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X - an algebraic variety /k, dimX > 2, k = k, char(k) =0
Definitions

® x € Xpeg is FLEXIBLE if T, X is spanned by the tangent vectors
to the orbits H.x of one-parameter unipotent subgroups
H C Aut(X)

e X is FLEXIBLE if every smooth point x € X;eg is

e SAut(X) - THE SPECIAL AUTOMORPHISM GROUP -
the subgroup of Aut(X) generated by all one-parameter unipotent
subgroups
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First examples

e SAut(Al) = Transl(Al) C Aff(Al) - an algebraic group
- it acts transitively, not 2-transitively on Al

e SAut(A"), n > 2, - a non-algebraic group
- it acts co-TRANSITIVELY on A"
i.e. m-transitively Ym > 1

e SAut(A?) contains the shears

(xy) = (x,y + P(x)),  Peklx]
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THEOREM

VX affine, dim X > 2, the following are equivalent :
(i) SAut(X) is transitive on Xeg

(it) SAut(X) is co-transitive on Xieg

(i) X is flexible

Remark

e An algebraic group G cannot act oco-transitively on X
e G cannot act 3-transitively on affine X (Borel - Knop)
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2. Examples of flexibility
2.1. Homogeneous varieties

Notation : GV - the group of characters of G
Theorem

G/H is flexible if G¥ = {1}, e.g. V G semisimple
Corollary

G/H affine, dim G/H > 2 = SAut(G/H) is co-transitive

Theorem

G/P - flag variety, G/P — P" - equivariant embedding
X =AffCone(G/P) = X is flexible
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2.2. Quasihomogeneous varieties

Theorem

X - affine, toric, non-degenerate
= X is flexible

Theorem

G - semisimple, X - smooth, affine
G : X with an open orbit
= X s flexible

Indication : 3G 2 G s.t. GY = {1} and
G : X is transitive (Luna's Etale Slice Theorem)
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2.3. Flexibility of suspensions

Definition

Y - affine variety, f € O(Y)
SUSPENSION
X = susps(Y) C Y x A? is given by uv — f(y) =0

Theorem

Y - affine, flexible

= X = susps(Y) is flexible Vf € O(Y)
Theorem

X - smooth, affine, flexible
= the tensor bundles (TX)®? @ (T*X)®P are flexible
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2.4. Flexible matrix varieties

Theorem

X, = {A € Mat(m, n) | rk(A) < r}is flexible Vr

Indication :
The action

SL,, x SL, : Mat(m, n), (Al,Az).B = A1BA,

is transitive on X, \ X;_1
where X,_1 =sing (X,) if r < min{m, n}
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3. Interpolation by affine lines

Theorem

X - affine, flexible, dim X > 2

Z C Xieg - finite

o= Jacurve CC Xpep, C~Al, st. ZCC

and C has prescribed jets at the points of Z

o If Y C X is closed with codimxY >2stZNY =10
= 3C as befores.t. CNY =0

Indication :

VG,-orbit O ~ Al in Xieg 32" C O with card Z' = card Z
Jdg € SAut(X) s.t. g(Z')=Z andso C=g(0) 2 Z

To prescribe jets one needs an interpolation theorem
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4. Interpolation by automorphisms

Theorem

X - affine, dm X > 2

w - an algebraic volume form on Xieg

SAut(X) has an open orbit O C X

= VZ C O - finite,

V(p' | p € Z) - prescribed jets of automorphisms
preserving w and mapping Z into O

Jg € SAut(X) with given jets j;', p € Z
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5. Replicas

Definition

A - an affine algebra /k, X = Spec A - affine

0 € Der A - a locally nilpotent derivation (LND)

(le. Ya€ Adn:0"(a) =0)

H = exp(kd) C SAut(A) - one parameter unipotent subgroup
with infinitesimal generator 0

f e AH =kerd = f0 € LND(A) - a REPLICA of 0
H¢ = exp(kf0) - a REPLICA of H
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X = A% = Speck[X, Y, Z]

0 0
8—Xa—Y+Y6—Z

f=Y?—-2XZ € kerd

The famous Nagata automorphism is the replica
He (1) = exp(f0) € SAut(A3)

It is wild (Nagata Conjecture - |. Shestakov and U. Umirbaev, 2004)
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6. Algebraically generated groups

Definition

G C Aut(X) is ALGEBRAICALLY GENERATED if
G=(Hi|liel

where H; C Aut(X) are connected, algebraic Vi

If H; ~ G, Vi then G is G,- GENERATED

Examples

e SAut(X) is G,-generated

e G - connected affine algebraic group
G is G,-generated & GV =1 (V. Popov, 2010)

e G - semi-simple = G is G,-generated
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Proposition

G C Aut(X) - an algebraically generated group =

e the orbits of G are locally closed

e the function x — dim(G.x) is lower semicontinuous on X w.r.t.
Zariski topology.

Notation

For N C LND(A),
G = (N) means G = (exp(kd) |0 € N)
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Properties of the orbits

Proposition

G = (N) C Aut(X) - G,-generated
N closed under conjugation in G
= 301,...,0s € N s.t.

T«(G.x) =span(d(x) |0 e N) ¥xe X

Definition

X € Xrog is G-FLEXIBLE if T, X = span(d(x) |9 € \)
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G-flexible points

Corollary

(a) x € X is G-flexible < the orbit G.x is open
(b) An open G-orbit is unique and consists of all G-flexible points

For G = SAut(X) this gives (i) < (iii) of the Main Theorem
Corollary

SAut(X) is transitive on X.eg < X is flexible
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7. Rosenlicht Separation and Kleiman

Transversality Theorems

‘Rosenlicht Theorem’

G C SAut(X) - G,-generated
= 3f,...,fm € O(X)C separating general G-orbits
‘Kleiman Transversality Theorem’

G C SAut(X) - G,-generated

30 = G.x - an open orbit

= VY, Z C O locally closed

JUi,...,Us C G - one-parameter unipotent subgroups
s.t. for a general

(hl,...,hs)Ele...XUs

(h ... hs).Zeg meets Yiog transversally.
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Saturation by replicas

Definition
G = (N) C SAut(X)
We say that NV is SATURATED if
@ N is closed under conjugation in G
@ N is closed under taking replicas
i.e. VO e N, Vf ckerd, fOeN

Notation

Y C X closed
Gyyy = (fO|0 €N, f €kerd, flY =0) C Stabg(Y)
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8. Tangential flexibility

Theorem

Let G = (N) C SAut(X) where N is saturated
s.t. 3 an open orbit O = G.xg
= Vx € O the tangent presentation

Gnx — SL(Tx0), g+— dg(x)

Is surjective
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MAKAR-LIMANOV INVARIANT

Definitions

THE MAKAR-LIMANOV INVARIANT of X is

ML(X) = O(X)34u(X)

THE FIELD MAKAR-LIMANOV INVARIANT of X is

FML(X) = Frac (O(X))5Aut(X)
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9. Unirationality of flexible varieties

Theorem (Liendo Conjecture)

dx € X flexible < SAut(X) has an open orbit & FML(X) =k
= X is unirational

Remark

Flexibility implies neither rationality (A. Liendo) nor stable
rationality (V. Popov) :

For n >4 3 F C SL(n, C) - a finite subgroup

s. t. X = SL(n,C)/F is a smooth affine variety, flexible,
unirational, not stably rational
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10. Bogomolov’s Conjecture

Conjecture

X is unirational < X has a stably flexible model
(i.e. 3n > 0 s.t. X x A" has a flexible model)

Examples (F. Bogomolov, I. Karzhemanov, K. Kuyumzhiyan,
2012)

© P"/G is stably flexible V finite subgroup G C PGL,
@ X flexible = X/G is stably flexible VG C SAut(X) finite
© V smooth cubic X3 C P™1 n > 2, is stably flexible

@ V singular quartic with a double line Xy C Pt p>3is
stably flexible

@ V intersection of 3 quadrics in P"T1, n > 4, is stably flexible.
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11. Oka-Grauert-Gromov Principle

Definition
h: X — B - a smooth, surjective holomorphic map of smooth
complex varieties
The OGG PRINCIPLE holds for h if
@ V continuous section of h is homotopic to a holomorphic one

@ V two holomorphic sections of h that are homotopic via
continuous sections are homotopic via holomorphic ones

Theorem

X, B - smooth affine varieties /C

G C SAut(X) - a G,-generated subgroup

s.t. B= X/G - a geometric factor with smooth orbit map
h:X—B

= the OGG Principle holds for h

Indication :
The fibers of h are flexible = 3 a Gromov dominating spray for h
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12. Gizatullin surfaces

Definition

X - a Gizatullin surface if X is a normal affine surface that admits a
completion by a chain of smooth rational curves

Gizatullin Theorem

Let X be a normal affine surface 3¢ A x (Al \ {0})
X is Gizatullin < SAut(X) has an open orbit O in X

In fact X \ O is finite. Does O = X;eg ?

Gizatullin Conjecture : Any Gizatullin surface is flexible

e True for surfaces xy — p(z) = 0 in A3 (L. Makar-Limanov, 1970,
or flexibility of suspensions)

e True for the Danilov-Gizatullin surfaces F,\S, where S is an
ample section in a Hirzebruch surface F, — P! (F. Donzelli, 1912)
e False in positive characteristic (V. Danilov-M. Gizatullin, 1975)
e False in zero characteristic (S. Kovalenko, 2012)
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