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Starting Point: Graphs & Planarity

I A graph (=1-dimensional complex) G is planar if it can be
embedded into the plane R2 (equivalently, into the sphere S2)

I Classical notion in topology, graph theory, discrete and
computational geometry, theoretical computer science

I Combinatorics & Structure

I Characterization of planar
graphs by forbidden minors
K5, K3,3 (Kuratowski 1930,
K. Wagner 1937)

4

I Algorithms & Complexity

I Planarity of a given graph G algorithmically testable in linear
time O(|V |) (Hopcroft-Tarjan 1974).
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Embeddings of simplicial complexes

Embeddings K ↪→ R
d︸ ︷︷ ︸

=injective continuous maps

of a simplicial complex︸ ︷︷ ︸
finite, dimK=k

into Euclidean

spaces

I Several natural classes of embeddings:

linear piecewise
linear (PL)

topological

I For graphs in the plane, TOP/PL/LINEAR embeddability are
equivalent (only one notion of planarity).

I TOP ⇒ PL: easy compactness argument,
I PL ⇒ LINEAR: nontrivial [Steinitz,Fáry].
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Different Types of Embeddings

Embeddings X ↪→ R
d of a simplicial complex, dimX = k

I Subtle differences in higher dimensions (d ≥ 3)

linear PL topological

I PL 6⇒ LINEAR for d ≥ 3 [Brehm, Brehm & Sarkaria]

I Also TOP 6⇒ PL in some cases (e.g., k = 4, d = 5).
However, TOP ⇔ PL if d ≤ 3 [Papakyriakopoulos, Bing] or
d − k ≥ 3 [Bryant].

I Linear embeddability always in PSPACE (solvability of
polynomial inequalities in real variables).

I For algorithmic questions we consider PL embeddability
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Algorithmic Embeddability Testing

k ≤ d fixed positive integers
EMBEDk→d is the following algorithmic problem:

Input: A simplicial complex K of dimension (at most) k .
Question: Is K (PL) embeddable into Rd?

I EMBED1→2 is GRAPH PLANARITY

I d ≥ 2k + 1 trivial: embeds always (general position).
I For d = 2k, there exist k-dimensional complexes not

embeddable into R2k :
I complete k-complex K k

2k+3 = skelk(∆2k+2)
(all simplices of dimension ≤ k on 2k + 3 vertices)

I complete multipartite k-complex K k
3,...,3

I for k ≥ 2, infinitely other minimally non-embeddable
complexes (no straightforward analogue of Kuratowski)
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Algorithmic Embeddability: Classical Results

I Embeddability classical topic in geometric topology

I but no prior systematic study from a computational viewpoint
(unlike its cousin, knot theory, isotopy of embeddings of the
circle S1 into R3).

I EMBED1→2: O(n)-algorithm for graph planarity testing
(Hopcroft, Tarjan 1974).

I EMBED2→2: characterization by forbidden subcomplexes
(Halin, Jung 1964) yields O(n) algorithm.

KI
∼= K5 KII

∼= K3,3 KIII
∼= S2 KIV KV KVI KVII

I van Kampen obstruction (van Kampen 1932; Shapiro, Wu),
yields polynomial-time algorithm for EMBEDk→2k , k ≥ 3.
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Current State of Knowledge: Complexity of EMBEDk→d

d
k 2 3 4 5 6 7 8 9 10 11 12 13 14
1 P
2 P D NPh
3 D NPh NPh P
4 NPh und NPh NPh P
5 und und NPh NPh P P
6 und und NPh NPh NPh P P
7 und und NPh NPh NPh P P P

und = algorithmically undecidable [Matoušek, Tancer, W.]
NPh = NP-hard [Matoušek, Tancer, W.]
D = algorithmically decidable [Matoušek, Sedgwick, Tancer, W.]
P = polynomial-time solvable; new results based on algorithmic
homotopy classification of (equivariant) maps [Čadek, Krčál,
Matoušek, Sergeraert, Voǩŕınek, W.]

Dividing line: metastable range d ≥ 3(k + 1)/2
(small dimensions d = 2, 3 somewhat exceptional)
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The deleted product obstruction and Haefliger–Weber

I K a space, f : K → R
d an embedding; x 6= y ⇒ f (x) 6= f (y).

I K 2
∆ := {(x , y) ∈ K × K : x 6= y}, the deleted product of K

(= Cartesian product with omitted diagonal = F (K , 2))

I Gauss map g : K 2
∆ → Sd−1, g(x , y) := f (x)−f (y)

‖f (x)−f (y)‖ is

Z2-equivariant, i.e., g(y , x) = −g(x , y).

I Thus, a necessary condition for embeddability of K in Rd is
the existence of an equivariant map K 2

∆ →Z2 Sd−1

Theorem (Haefliger–Weber)

If K is a k-dimensional simplicial complex and d ≥ 3(k+1)
2

(metastable range) then K embeds in Rd iff there is an equivariant
map K 2

∆ →Z2 Sd−1.

Remark
For all (d , k) outside the metastable range, d ≥ 3, the deleted
product obstruction is known to be incomplete (Segal, Spież,
Freedman, Krushkal, Teichner, A. Skopenkov).
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Freedman, Krushkal, Teichner, A. Skopenkov).



The deleted product obstruction and Haefliger–Weber

I K a space, f : K → R
d an embedding; x 6= y ⇒ f (x) 6= f (y).

I K 2
∆ := {(x , y) ∈ K × K : x 6= y}, the deleted product of K

(= Cartesian product with omitted diagonal = F (K , 2))

I Gauss map g : K 2
∆ → Sd−1, g(x , y) := f (x)−f (y)

‖f (x)−f (y)‖ is

Z2-equivariant, i.e., g(y , x) = −g(x , y).

I Thus, a necessary condition for embeddability of K in Rd is
the existence of an equivariant map K 2

∆ →Z2 Sd−1

Theorem (Haefliger–Weber)

If K is a k-dimensional simplicial complex and d ≥ 3(k+1)
2

(metastable range) then K embeds in Rd iff there is an equivariant
map K 2

∆ →Z2 Sd−1.

Remark
For all (d , k) outside the metastable range, d ≥ 3, the deleted
product obstruction is known to be incomplete (Segal, Spież,
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New Results on Homotopy Classification and Extensions

Theorem (ČKMSVW)

Assume we are given the following input: finite simplcial complexes
A ⊆ X and Y with Y is r -connected, r ≥ 1, and f : A→ Y .

I If dimX ≤ 2r + 1, then it can be decided algorithmically
whether f has an extension.

I If dimX ≤ 2r , then [X ,Y ] is a finitely generated abelian
group, and can be computed algorithmically (in terms of
generators and relations). More generally, the set of all
extensions of f up to homotopy can be computed.

I For fixed r , the algorithms are polynomial-time.

I Generalization to equivariant maps [Čadek, Krčál, Voǩŕınek]

Theorem (CKMSVW)

For r ≥ 1, there exists a r -connected Y such that the extension
problem with input A ⊂ X, f : A→ Y and dimX = 2r + 2 is
undecidable.(E.g., for r = 1, we may take Y = S2.)
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Theorem (CKMSVW)

For r ≥ 1, there exists a r -connected Y such that the extension
problem with input A ⊂ X, f : A→ Y and dimX = 2r + 2 is
undecidable.

(E.g., for r = 1, we may take Y = S2.)



New Results on Homotopy Classification and Extensions

Theorem (ČKMSVW)
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Obstruction Theory: Extending maps step by step
I X a simplicial complex, X (k) the k-skeleton (union of all

simplices of dimension ≤ k).
I Plan: Knowing [X (k−1),Y ], compute [X (k),Y ].

I Suppose f (k−1) : X (k−1) → Y fixed; what are all
f (k) : X (k) → Y extending f (k−1)?

I Extendable f (k−1) has to be homotopically trivial on the
boundary of each k-simplex.

YX

I All possible f (k) have a “coset structure”. From one extension

f
(k)

0 we can get all by adding an element of πk(Y ) = [Sk ,Y ]
on each k-simplex of X .

Y

f (k−1)(X(k−1))

f
(k)
0 (X(k))

f (k)(X(k))
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Extending maps step by step, cont’d

I For k-connected Y , there is only one f (k).

I So we have a tree of possible extensions; branching degree at
level k depends on πk(Y ) (and number of k-simplices of X ).

f (k)

...
...

...
...

k + 1

k + 2

k + 3

I If all of the relevant πk(Y ) finite, we can in principle search
the whole tree. (Already done by Brown in 1957.)

I However, we care about cases like Y = Sd , and πd(Sd) = Z,
infinite.
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Extending maps step by step, cont’d

I However, we care about Y = Sd , and πd(Sd) = Z, infinite.

I Primary obstruction allows us to jump two levels at a time:
Given some f (k), it provides a finite description of all f (k+1)

that extend f (k) and are extendable to some f (k+2).
If Y is (d − 1)-connected, this handles the case of
dimX = d + 1 (k = d − 1, f (d−1) : X (d−1) → Y is unique),
but in general, the infinite branching problem doesn’t go away.

I Secondary obstructions (Steenrod squares) allow us to jump
directly to the third level (a finite description of all f (k+2) that
extend to some f (k+3)).

I Higher obstructions: if Y is sufficiently connected, then the
set of all possible extensions has an additive structure that
allows for a finite encoding; more conveniently formulated in
the language of Postnikov systems
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Postnikov Systems
Postnikov system for (simply connected) Y :

...

P2

P1

P0 = ∗Y

p2

p1

ϕ2

ϕ1

ϕ0

I stages P0,P1,P2, . . ., build from Eilenberg–Mac Lane spaces
K (πj(Y ), j).

I maps ϕi induce isomorphisms ϕi∗ : πj(Y ) ∼= πj(Pi ) for j ≤ i
and πj(Pi ) = 0 for all j > i .

I [X ,Y ] ∼= [X ,Pi ] for dimX ≤ i .
I If Y is r -connected then the stable stages Pi , i ≤ 2r have a

canonical H-space structure (“addition up to homotopy”),
makes [X ,Pi ] into a finitely generated abelian group.
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Postnikov Systems, cont’d
I ith stage Pi obtained from previous stage as “twisted

product” with an Eilenberg–Mac Lane space,

Pi = Pi−1 ×ki−1
K (πi , i),

where πi = πi (Y ) and ki−1 “Postnikov class/invariant”

I In the stable range, exact sequence of abelian groups

[SX ,Pi−1] // [X ,K (πi , i)] // [X ,Pi ]

[pi∗]
��

[X ,Pi−1]
[k(i−1)∗]
// [X ,K (πi , i + 1)]

where SX = suspension; inductively, compute [X ,Pi ]
I Challenges: Make everything algorithmic, handle homology

computations for infinite simplicial sets (Eilenberg–Mac Lane
spaces and Postnikov stages); use framework of objects with
effective homology pioneered by Sergeraert, Rubio, and
collaborators.
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Sketch of Undecidability
I Based on undecidability of systems of quadratic Diophantine

equations (quadratic equations over the integers)
I How to encode one quadratic equation x1x2 = b?

I X = (S2 × S2) \ D4, A = ∂D4 = S3, Y = S2.
f : A→ Y given by [f ] = b ∈ π3(Y ) ∼= Z.
Any map X → Y determined by its restrictions to the
“factors” S2

xi
, these correspond to integers xi ∈ π2(Y ) ∼= Z.

f is extendable if there are choices x1, x2 such that x1x2 = b
(Whitehead products)

X = S2 × S2 \D4

A = S3 f

Y = S2

S2x1

S2x2

f̂ ?
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Hardness of EMBED2→4: A Sketch

Theorem
It is NP-hard to decide whether a given 2-complex embeds into R4.

I Reduction from 3-SAT: for every 3-CNF formula ϕ, e.g.,

ϕ = (x1 ∨ x̄2 ∨ x4) ∧ (x1 ∨ x̄4 ∨ x5) ∧ . . . ,

construct a 2-dimensional simplicial complex Kϕ such that

ϕ is satisfiable⇔ Kϕ ↪→ R
4

I Kϕ is built from clause gadgets and conflict gadgets

I Gadgets based on examples of Freedman, Krushkal and
Teichner showing that the van Kampen obstruction is
incomplete for embeddings into R4.



Clause Gadget

I start with K 2
7 (all triangles on 7 vertices)

I make small holes (openings) in the interiors of three triangles
sharing a vertex

I for each opening, there is a complementary 2-sphere

v4

v5

v6

v2v1

v0

v3

Sω3

ω2

ω3

ω1



Linking Lemma

Lemma

1. For every PL embedding f : G ↪→ R
4, there is an opening ωi

such that the images f (∂ωi ) and f (Sωi ) have odd linking
number.

2. For every i , there exists and embedding such that only f (∂ωi )
and f (Sωi ) are linked.

v4

v5

v6

v2v1

v0

v3

Sω3

ω2

ω3

ω1



Conflict Gadget

I Squeezed torus, obtained by glueing an octagon to “two
circles with a stick”.

Σa
Σb

c

I Can be embedded into R3 if one of the circles is “free” (not
linked with any obstacles); asymmetry in the embedding.

I Cannot be embedded into R4 if both circles are blocked
(linked with 2-spheres).



Reduction Sketch

x̄1 x̄3 x̄5

Sx̄5Sx̄3Sx̄1

C3 = x̄1 ∨ x3 ∨ x̄5

x̄1 x̄4 x5

Sx5Sx̄4Sx̄1

C2 = x̄1 ∨ x̄4 ∨ x5

x1 x̄2 x4

Sx4Sx̄2Sx1

C1 = x1 ∨ x̄2 ∨ x4



Algorithmic Embeddability in R3

I EMBED2→3 and EMBED3→3 can be reduced, possibly with
exponential-time overhead, to the following question: Given a
compact 3-manifold X with boundary, does it embed in S3?

I First test if K can be thickened to a 3-manifold X , check all
possible thickenings.

I The boundary of an embeddable X must be a disjoint union
of orientable surfaces (spheres with handles).

I Theorem (Fox): If X can be embedded in S3, then there is an
embedding such that the complement is a union of balls and
handle bodies (solid tori).

I Strategy: “Guess” a meridian γ, glue a thickened disk to X
along γ.

γ

X outside X ′ outside

This preserves embeddability, simplifies ∂X . Recurse.



Algorithmic Embeddability in R3

I EMBED2→3 and EMBED3→3 can be reduced, possibly with
exponential-time overhead, to the following question: Given a
compact 3-manifold X with boundary, does it embed in S3?

I First test if K can be thickened to a 3-manifold X , check all
possible thickenings.

I The boundary of an embeddable X must be a disjoint union
of orientable surfaces (spheres with handles).

I Theorem (Fox): If X can be embedded in S3, then there is an
embedding such that the complement is a union of balls and
handle bodies (solid tori).

I Strategy: “Guess” a meridian γ, glue a thickened disk to X
along γ.

γ

X outside X ′ outside

This preserves embeddability, simplifies ∂X . Recurse.



Algorithmic Embeddability in R3

I EMBED2→3 and EMBED3→3 can be reduced, possibly with
exponential-time overhead, to the following question: Given a
compact 3-manifold X with boundary, does it embed in S3?

I First test if K can be thickened to a 3-manifold X , check all
possible thickenings.

I The boundary of an embeddable X must be a disjoint union
of orientable surfaces (spheres with handles).

I Theorem (Fox): If X can be embedded in S3, then there is an
embedding such that the complement is a union of balls and
handle bodies (solid tori).

I Strategy: “Guess” a meridian γ, glue a thickened disk to X
along γ.

γ

X outside X ′ outside

This preserves embeddability, simplifies ∂X . Recurse.



Algorithmic Embeddability in R3

I EMBED2→3 and EMBED3→3 can be reduced, possibly with
exponential-time overhead, to the following question: Given a
compact 3-manifold X with boundary, does it embed in S3?

I First test if K can be thickened to a 3-manifold X , check all
possible thickenings.

I The boundary of an embeddable X must be a disjoint union
of orientable surfaces (spheres with handles).

I Theorem (Fox): If X can be embedded in S3, then there is an
embedding such that the complement is a union of balls and
handle bodies (solid tori).

I Strategy: “Guess” a meridian γ, glue a thickened disk to X
along γ.

γ

X outside X ′ outside

This preserves embeddability, simplifies ∂X . Recurse.



Algorithmic Embeddability in R3, cont’d

Key technical result, proved using normal surface theory:

Theorem (Short Meridians; Matoušek, Sedgwick, Tancer, W.)

Suppose that X is a 3-manifold with boundary1 that embeds in S3.
Then there exists (a possibly different) embedding of X for which
there is a short meridian γ, i.e., an essential2 normal curve γ ⊂ ∂X
bounding a disk in S3 \ X such that the length of γ, measured as
the number of intersections of γ with the edges of the
triangulation, is bounded by a computable function of the number
of tetrahedra.

1Caveat: We first need to do some preprocessing to ensure that X has
certain helpful technical properties:

I X is irreducible, neither a ball nor an S3,

I X has incompressible boundary,

I X is equipped with a 0-efficient triangulation.

2Meaning that γ does not bound a disk in ∂X .



Conclusions and Questions

I Embeddability outside the metastable range?

I codimension d − k ≥ 3?
I codimension d − k = 2?

I Explicit construction of embeddings?
If the embeddability test tells us K ↪→ R

d , can we compute
an explicit PL embedding?

I Recent result (Freedman–Krushkal): In the case
d = 2k, k ≥ 3, an exponential number of subdivisions is
sufficient and sometimes necessary.

I Testing embeddability into other ambient manifolds?
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Thank you for your attention!


