FLEXIBLE VARIETIES

Mikhail Zaidenberg (Institut Fourier, Grenoble, France) After

I. Arzhantsev, F. Bogomolov, H. Flenner, S. Kaliman, I. Karzhemanov, T. Kishimoto, F. Kutzschebauch, K. Kuyumzhiyan, A. Perepechko, Yu. Prokhorov, and the speaker

> Nezavisimy i Universitet Moscow June 20, 2013

0. Plan

- Main Theorem
- Examples of flexible varieties
- Interpolation by affine lines
- Interpolation by automorphisms
- Replicas and saturation
- Algebraically generated groups
- Rosenlicht Separation and Kleiman Transversality
- Tangential flexibility
- Unirationality of flexible varieties
- Bogomolov Conjecture
- Oka-Grauert-Gromov Principle
- Gizatullin surfaces

1. Definitions

X - an algebraic variety $/\mathbb{k}$, dim $X \geq 2$, $\mathbb{k} = \overline{\mathbb{k}}$, char(\mathbb{k}) = 0

Definitions

- $x \in X_{\text{reg}}$ is FLEXIBLE if $T_x X$ is spanned by the tangent vectors to the orbits H.x of one-parameter unipotent subgroups $H \subseteq Aut(X)$
- X is FLEXIBLE if every smooth point $x \in X_{reg}$ is
- SAut(X) THE SPECIAL AUTOMORPHISM GROUP the subgroup of Aut(X) generated by all one-parameter unipotent subgroups

First examples

- ullet SAut(\mathbb{A}^1) = Transl(\mathbb{A}^1) \subseteq Aff(\mathbb{A}^1) an algebraic group - it acts transitively, not 2-transitively on \mathbb{A}^1
- $SAut(\mathbb{A}^n)$, $n \geq 2$, a non-algebraic group - it acts ∞ -TRANSITIVELY on \mathbb{A}^n i.e. m-transitively $\forall m > 1$
- $SAut(\mathbb{A}^2)$ contains the shears

$$(x,y)\mapsto (x,y+P(x)), \quad P\in \mathbb{k}[x]$$

Main Theorem

THEOREM

 $\forall X$ affine, dim X > 2, the following are equivalent:

- (i) SAut(X) is transitive on X_{reg}
- (ii) SAut(X) is ∞ -transitive on X_{reg}
- (iii) X is flexible

Remark

- An algebraic group G cannot act ∞ -transitively on X
- G cannot act 3-transitively on affine X (Borel Knop)

2. Examples of flexibility

2.1. Homogeneous varieties

Notation: G^{\vee} - the group of characters of G

Theorem

G/H is flexible if $G^{\vee} = \{1\}$, e.g. $\forall G$ semisimple

Corollary

G/H affine, dim $G/H > 2 \Rightarrow SAut(G/H)$ is ∞ -transitive

Theorem

G/P - flag variety, $G/P \hookrightarrow \mathbb{P}^n$ - equivariant embedding $X = AffCone(G/P) \Rightarrow X$ is flexible

2.2. Quasihomogeneous varieties

Theorem

X - affine, toric, non-degenerate $\Rightarrow X$ is flexible

Theorem

G - semisimple, X - smooth, affine

G: X with an open orbit

 \Rightarrow X is flexible

Indication : $\exists ilde{\mathsf{G}} \supseteq \mathsf{G}$ s.t. $ilde{\mathsf{G}}^ee = \{1\}$ and

 $\tilde{G}:X$ is transitive (Luna's Étale Slice Theorem)

2.3. Flexibility of suspensions

Definition

Y - affine variety, $f \in \mathcal{O}(Y)$ SUSPENSION: $X = \sup_{f}(Y) \subseteq Y \times \mathbb{A}^2$ is given by uv - f(y) = 0

Theorem

Y - affine, flexible $\Rightarrow X = \operatorname{susp}_f(Y)$ is flexible $\forall f \in \mathcal{O}(Y)$

Theorem

X - smooth, affine, flexible \Rightarrow the tensor bundles $(TX)^{\otimes a} \otimes (T^*X)^{\otimes b}$ are flexible

2.4. Flexible matrix varieties

Theorem

$$X_r = \{A \in \operatorname{Mat}(m, n) | \operatorname{rk}(A) \le r\}$$
 is flexible $\forall r$

Indication:

The action

$$\mathrm{SL}_m \times \mathrm{SL}_n : \mathrm{Mat}(m,n), \quad (A_1,A_2).B = A_1BA_2$$

is transitive on $X_r \setminus X_{r-1}$ where $X_{r-1} = \operatorname{sing}(X_r)$ if $r < \min\{m, n\}$

3. Interpolation by affine lines

Theorem

X - affine, flexible, dim X > 2

 $Z \subseteq X_{\text{reg}}$ - finite

- ullet \Rightarrow \exists a curve $C\subseteq X_{\mathrm{reg}}$, $C\simeq \mathbb{A}^1$, s.t. $Z\subseteq C$ and C has prescribed jets at the points of Z
- If $Y \subseteq X$ is closed with $\operatorname{codim}_X Y > 2$ s.t $Z \cap Y = \emptyset$
- $\Rightarrow \exists C$ as before s.t. $C \cap Y = \emptyset$

Indication:

 $orall \mathbb{G}_a$ -orbit $O \simeq \mathbb{A}^1$ in $X_{\mathrm{reg}} \; \exists Z' \subseteq O$ with $\operatorname{card} Z' = \operatorname{card} Z$ $\exists g \in \mathrm{SAut}(X) \text{ s.t. } g(Z') = Z \text{ and so } C = g(O) \supseteq Z$ To prescribe jets one needs an interpolation theorem

4. Interpolation by automorphisms

Theorem

```
X - affine, dim X > 2
\omega - an algebraic volume form on X_{\rm reg}
\mathrm{SAut}(X) has an open orbit O \subseteq X
\Rightarrow \forall Z \subseteq O - finite.
\forall (j_p^m | p \in Z) - prescribed jets of automorphisms
preserving \omega and mapping Z into O
\exists g \in \mathrm{SAut}(X) with given jets j_n^m, p \in Z
```

5. Replicas

Definition

```
A - an affine algebra /\mathbb{k}, X = \operatorname{Spec} A - affine
\partial \in \operatorname{Der} A - a locally nilpotent derivation (LND)
(i.e. \forall a \in A \exists n : \partial^n(a) = 0)
H = \exp(\mathbb{k}\partial) \subseteq \mathrm{SAut}(A) - one parameter unipotent subgroup
with infinitesimal generator \partial
```

$$f \in A^H = \ker \partial \Rightarrow f \partial \in LND(A)$$
 - a *REPLICA* of ∂
 $H_f = \exp(\mathbb{k}f\partial)$ - a *REPLICA* of H

Example

$$X = \mathbb{A}^{3} = \operatorname{Spec} \mathbb{k}[X, Y, Z]$$
$$\partial = X \frac{\partial}{\partial Y} + Y \frac{\partial}{\partial Z}$$
$$f = Y^{2} - 2XZ \in \ker \partial$$

The famous Nagata automorphism is the replica

$$H_f(1) = \exp(f\partial) \in \mathrm{SAut}(\mathbb{A}^3)$$

It is wild (Nagata Conjecture - I. Shestakov and U. Umirbaev, 2004)

6. Algebraically generated groups

Definition

 $G \subseteq Aut(X)$ is ALGEBRAICALLY GENERATED if

$$G = \langle H_i | i \in I \rangle$$

where $H_i \subseteq \operatorname{Aut}(X)$ are connected, algebraic $\forall i$

If $H_i \simeq \mathbb{G}_a \ \forall i$ then G is \mathbb{G}_a - GENERATED

Examples

- SAut(X) is \mathbb{G}_a -generated
- G connected affine algebraic group G is \mathbb{G}_a -generated $\Leftrightarrow G^{\vee} = 1$ (V. Popov. 2010)
- G semi-simple $\Rightarrow G$ is \mathbb{G}_a -generated

Proposition

 $G \subseteq \operatorname{Aut}(X)$ - an algebraically generated group \Rightarrow

- the orbits of G are locally closed
- the function $x \mapsto \dim(G.x)$ is lower semicontinuous on X w.r.t. Zariski topology.

Notation

For
$$\mathcal{N} \subseteq \mathrm{LND}(A)$$
, $G = \langle \mathcal{N} \rangle$ means $G = \langle \exp(\Bbbk \partial) \, | \, \partial \in \mathcal{N} \rangle$

Properties of the orbits

Proposition

$$G = \langle \mathcal{N} \rangle \subseteq \operatorname{Aut}(X)$$
 - \mathbb{G}_a -generated \mathcal{N} closed under conjugation in $G \Rightarrow \exists \partial_1, \dots, \partial_s \in \mathcal{N}$ s.t.

$$T_x(G.x) = \operatorname{span}(\partial(x) | \partial \in \mathcal{N}) \quad \forall x \in X$$

Definition

$$x \in X_{\text{reg}}$$
 is G-FLEXIBLE if $T_x X = \text{span}(\partial(x) \mid \partial \in \mathcal{N})$

G-flexible points

Corollary

- (a) $x \in X$ is G-flexible \Leftrightarrow the orbit G.x is open
- (b) An open G-orbit is unique and consists of all G-flexible points

For $G = \operatorname{SAut}(X)$ this gives $(i) \Leftrightarrow (iii)$ of the Main Theorem

Corollary

SAut(X) is transitive on $X_{reg} \Leftrightarrow X$ is flexible

7. Rosenlicht Separation and Kleiman Transversality Theorems

'Rosenlicht Theorem'

$$G \subseteq \operatorname{SAut}(X)$$
 - \mathbb{G}_a -generated $\Rightarrow \exists f_1, \ldots, f_m \in \mathcal{O}(X)^G$ separating general G -orbits

'Kleiman TransversalityTheorem'

$$G \subseteq \operatorname{SAut}(X)$$
 - \mathbb{G}_a -generated

$$\exists O = G.x$$
 - an open orbit

$$\Rightarrow \forall Y, Z \subseteq O$$
 locally closed

$$\exists \mathit{U}_1,\ldots,\mathit{U}_s\subseteq \mathit{G}$$
 - one-parameter unipotent subgroups

s.t. for a general

$$(h_1,\ldots,h_s)\in U_1\times\ldots\times U_s$$

 $(h_1 \cdot \ldots \cdot h_s).Z_{\text{reg}}$ meets Y_{reg} transversally.

Saturation by replicas

Definition

$$G = \langle \mathcal{N} \rangle \subseteq \mathrm{SAut}(X)$$

We say that \mathcal{N} is $SATURATED$ if

- $oldsymbol{0}$ $\mathcal N$ is closed under conjugation in G
- ② \mathcal{N} is closed under taking replicas i.e. $\forall \partial \in \mathcal{N}, \ \forall f \in \ker \partial, \ f \partial \in \mathcal{N}$

Notation

$$Y \subseteq X$$
 closed $G_{\mathcal{N},Y} = \langle f \partial \mid \partial \in \mathcal{N}, \ f \in \ker \partial, \ f | Y = 0 \rangle \subseteq \operatorname{Stab}_{G}(Y)$

8. Tangential flexibility

Theorem

Let $G = \langle \mathcal{N} \rangle \subseteq \mathrm{SAut}(X)$ where \mathcal{N} is saturated s.t. \exists an open orbit $O = G.x_0$ $\Rightarrow \forall x \in O$ the tangent presentation

$$G_{\mathcal{N},x} \to \mathrm{SL}(T_x O), \quad g \longmapsto dg(x)$$

is surjective

MAKAR-LIMANOV INVARIANT

Definitions

THE MAKAR-LIMANOV INVARIANT of X is

$$\mathrm{ML}(X) = \mathcal{O}(X)^{\mathrm{SAut}(X)}$$

THE FIELD MAKAR-LIMANOV INVARIANT of X is

$$\mathrm{FML}(X) = \mathrm{Frac}\left(\mathcal{O}(X)\right)^{\mathrm{SAut}(X)}$$

9. Unirationality of flexible varieties

Theorem (Liendo Conjecture)

 $\exists x \in X \text{ flexible} \Leftrightarrow \mathrm{SAut}(X) \text{ has an open orbit} \Leftrightarrow \mathrm{FML}(X) = \mathbb{k}$ $\Rightarrow X$ is unirational

Remark

Flexibility implies neither rationality (A. Liendo) nor stable rationality (V. Popov):

For $n \geq 4 \exists F \subseteq \mathrm{SL}(n,\mathbb{C})$ - a finite subgroup s. t. $X = \mathrm{SL}(n,\mathbb{C})/F$ is a smooth affine variety, flexible, unirational, not stably rational

10. Bogomolov's Conjecture

Conjecture

X is unirational \Leftrightarrow X has a stably flexible model (i.e. $\exists n > 0$ s.t. $X \times \mathbb{A}^n$ has a flexible model)

Examples (F. Bogomolov, I. Karzhemanov, K. Kuyumzhiyan, 2012)

- \bullet \mathbb{P}^n/G is stably flexible \forall finite subgroup $G \subseteq \mathrm{PGL}_n$
- 2 X flexible $\Rightarrow X/G$ is stably flexible $\forall G \subseteq SAut(X)$ finite
- 3 \forall smooth cubic $X_3 \subseteq \mathbb{P}^{n+1}$, n > 2, is stably flexible
- \bullet y singular quartic with a double line $X_4 \subset \mathbb{P}^{n+1}$, n > 3 is stably flexible
- \bullet intersection of 3 quadrics in \mathbb{P}^{n+1} , $n \geq 4$, is stably flexible.

11. Oka-Grauert-Gromov Principle

Definition

 $h: X \to B$ - a smooth, surjective holomorphic map of smooth complex varieties

The OGG PRINCIPLE holds for h if

- \bullet v continuous section of h is homotopic to a holomorphic one
- ② ∀ two holomorphic sections of h that are homotopic via continuous sections are homotopic via holomorphic ones

Theorem

```
X, B - smooth affine varieties /\mathbb{C}
```

$$\mathcal{G} \subseteq \operatorname{SAut}(X)$$
 - a \mathbb{G}_a -generated subgroup

s.t.
$$B = X/G$$
 - a geometric factor with smooth orbit map

$$h: X \to B$$

$$\Rightarrow$$
 the OGG Principle holds for h

Indication:

The fibers of h are flexible $\Rightarrow \exists$ a *Gromov dominating spray* for h

12. Gizatullin surfaces

Definition

X - a Gizatullin surface if X is a normal affine surface that admits a completion by a chain of smooth rational curves

Gizatullin Theorem

Let X be a normal affine surface $\not\simeq \mathbb{A}^1 \times (\mathbb{A}^1 \setminus \{0\})$ X is Gizatullin $\Leftrightarrow \mathrm{SAut}(X)$ has an open orbit O in X In fact $X \setminus O$ is finite. Does $O = X_{\mathrm{reg}}$?

Gizatullin Conjecture : Any Gizatullin surface is flexible

- True for surfaces xy p(z) = 0 in \mathbb{A}^3 (L. Makar-Limanov, 1970, or flexibility of suspensions)
- True for the *Danilov-Gizatullin surfaces* $\mathbb{F}_n \setminus S$, where S is an ample section in a Hirzebruch surface $\mathbb{F}_n \to \mathbb{P}^1$ (F. Donzelli, 1912)
- False in positive characteristic (V. Danilov-M. Gizatullin, 1975)
- False in zero characteristic (S. Kovalenko, 2012)