Scrolls and hyperbolicity

Mikhail Zaidenberg

Higher School of Economics Moscow, June 21, 2013

<u>iviikn</u>aii Zaidenberg

Scrolls and hyperbolicity

Content

- O Preliminaries
- Olassical Theorems
- Olassical Conjectures
- Recent results for high degree hypersurfaces
- ${f 0}$ Examples of hyperbolic surfaces in ${\Bbb P}^3$
 - . Deformation method
 - Degeneration to a scroll
- Igebraic hyperbolicity

1. Preliminaries : Kobayashi metric

Every complex space X possesses a unique Kobayashi pseudometric k_X satisfying the following axioms.

(i) In the unit disc $X = \Delta$, k_X coincides with the Poincaré metric;

(ii) every holomorphic map $arphi:\Delta o X$ is a contraction :

 $arphi^*(k_X) \leq k_\Delta$;

(iii) k_X is maximal among the pseudometrics on X satisfying (i) and (ii).

Remark : Every holomorphic map $\varphi: X \to Y$ is a contraction :

$$\varphi^*(k_Y) \leq k_X$$
.

Definition

X is called Kobayashi hyperbolic (or simply hyperbolic) if k_X is a metric i.e.

$$k_X(p, q) = 0 \iff p = q.$$

Examples

$$k_{\mathbb{C}^n} \equiv 0, \quad k_{\mathbb{P}^n} \equiv 0, \quad k_{\mathbb{T}^n} \equiv 0,$$

where $\mathbb{T}^n = \mathbb{C}^n / \Lambda$ is a complex torus.

<u>iviiknaii Zaidenberg</u>

Schottky-Landau Theorem : $\mathbb{C} \setminus \{0, 1\}$ is hyperbolic.

Scrolls and hyperbolicity

Classical Theorems

Brody-Kiernan-Kobayashi-Kwack Theorem

If X is compact then the following conditions are equivalent.

- X is Kobayashi hyperbolic;
- Little Picard Theorem holds for X i.e.

$$\forall f : \mathbb{C} \to X, f = \operatorname{cst};$$

• Big Picard Theorem holds for X i.e.

$$orall f : \Delta \setminus \{0\} \to X \ \exists \overline{f} : \Delta \to X,$$

 $\overline{f}|(\Delta \setminus \{0\}) = f;$

- Montel Theorem holds for X i.e. the topological espace HOL(Δ, X) is compact.
- For any complex space Y, the space HOL(Y, X) is compact.

Definition

Let M be a hermitian compact complex variety. A Brody curve in M is an entire curve $\varphi: \mathbb{C} \to M$ satisfying

$$||\varphi'(z)|| \leq 1 = ||\varphi'(0)|| \quad \forall z \in \mathbb{C} \,.$$

Brody Theorem

M is hyperbolic if and only if it admits no Brody curve.

Brody Stability Theorem

Let X be a compact subspace of a complex space Z. If X is hyperbolic then any compact subspace $X' \subseteq Z$ sufficiently close to X is hyperbolic as well.

Kobayashi Conjecture '70

A very general hypersurface in \mathbb{P}^n of sufficiently high degree (of degree $d \ge 2n - 1$) is Kobayashi hyperbolic.

Green-Griffiths-Lang Conjecture '80

All entire curves in a projective variety of general type are contained in a (common) proper subvariety.

Definition

A projective variety X is said to be of general type if for $m \gg 1$ the pluricanonical linear system $|mK_X|$ defines a birational embedding $\varphi_{|mK_X|}: X \dashrightarrow \mathbb{P}^n$.

Theorem

Let X be a projective variety. If X is irregular i.e., $q_1(X) = h^{1,0}(X) > \dim(X)$, then any entire curve in X is contained in a proper subvariety, which à priori depends on the curve.

Theorem (Bogomolov '78, McQuillen '98)

<u>iviiknali</u> Zaidenberg

Let S be a projective surface of general type with $c_1^2(S) > c_2(S)$. Then the set of all rational and elliptic curves in S is finite. Furthermore, any entire curve in S is contained in one of these curves.

Theorem (McQuillen, Demailly-El Goul's '98, Paun '08)

A very generic surface in \mathbb{P}^3 of degree $d \ge 18$ is Kobayashi hyperbolic.

A remarkable progress in higher dimensions is due to J.-P. Demailly, Y.-T. Siu, S. Diverio, J. Merker, E. Rousseau, S. Trapani e.a.

Theorem (Diverio-Merker-Rousseau, Diverio-Trapani '10)

Let X be a very general hypersurface in \mathbb{P}^{n+1} of degree $d \ge 2^{n^5}$. Then there exists a subvariety Y in X of codimension at least 2 which contains the image of any entire curve $\mathbb{C} \to X$.

This confirms the Green-Griffiths Conjecture in the setting of the Kobayashi Conjecture.

Corollary (Diverio-Trapani '10)

A very generic hypersurface in \mathbb{P}^4 of degree $d \ge 593$ is Kobayashi hyperbolic.

Theorem (Demailly '10)

Any entire curve in a variety of general type satisfies (a large number of) algebraic differential equations.

```
Such examples were constructed by<br/>Brody-Green '77, Nadel '89, Masuda-Noguchi '96, Khoai '96;<br/>El Goul '96\forall d \ge 14,<br/>\forall d \ge 14,<br/>Siu-Yeung '96, Demailly-El Goul '97\forall d \ge 11;<br/>\forall d \ge 11;<br/>Duval '99, Shirosaki-Fujimoto '00\forall d = 2k \ge 8;<br/>\forall d \ge 8;<br/>Duval '05\forall d \ge 6;<br/>\forall d \ge 6
```

Example (Duval '99, Shirosaki-Fujimoto '00) The surface in \mathbb{P}^3 with equation

$$Q(X_0, X_1, X_2)^2 - P(X_2, X_3) = 0$$
,

where Q, P are generic homogeneous forms of degree 4 resp. 8, is hyperbolic.

Let $\pi: V \to \Delta$ be a family of compact varieties over the unit disc. Assume that V is smooth and the generic fiber $V_c = \pi^{-1}(c)$ $(c \in \Delta)$ is non-hyperbolic and so contains a Brody curve. By Brody's Stability Theorem, every special fiber contains a limiting Brody curve and so is not hyperbolic either.

The classical Hurwitz Theorem imposes restrictions on the position of a limiting Brody curve w.r.t. reducible singularities of the special fiber V_0 .

Proposition

Let $\operatorname{br}(V_0)$ be the set of double points of V_0 and $\overline{\operatorname{br}(V_0)}$ its Zariski closure. Consider a sequence of Brody curves $f_n : \mathbb{C} \to V_{c_n}$ which converges to a limiting Brody curve $f : \mathbb{C} \to V_0$. By Hurwitz Theorem, there is an alternative :

either
$$f(\mathbb{C}) \cap \operatorname{br}(V_0) = \emptyset$$
 or $f(\mathbb{C}) \subseteq \overline{\operatorname{br}(V_0)}$.

Therefore

if $br(V_0)$ and $V_0 \setminus br(V_0)$ are both hyperbolic then every fiber V_c $(c \neq 0)$ sufficiently close to V_0 is hyperbolic too.

This can be applied to the pencil

$$\{X_t\}_{t\in\mathbb{P}^1}=\langle X_0,X_\infty\rangle$$

generated by hypersurfaces X_0 and X_∞ in \mathbb{P}^n of the same degree.

Attention : we don't have a good control over the base points $X_0 \cap X_\infty$ of the pencil.

Proposition

Suppose that $\overline{\operatorname{br}(V_0)}$ is hyperbolic, and there is a \mathbb{P}^1 -fibration $\pi: V_0^{\operatorname{norm}} \to E$ of the normalisation of V_0 to a hyperbolic variety E such that every fiber meets the inverse image of $\operatorname{br}(V_0)$ in at least 3 distinct points. Then $V_0 \setminus \operatorname{br}(V_0)$ is hyperbolic, and so every fiber V_c ($c \neq 0$) sufficiently close to V_0 is also hyperbolic.

Examples

Example (Shiffman-Z. '03) There is an abelian surface immersed in \mathbb{P}^3 with a non-normal singular image X of degree 8. *Generic small deformations of X are hyperbolic.*

Example (Shiffman-Z. '05) Let X_0 be the union of two cones in general position in \mathbb{P}^3 over smooth plane quartics C', $C'' \subseteq \mathbb{P}^2$. Then generic small deformations of X_0 are hyperbolic.

Example (Z. '07) Let $C \subseteq \mathbb{P}^2$ be a hyperbolic curve of degree $d \ge 4$, and let $X_0 \subseteq \mathbb{P}^3$ be a cone over C. Then generic small deformations of the double cone $2X_0$ are hyperbolic surfaces of degree $2d \ge 8$.

Example (Duval '04) There exists a hyperbolic sextic $X = X_{\varepsilon} \subseteq \mathbb{P}^3$. Its construction involves a five step successive deformation i.e., X_{ε} varies in a family depending on five parameters.

Let *E* be a projective variety, and $V \to E$ be a vector bundle of rank 2 over *E*. The projectivization $S = \mathbb{P}_E(V) \to E$ is a \mathbb{P}^1 -bundle over *E*. Consider a birational morphism $\varphi : S \to \mathbb{P}^n$ such that the image of every fiber is a projective line in \mathbb{P}^n . Then $\Sigma = \varphi(S)$ is called a *scroll*. Let G(1, n) be the Grassmannian of lines in \mathbb{P}^n . There is a natural

Let G(1, n) be the Grassmannian of lines in \mathbb{P}^n . There is a natural morphism

$$ho: E
ightarrow G(1,n) \hspace{0.1in} ext{such that} \hspace{0.1in} \deg \Sigma = \deg
ho(E).$$

If Σ is smooth then a generic hyperplane section H of Σ is smooth and isomorphic to E.

<u>iviiknaii</u> Zaidenberg

Let $S \subseteq \mathbb{P}^{n+k}$ be a smooth scroll of dimension n-1, and let Σ be a generic projection of S to \mathbb{P}^n . Then Σ is a hypersurface of \mathbb{P}^n with normalization S, and Σ has only ordinary singularities.

For instance, if n = 3 then Σ is a ruled surface in \mathbb{P}^3 , i.e. Σ is covered by lines, and E is a smooth curve of genus g. We say in this case that Σ is a *scroll of genus* g. Such a scroll Σ has at worst singularities along an irreducible curve Δ_{Σ} , and a generic point of Δ_{Σ} is a double point of Σ . Besides, Σ can have some number t of triple points, which are at the same time triple points of Δ_{Σ} , and some number p of pinch points with local equation $x^2 - y^2 z = 0$.

Theorem (Arrondo, Pereira, Sols '89, Calabri, Ciliberto, Flamini, Miranda '06)

There exists a scroll $\Sigma\subseteq \mathbb{P}^3$ of genus g and degree d with ordinary singularities if

Scrolls and hyperbolicity

. $g \ge 2$ and $d \ge 2g + 2$, or

<u>iviiknaii Zaidenberg</u>

- g = 1 and $d \ge 5$, or
- . g = 0 and $d \ge 4$.

We use the following scrolls with ordinary singularities and an irreducible double curve :

- an elliptic quintic scroll;
- a sextic scroll of genus 2;
- a septic scroll of genus 2.

Proposition

Let $\Sigma \subseteq \mathbb{P}^n$ be a hypersurface of degree d, which is a scroll with ordinary singularities. Suppose that :

(i) the base E of Σ and the double locus Δ_{Σ} are both hyperbolic;

(ii) for a generic hypersurface X ⊆ Pⁿ of degree d, every ruling F of Σ meets br(Σ) in at least 3 points off X.

Consider the pencil $(X_t)_{t \in \mathbb{P}^1}$ generated by $X = X_\infty$ and $\Sigma = X_0$. Then the members X_t sufficiently close to Σ are hyperbolic.

Theorem (Ciliberto-Shiffman-Z. '05, '10)

For any $d \ge 6$ there exists a hyperbolic surface $S \subseteq \mathbb{P}^3$ of degree d, and for any $d \ge 12$ there exists a hyperbolic 3-fold $T \subseteq \mathbb{P}^4$ of degree d.

A = A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

<u>iviiknali</u> Zaidenberg

Definition

Let $X \subseteq \mathbb{P}^n$ be a projective variety. We say that X is algebraically hyperbolic if any morphism $A \to X$ from an abelian variety A is constant. We say that X is algebraically hyperbolic in Demailly sense, or Demailly algebraically hyperbolic, if for a positive real $\varepsilon = \varepsilon(X)$ and for any algebraic curve $C \subseteq X$,

$$2 \operatorname{genus}(C) - 2 \ge \varepsilon \operatorname{deg}(C).$$

In particular, if the genus of C is bounded above then also the degree is.

If X is Demailly algebraically hyperbolic then it is also algebraically hyperbolic.

Both properties are open in the countable Zariski topology.

Kobayashi hyperbolicity implies Demailly algebraic hyperbolicity.

Hence, if there exists a hyperbolic hypersurface of degree d in \mathbb{P}^n then a very generic hypersurface of degree d is Demailly algebraically hyperbolic.

Theorem (Xu '94-'96, Voisin '96-'99, Clemens-Ran '05)

A very generic surface of degree $d \ge 5$ in \mathbb{P}^3 and a very generic 3-fold of degree $d \ge 6$ in \mathbb{P}^4 are algebraically hyperbolic.

Are they also Demailly algebraically hyperbolic? No example of a hyperbolic quintique surface in \mathbb{P}^3 or a hyperbolic sextic 3-fold in \mathbb{P}^4 is known.

Corollary

A very generic hypersurface of degree ≥ 6 in \mathbb{P}^3 or of degree ≥ 12 in \mathbb{P}^4 is Demailly algebraically hyperbolic.

The proof exploites unions of cones of degree ≥ 4 in \mathbb{P}^3 (of degree ≥ 6 in \mathbb{P}^4 , respectively) and also sextic and septic scrolls of genus 2 in \mathbb{P}^3 .

Pasienca's estimates

For generic hypersurfaces of sufficiently high degree, the inequality of Demailly algebraic hyperbolicity holds even in a stronger form.

Theorem (Pacienza '04)

Let $X \subseteq \mathbb{P}^n$ be a very generic hypersurface of degree d. Then for any algebraic curve C in X we have the inequality

$$2g(C) - 2 \ge \deg(C)$$

provided one of the following conditions is satisfied :

- . n = 3 and $d \ge 6$,
- . n = 4 and $d \ge 7$,
- . n = 5 and $d \ge 9$,
- $n \ge 6$ and $d \ge 2n 2$.

The technique of proof is borrowed in the work of Claire Voisin.