‘ 4 02t » ]
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Further research: multidimensional genetic switch

Input signals

O TFs activated
by signals
TFs not

O activated by
signals

—_— Phosphorylation
reactions

Gene regulatory
interaction
(stimulatory)

o———-2 Gene regulatory
interaction
(mutual inhibition)

Figure 2. Representation of a highdimensional genetic decision switch with 10
transcription factors (nodes 6 to 15) and 5 input signals. Only nodes 6 to 10 need to be
activated (phosphorylated) to act on any promoter region of the rest of the transcription factors in the
network. Each transcription factor reinforces its own expression and represses all other nodes.
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Figure 3. Bifurcation diagram for each of the transcription factors for
S=8,=8,=83=54=25;. (A) Complete bifurcation diagram. (B) Amplification of lower part of the
bifurcation diagram represented in A. Parameters: M =2, 5 = 0.1, ¢! = 20, k! = 1 (self-activation) and
k; = 10 (cross-repression), a =0, d =03, 77 /75 =1, for i,j = 6,..., 15 (see Methods). S is the
horizontal axis for all the figures, from TFg to T'Fi5. In the construction of the bifurcation diagrams 100
initial consitions were randomly selected for each S and the long term trajectories recorded and plotted.
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Correlation between matrices: C=0.12
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Figure 4. Pair-wise average distance over 100 runs (each corresponding to a different
initial condition) between asymptotically stable states induced by input combinations. (A)
Results for time-scale ratio (77 /7°) = 1 calculated throngh Eq. 2 . (B) Results for time-scale ratio

(77 /75) = 10 calculated through Eq. 2. (C) Distance between pairs of vectors I, = (Si, ..., S5)k.
calculated through the distance metric 1 — 7y, 1y, with 7, 1,y being the Pearson coefficient of
correlation between vectors I, and [,. Parameters: M = 2, n = 0.1, ¢} = 20, k} = 1 (self-activation)
and l.; = 10 (repression), a = 0, d, = 0.3 (see Methods), for 7, j = 6, ..., 15.

11.2
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|
15’ 75)

Dr(l

0.5

Figure 8. Inter-distribution distance dependence on sweeping speed. (A) Inter-distribution
distance between the attractors induced by combination 15 and I75. (B) Inter-distribution distance
between the attractors induced by combination I75 and Igy4. D, stands for the distance metric based on
the correlation between distributions (similar to Eq. 3 ). Parameters: M=2, n = 0.1, ¢! = 20, k! = 1
(self-activation) and /\’) = 10 (repression), a =0, d. = 0.3, 77 /7° = 1 (see Methods), for i, j=6....,15. o
stands for noise intensity (see Methods). On each figure each colour corresponds to different sweeping
speeds obtained by increasing T's, by 100, 300, or 500 numerical integration time-steps (see Fig. 1B).
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Summary

* All genetic decision switches naturally have asymmetry
and noise.

* As a result we have speed dependent cellular decision
making.

* In contrast to previous results on delayed bifurcations,
here the asymmetry is transient: and potentially we have
additional complexity due to the interplay between point
of maximal asymmetry and point of the decision.




Summary

* All genetic decision switches naturally have asymmetry
and noise.

* As a result we have speed dependent cellular decision
making.

* In contrast to previous results on delayed bifurcations,
here the asymmetry is transient: and potentially we have
additional complexity due to the interplay between point
of maximal asymmetry and point of the decision.

Such speed-dependent decision making should be
q taken account of in Biology, Synthetic Biology,

Medicine




Open Q:Transition to coexisting dynamic attractors

PHYSICAL REVIEW E 75, 031916 (2007)

Inherent multistability in arrays of autoinducer coupled genetic oscillators

A. Koseska,' E. Volkov,” A. Zaikin,"” and J. Kurths'

'Institut fiir Physik, Potsdam Universitcit, Am Neuen Palais 10, D-14469 Potsdam, Germany
2Departmem Theoretical Physics, Lebedev Physical Institute, Leninskii 53, Russia
3Departmem of Mathematics, University of Essex, Wivenhoe Park, Colchester C0O4 3SQ, United Kingdom
(Received 4 December 2006; published 30 March 2007)

e the toggle switch is constructed

from gene u(lacl) and gene
v(cI587);

e Al is synthesized by the protein
encoded by the gene w(luxl)
and drives the toggle switch;

e the extracellular Al will be repre-
sented by w. and provides an in-
tercell communication system

[Kuznetsov et al., SIAM J. APPL.
MATH., 2005]
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Open question: delayed
bifurcations in transition
to coexisting dynamic
attractors

e Oscillation death regime:
Increase of the coupling

strength in the system en-

trains the oscillations and
the oscillators distribute
among steady state clusters.

0 1000 2000
time
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week endin
PRL 99. 148103 (2007) PHYSICAL REVIEW LETTERS 5 OCTOBER 3007

Multistability and Clustering in a Population of Synthetic Genetic Oscillators
via Phase-Repulsive Cell-to-Cell Communication

Ekkehard Ullner,' Alexei Zaikin,” Evgenii I. Volkov,” and Jordi Garcia-Ojalvo’

The repressilator with quorum sensing

and repressive cell-to-cell communication
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Open Question: Regulation of decision making in
growing populations

OPEN @ ACCESS Freely available online @ prLoS one

Timing Cellular Decision Making Under Noise via Cell-

Ce" Communication March 2009 | Volume 4 | Issue 3 | e4872

Aneta Koseska', Alexey Zaikin?*, Jiirgen Kurths'>?%, Jordi Garcia-Ojalvo®

e System Size Effect: Differentia-
tion in noisy relaxator oscillators
can be explained by the effective
reduction of noise intensity?

e Programming cell differentiation?
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o
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Open Question: Cellular decisions in systems with
cellular intelligency
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THE ROYAL . P J. R. Soc. Interface
Isoc'.EY f FI rStC ite doi:10.1098 /rsif.2008.0344
n er ace e-publishing Published online

Molecular circuits for associative learning
in single-celled organisms

Chrisantha T. Fernando"**, Anthony M. L. Liekens®, Lewis E. H. Bingle',
Christian Beck”, Thorsten Lenser®, Dov J. Stekel' and Jonathan E. Rowe”

Wednesday, 12 December 12



Conclusions and thanks to my co-authors!!!

OPEN (3 ACCESS Freely available online @ PlLoS one

Speed-Dependent Cellular Decision Making in
Nonequilibrium Genetic Circuits

Nuno R. Nené'*, Jordi Garca-Ojalvo?, Alexey Zaikin®

1 Department of Mathematics, Imperial College London, London, United Kingdom, 2Departament de Fsicaa i Enginyeria Nudear, Universitat Politécnica de Catalunya,
Terrassa, Spain, 3 Institute for Women’s Health and Department of Mathematics, University College London, London, United Kingdom

PLoS ONE | www.plosone.org 1 March 2012 | Volume 7 | Issue 3 | e32779
OPEN (3 ACCESS Freely available online ~ PLOS One

Interplay between Path and Speed in Decision Making
by High-Dimensional Stochastic Gene Regulatory
Networks

” 1 - -
Nuno R. Nene ¥, Alexey Zaikin®
1 Department of Mathematics, Imperial College London, London, United Kingdom, 2 Institute for Women’s Health and Department of Mathematics, University College
London, London, United Kingdom

PLoS ONE | www.plosone.org 1 July 2012 | Volume 7 | Issue 7 | e40085

and to Afnan Alagha (KAZ University)
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THANK YOU!!
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