Algorithmic Aspects of Embeddability

Uli Wagner

Institute of Science and Technology
joint work with
Martin Čadek, Marek Krčál, Jiří Matoušek, Eric Sedgwick, Francis Sergeraert, Martin Tancer, Lukáš Vokrínek

Poncelet Laboratory, Independent University of Moscow, March 30, 2016

Starting Point: Graphs \& Planarity

- A graph (=1-dimensional complex) G is planar if it can be embedded into the plane \mathbb{R}^{2} (equivalently, into the sphere S^{2})
- Classical notion in topology, graph theory, discrete and computational geometry, theoretical computer science
- Combinatorics \& Structure
- Characterization of planar graphs by forbidden minors $K_{5}, K_{3,3}$ (Kuratowski 1930, K. Wagner 1937)

- Algorithms \& Complexity
- Planarity of a given graph G algorithmically testable in linear time $O(|V|)$ (Hopcroft-Tarjan 1974).

Starting Point: Graphs \& Planarity

- A graph (=1-dimensional complex) G is planar if it can be embedded into the plane \mathbb{R}^{2} (equivalently, into the sphere S^{2})
- Classical notion in topology, graph theory, discrete and computational geometry, theoretical computer science
- Combinatorics \& Structure
- Characterization of planar graphs by forbidden minors $K_{5}, K_{3,3}$ (Kuratowski 1930, K. Wagner 1937)

- Algorithms \& Complexity
- Planarity of a given graph G algorithmically testable in linear time $O(|V|)$ (Hopcroft-Tarjan 1974).

Embeddings of simplicial complexes

$\underbrace{\text { Embeddings } K \hookrightarrow \mathbb{R}^{d}}_{\text {=injective continuous maps }}$ of a $\underbrace{\text { simplicial complex }}_{\text {finite, } \operatorname{dim} K=k}$ into Euclidean spaces

- Several natural classes of embeddings:

linear

piecewise
linear (PL)

topological

Embeddings of simplicial complexes

$\underbrace{\text { Embeddings } K \hookrightarrow \mathbb{R}^{d}}_{\text {=injective continuous maps }}$ of a $\underbrace{\text { simplicial complex }}_{\text {finite, } \operatorname{dim} K=k}$ into Euclidean spaces

- Several natural classes of embeddings:

linear

piecewise linear (PL)

topological
- For graphs in the plane, TOP/PL/LINEAR embeddability are equivalent (only one notion of planarity).

Embeddings of simplicial complexes

$\underbrace{\text { Embeddings } K \hookrightarrow \mathbb{R}^{d}}_{\text {=injective continuous maps }}$ of a $\underbrace{\text { simplicial complex }}_{\text {finite, } \operatorname{dim} K=k}$ into Euclidean spaces

- Several natural classes of embeddings:

linear

piecewise linear (PL)

topological
- For graphs in the plane, TOP/PL/LINEAR embeddability are equivalent (only one notion of planarity).
- TOP \Rightarrow PL: easy compactness argument,
- $\mathrm{PL} \Rightarrow$ LINEAR: nontrivial [Steinitz,Fáry].

Different Types of Embeddings

Embeddings $X \hookrightarrow \mathbb{R}^{d}$ of a simplicial complex, $\operatorname{dim} X=k$

- Subtle differences in higher dimensions $(d \geq 3)$

linear

PL

topological

Different Types of Embeddings

Embeddings $X \hookrightarrow \mathbb{R}^{d}$ of a simplicial complex, $\operatorname{dim} X=k$

- Subtle differences in higher dimensions $(d \geq 3)$

linear

PL

topological

- $\mathrm{PL} \nRightarrow$ LINEAR for $d \geq 3$ [Brehm, Brehm \& Sarkaria]

Different Types of Embeddings

Embeddings $X \hookrightarrow \mathbb{R}^{d}$ of a simplicial complex, $\operatorname{dim} X=k$

- Subtle differences in higher dimensions $(d \geq 3)$

linear

PL

topological

- $\mathrm{PL} \nRightarrow$ LINEAR for $d \geq 3$ [Brehm, Brehm \& Sarkaria]
- Also TOP $\nRightarrow P L$ in some cases (e.g., $k=4, d=5$). However, TOP $\Leftrightarrow \mathrm{PL}$ if $d \leq 3$ [Papakyriakopoulos, Bing] or $d-k \geq 3$ [Bryant].

Different Types of Embeddings

Embeddings $X \hookrightarrow \mathbb{R}^{d}$ of a simplicial complex, $\operatorname{dim} X=k$

- Subtle differences in higher dimensions $(d \geq 3)$

linear

PL

topological

- PL \nRightarrow LINEAR for $d \geq 3$ [Brehm, Brehm \& Sarkaria]
- Also TOP $\nRightarrow P L$ in some cases (e.g., $k=4, d=5$). However, TOP $\Leftrightarrow \mathrm{PL}$ if $d \leq 3$ [Papakyriakopoulos, Bing] or $d-k \geq 3$ [Bryant].
- Linear embeddability always in PSPACE (solvability of polynomial inequalities in real variables).

Different Types of Embeddings

Embeddings $X \hookrightarrow \mathbb{R}^{d}$ of a simplicial complex, $\operatorname{dim} X=k$

- Subtle differences in higher dimensions $(d \geq 3)$

linear

PL

topological

- PL \nRightarrow LINEAR for $d \geq 3$ [Brehm, Brehm \& Sarkaria]
- Also TOP $\nRightarrow P L$ in some cases (e.g., $k=4, d=5$). However, TOP $\Leftrightarrow \mathrm{PL}$ if $d \leq 3$ [Papakyriakopoulos, Bing] or $d-k \geq 3$ [Bryant].
- Linear embeddability always in PSPACE (solvability of polynomial inequalities in real variables).
- For algorithmic questions we consider PL embeddability

Algorithmic Embeddability Testing

$k \leq d$ fixed positive integers
$\mathrm{EMBED}_{k \rightarrow d}$ is the following algorithmic problem:

Input:	A simplicial complex K of dimension (at most) k.
Question:	Is $K(P L)$ embeddable into \mathbb{R}^{d} ?

Algorithmic Embeddability Testing

$k \leq d$ fixed positive integers
$\mathrm{EMBED}_{k \rightarrow d}$ is the following algorithmic problem:

Input: $\quad \mathrm{A}$ simplicial complex K of dimension (at most) k. Question: Is $K(\mathrm{PL})$ embeddable into \mathbb{R}^{d} ?

- EMBED ${ }_{1 \rightarrow 2}$ is GRAPH PLANARITY
- $d \geq 2 k+1$ trivial: embeds always (general position).

Algorithmic Embeddability Testing

$k \leq d$ fixed positive integers
$\mathrm{EMBED}_{k \rightarrow d}$ is the following algorithmic problem:

$$
\begin{array}{ll}
\text { Input: } & \text { A simplicial complex } K \text { of dimension (at most) } k . \\
\text { Question: } & \text { Is } K(\mathrm{PL}) \text { embeddable into } \mathbb{R}^{d} \text { ? }
\end{array}
$$

- EMBED ${ }_{1 \rightarrow 2}$ is GRAPH PLANARITY
- $d \geq 2 k+1$ trivial: embeds always (general position).
- For $d=2 k$, there exist k-dimensional complexes not embeddable into $\mathbb{R}^{2 k}$:
- complete k-complex $K_{2 k+3}^{k}=\operatorname{skel}_{k}\left(\Delta^{2 k+2}\right)$ (all simplices of dimension $\leq k$ on $2 k+3$ vertices)
- complete multipartite k-complex $K_{3, \ldots, 3}^{k}$
- for $k \geq 2$, infinitely other minimally non-embeddable complexes (no straightforward analogue of Kuratowski)

Algorithmic Embeddability: Classical Results

- Embeddability classical topic in geometric topology
- but no prior systematic study from a computational viewpoint (unlike its cousin, knot theory, isotopy of embeddings of the circle S^{1} into \mathbb{R}^{3}).

Algorithmic Embeddability: Classical Results

- Embeddability classical topic in geometric topology
- but no prior systematic study from a computational viewpoint (unlike its cousin, knot theory, isotopy of embeddings of the circle S^{1} into \mathbb{R}^{3}).
- $\mathrm{EMBED}_{1 \rightarrow 2}: O(n)$-algorithm for graph planarity testing (Hopcroft, Tarjan 1974).
- $\mathrm{EMBED}_{2 \rightarrow 2}$: characterization by forbidden subcomplexes (Halin, Jung 1964) yields $O(n)$ algorithm.

$K_{\mathrm{I}} \cong K_{5}$

Algorithmic Embeddability: Classical Results

- Embeddability classical topic in geometric topology
- but no prior systematic study from a computational viewpoint (unlike its cousin, knot theory, isotopy of embeddings of the circle S^{1} into \mathbb{R}^{3}).
- $\mathrm{EMBED}_{1 \rightarrow 2}: O(n)$-algorithm for graph planarity testing (Hopcroft, Tarjan 1974).
- $\mathrm{EMBED}_{2 \rightarrow 2}$: characterization by forbidden subcomplexes (Halin, Jung 1964) yields $O(n)$ algorithm.

$K_{\mathrm{I}} \cong K_{5}$

- van Kampen obstruction (van Kampen 1932; Shapiro, Wu), yields polynomial-time algorithm for EMBED ${ }_{k \rightarrow 2 k}, k \geq 3$.

Current State of Knowledge: Complexity of $\mathrm{EMBED}_{k \rightarrow d}$

k	2	3	4	5	6	$\begin{gathered} d \\ 7 \end{gathered}$	8	9	10	11	12	13	14
1	P												
2	P	D	NPh										
3		D	NPh	NPh	P								
4			NPh	und	NPh	NPh	P						
5				und	und	NPh	NPh	P	P				
6					und	und	NPh	NPh	NPh	P	P		
7						und	und	NPh	NPh	NPh	P	P	P

und $=$ algorithmically undecidable [Matoušek, Tancer, W.]
NPh = NP-hard [Matoušek, Tancer, W.]
$\mathrm{D}=$ algorithmically decidable [Matoušek, Sedgwick, Tancer, W.]
$\mathrm{P}=$ polynomial-time solvable; new results based on algorithmic homotopy classification of (equivariant) maps [Čadek, Krčál, Matoušek, Sergeraert, Vokřínek, W.]

Current State of Knowledge: Complexity of $\mathrm{EMBED}_{k \rightarrow d}$

k	2	3	4	5	6	7	8	9	10	11	12	13	14
1	P												
2	P	D	NPh										
3		D	NPh	NPh	P								
4			NPh	und	NPh	NPh	P						
5				und	und	NPh	NPh	P	P				
6					und	und	NPh	NPh	NPh	P	P		
7						und	und	NPh	NPh	NPh	P	P	P

und $=$ algorithmically undecidable [Matoušek, Tancer, W.]
NPh = NP-hard [Matoušek, Tancer, W.]
$\mathrm{D}=$ algorithmically decidable [Matoušek, Sedgwick, Tancer, W.]
$\mathrm{P}=$ polynomial-time solvable; new results based on algorithmic homotopy classification of (equivariant) maps [Čadek, Krčál, Matoušek, Sergeraert, Vokřínek, W.]
Dividing line: metastable range $d \geq 3(k+1) / 2$
(small dimensions $d=2,3$ somewhat exceptional)

The deleted product obstruction and Haefliger-Weber

- K a space, $f: K \rightarrow \mathbb{R}^{d}$ an embedding; $x \neq y \Rightarrow f(x) \neq f(y)$.

The deleted product obstruction and Haefliger-Weber

- K a space, $f: K \rightarrow \mathbb{R}^{d}$ an embedding; $x \neq y \Rightarrow f(x) \neq f(y)$.
- $K_{\Delta}^{2}:=\{(x, y) \in K \times K: x \neq y\}$, the deleted product of K ($=$ Cartesian product with omitted diagonal $=F(K, 2)$)

The deleted product obstruction and Haefliger-Weber

- K a space, $f: K \rightarrow \mathbb{R}^{d}$ an embedding; $x \neq y \Rightarrow f(x) \neq f(y)$.
- $K_{\Delta}^{2}:=\{(x, y) \in K \times K: x \neq y\}$, the deleted product of K ($=$ Cartesian product with omitted diagonal $=F(K, 2)$)
- Gauss map $g: K_{\Delta}^{2} \rightarrow S^{d-1}, \quad g(x, y):=\frac{f(x)-f(y)}{\|f(x)-f(y)\|}$ is \mathbb{Z}_{2}-equivariant, i.e., $g(y, x)=-g(x, y)$.

The deleted product obstruction and Haefliger-Weber

- K a space, $f: K \rightarrow \mathbb{R}^{d}$ an embedding; $x \neq y \Rightarrow f(x) \neq f(y)$.
- $K_{\Delta}^{2}:=\{(x, y) \in K \times K: x \neq y\}$, the deleted product of K (= Cartesian product with omitted diagonal $=F(K, 2)$)
- Gauss map $g: K_{\Delta}^{2} \rightarrow S^{d-1}, \quad g(x, y):=\frac{f(x)-f(y)}{\|f(x)-f(y)\|}$ is \mathbb{Z}_{2}-equivariant, i.e., $g(y, x)=-g(x, y)$.
- Thus, a necessary condition for embeddability of K in \mathbb{R}^{d} is the existence of an equivariant map $K_{\Delta}^{2} \rightarrow_{\mathbb{Z}_{2}} S^{d-1}$

The deleted product obstruction and Haefliger-Weber

- K a space, $f: K \rightarrow \mathbb{R}^{d}$ an embedding; $x \neq y \Rightarrow f(x) \neq f(y)$.
- $K_{\Delta}^{2}:=\{(x, y) \in K \times K: x \neq y\}$, the deleted product of K (= Cartesian product with omitted diagonal $=F(K, 2)$)
- Gauss map $g: K_{\Delta}^{2} \rightarrow S^{d-1}, \quad g(x, y):=\frac{f(x)-f(y)}{\|f(x)-f(y)\|}$ is \mathbb{Z}_{2}-equivariant, i.e., $g(y, x)=-g(x, y)$.
- Thus, a necessary condition for embeddability of K in \mathbb{R}^{d} is the existence of an equivariant map $K_{\Delta}^{2} \rightarrow_{\mathbb{Z}_{2}} S^{d-1}$

Theorem (Haefliger-Weber)
If K is a k-dimensional simplicial complex and $d \geq \frac{3(k+1)}{2}$ (metastable range) then K embeds in \mathbb{R}^{d} iff there is an equivariant $\operatorname{map} K_{\Delta}^{2} \rightarrow_{\mathbb{Z}_{2}} S^{d-1}$.

The deleted product obstruction and Haefliger-Weber

- K a space, $f: K \rightarrow \mathbb{R}^{d}$ an embedding; $x \neq y \Rightarrow f(x) \neq f(y)$.
- $K_{\Delta}^{2}:=\{(x, y) \in K \times K: x \neq y\}$, the deleted product of K (= Cartesian product with omitted diagonal $=F(K, 2)$)
- Gauss map $g: K_{\Delta}^{2} \rightarrow S^{d-1}, \quad g(x, y):=\frac{f(x)-f(y)}{\|f(x)-f(y)\|}$ is \mathbb{Z}_{2}-equivariant, i.e., $g(y, x)=-g(x, y)$.
- Thus, a necessary condition for embeddability of K in \mathbb{R}^{d} is the existence of an equivariant map $K_{\Delta}^{2} \rightarrow_{\mathbb{Z}_{2}} S^{d-1}$

Theorem (Haefliger-Weber)
If K is a k-dimensional simplicial complex and $d \geq \frac{3(k+1)}{2}$ (metastable range) then K embeds in \mathbb{R}^{d} iff there is an equivariant $\operatorname{map} K_{\Delta}^{2} \rightarrow_{\mathbb{Z}_{2}} S^{d-1}$.

Remark

For all (d, k) outside the metastable range, $d \geq 3$, the deleted product obstruction is known to be incomplete (Segal, Spież, Freedman, Krushkal, Teichner, A. Skopenkov).

New Results on Homotopy Classification and Extensions

Theorem (ČKMSVW)
Assume we are given the following input: finite simplcial complexes $A \subseteq X$ and Y with Y is r-connected, $r \geq 1$, and $f: A \rightarrow Y$.

New Results on Homotopy Classification and Extensions

Theorem (ČKMSVW)
Assume we are given the following input: finite simplcial complexes $A \subseteq X$ and Y with Y is r-connected, $r \geq 1$, and $f: A \rightarrow Y$.

- If $\operatorname{dim} X \leq 2 r+1$, then it can be decided algorithmically whether f has an extension.

New Results on Homotopy Classification and Extensions

Theorem (ČKMSVW)

Assume we are given the following input: finite simplcial complexes $A \subseteq X$ and Y with Y is r-connected, $r \geq 1$, and $f: A \rightarrow Y$.

- If $\operatorname{dim} X \leq 2 r+1$, then it can be decided algorithmically whether f has an extension.
- If $\operatorname{dim} X \leq 2 r$, then $[X, Y]$ is a finitely generated abelian group, and can be computed algorithmically (in terms of generators and relations). More generally, the set of all extensions of f up to homotopy can be computed.

New Results on Homotopy Classification and Extensions

Theorem (ČKMSVW)

Assume we are given the following input: finite simplcial complexes $A \subseteq X$ and Y with Y is r-connected, $r \geq 1$, and $f: A \rightarrow Y$.

- If $\operatorname{dim} X \leq 2 r+1$, then it can be decided algorithmically whether f has an extension.
- If $\operatorname{dim} X \leq 2 r$, then $[X, Y]$ is a finitely generated abelian group, and can be computed algorithmically (in terms of generators and relations). More generally, the set of all extensions of f up to homotopy can be computed.
- For fixed r, the algorithms are polynomial-time.

New Results on Homotopy Classification and Extensions

Theorem (ČKMSVW)

Assume we are given the following input: finite simplcial complexes $A \subseteq X$ and Y with Y is r-connected, $r \geq 1$, and $f: A \rightarrow Y$.

- If $\operatorname{dim} X \leq 2 r+1$, then it can be decided algorithmically whether f has an extension.
- If $\operatorname{dim} X \leq 2 r$, then $[X, Y]$ is a finitely generated abelian group, and can be computed algorithmically (in terms of generators and relations). More generally, the set of all extensions of f up to homotopy can be computed.
- For fixed r, the algorithms are polynomial-time.
- Generalization to equivariant maps [Čadek, Krčál, Vokřínek]

Theorem (CKMSVW)

For $r \geq 1$, there exists a r-connected Y such that the extension problem with input $A \subset X, f: A \rightarrow Y$ and $\operatorname{dim} X=2 r+2$ is undecidable.

New Results on Homotopy Classification and Extensions

Theorem (ČKMSVW)

Assume we are given the following input: finite simplcial complexes $A \subseteq X$ and Y with Y is r-connected, $r \geq 1$, and $f: A \rightarrow Y$.

- If $\operatorname{dim} X \leq 2 r+1$, then it can be decided algorithmically whether f has an extension.
- If $\operatorname{dim} X \leq 2 r$, then $[X, Y]$ is a finitely generated abelian group, and can be computed algorithmically (in terms of generators and relations). More generally, the set of all extensions of f up to homotopy can be computed.
- For fixed r, the algorithms are polynomial-time.
- Generalization to equivariant maps [Čadek, Krčál, Vokřínek]

Theorem (CKMSVW)

For $r \geq 1$, there exists a r-connected Y such that the extension problem with input $A \subset X, f: A \rightarrow Y$ and $\operatorname{dim} X=2 r+2$ is undecidable.(E.g., for $r=1$, we may take $Y=S^{2}$.)

Obstruction Theory: Extending maps step by step

- X a simplicial complex, $X^{(k)}$ the k-skeleton (union of all simplices of dimension $\leq k)$.
- Plan: Knowing $\left[X^{(k-1)}, Y\right]$, compute $\left[X^{(k)}, Y\right]$.

Obstruction Theory: Extending maps step by step

- X a simplicial complex, $X^{(k)}$ the k-skeleton (union of all simplices of dimension $\leq k$).
- Plan: Knowing $\left[X^{(k-1)}, Y\right]$, compute $\left[X^{(k)}, Y\right]$.
- Suppose $f^{(k-1)}: X^{(k-1)} \rightarrow Y$ fixed; what are all $f^{(k)}: X^{(k)} \rightarrow Y$ extending $f^{(k-1)}$?

Obstruction Theory: Extending maps step by step

- X a simplicial complex, $X^{(k)}$ the k-skeleton (union of all simplices of dimension $\leq k$).
- Plan: Knowing $\left[X^{(k-1)}, Y\right]$, compute $\left[X^{(k)}, Y\right]$.
- Suppose $f^{(k-1)}: X^{(k-1)} \rightarrow Y$ fixed; what are all $f^{(k)}: X^{(k)} \rightarrow Y$ extending $f^{(k-1)}$?
- Extendable $f^{(k-1)}$ has to be homotopically trivial on the boundary of each k-simplex.

Obstruction Theory: Extending maps step by step

- X a simplicial complex, $X^{(k)}$ the k-skeleton (union of all simplices of dimension $\leq k$).
- Plan: Knowing $\left[X^{(k-1)}, Y\right]$, compute $\left[X^{(k)}, Y\right]$.
- Suppose $f^{(k-1)}: X^{(k-1)} \rightarrow Y$ fixed; what are all $f^{(k)}: X^{(k)} \rightarrow Y$ extending $f^{(k-1)}$?
- Extendable $f^{(k-1)}$ has to be homotopically trivial on the boundary of each k-simplex.

- All possible $f^{(k)}$ have a "coset structure". From one extension $f_{0}^{(k)}$ we can get all by adding an element of $\pi_{k}(Y)=\left[S^{k}, Y\right]$ on each k-simplex of X.

$$
\begin{aligned}
& f^{(k-1)}\left(X^{(k-1)}\right) \\
& f_{0}^{(k)}\left(X^{(k)}\right) \\
& f^{(k)}\left(X^{(k)}\right)
\end{aligned}
$$

Extending maps step by step, cont'd

- For k-connected Y, there is only one $f^{(k)}$.

Extending maps step by step, cont'd

- For k-connected Y, there is only one $f^{(k)}$.
- So we have a tree of possible extensions; branching degree at level k depends on $\pi_{k}(Y)$ (and number of k-simplices of X).

Extending maps step by step, cont'd

- For k-connected Y, there is only one $f^{(k)}$.
- So we have a tree of possible extensions; branching degree at level k depends on $\pi_{k}(Y)$ (and number of k-simplices of X).

- If all of the relevant $\pi_{k}(Y)$ finite, we can in principle search the whole tree. (Already done by Brown in 1957.)

Extending maps step by step, cont'd

- For k-connected Y, there is only one $f^{(k)}$.
- So we have a tree of possible extensions; branching degree at level k depends on $\pi_{k}(Y)$ (and number of k-simplices of X).

- If all of the relevant $\pi_{k}(Y)$ finite, we can in principle search the whole tree. (Already done by Brown in 1957.)
- However, we care about cases like $Y=S^{d}$, and $\pi_{d}\left(S^{d}\right)=\mathbb{Z}$, infinite.

Extending maps step by step, cont'd

- However, we care about $Y=S^{d}$, and $\pi_{d}\left(S^{d}\right)=\mathbb{Z}$, infinite.

Extending maps step by step, cont'd

- However, we care about $Y=S^{d}$, and $\pi_{d}\left(S^{d}\right)=\mathbb{Z}$, infinite.
- Primary obstruction allows us to jump two levels at a time: Given some $f^{(k)}$, it provides a finite description of all $f^{(k+1)}$ that extend $f^{(k)}$ and are extendable to some $f^{(k+2)}$. If Y is $(d-1)$-connected, this handles the case of $\operatorname{dim} X=d+1\left(k=d-1, f^{(d-1)}: X^{(d-1)} \rightarrow Y\right.$ is unique $)$, but in general, the infinite branching problem doesn't go away.

Extending maps step by step, cont'd

- However, we care about $Y=S^{d}$, and $\pi_{d}\left(S^{d}\right)=\mathbb{Z}$, infinite.
- Primary obstruction allows us to jump two levels at a time: Given some $f^{(k)}$, it provides a finite description of all $f^{(k+1)}$ that extend $f^{(k)}$ and are extendable to some $f^{(k+2)}$. If Y is $(d-1)$-connected, this handles the case of $\operatorname{dim} X=d+1\left(k=d-1, f^{(d-1)}: X^{(d-1)} \rightarrow Y\right.$ is unique $)$, but in general, the infinite branching problem doesn't go away.
- Secondary obstructions (Steenrod squares) allow us to jump directly to the third level (a finite description of all $f^{(k+2)}$ that extend to some $f^{(k+3)}$).

Extending maps step by step, cont'd

- However, we care about $Y=S^{d}$, and $\pi_{d}\left(S^{d}\right)=\mathbb{Z}$, infinite.
- Primary obstruction allows us to jump two levels at a time: Given some $f^{(k)}$, it provides a finite description of all $f^{(k+1)}$ that extend $f^{(k)}$ and are extendable to some $f^{(k+2)}$. If Y is $(d-1)$-connected, this handles the case of $\operatorname{dim} X=d+1\left(k=d-1, f^{(d-1)}: X^{(d-1)} \rightarrow Y\right.$ is unique $)$, but in general, the infinite branching problem doesn't go away.
- Secondary obstructions (Steenrod squares) allow us to jump directly to the third level (a finite description of all $f^{(k+2)}$ that extend to some $f^{(k+3)}$).
- Higher obstructions: if Y is sufficiently connected, then the set of all possible extensions has an additive structure that allows for a finite encoding; more conveniently formulated in the language of Postnikov systems

Postnikov Systems

Postnikov system for (simply connected) Y :

Postnikov Systems

Postnikov system for (simply connected) Y :

- stages $P_{0}, P_{1}, P_{2}, \ldots$, build from Eilenberg-Mac Lane spaces $K\left(\pi_{j}(Y), j\right)$.

Postnikov Systems

Postnikov system for (simply connected) Y :

- stages $P_{0}, P_{1}, P_{2}, \ldots$, build from Eilenberg-Mac Lane spaces $K\left(\pi_{j}(Y), j\right)$.
- maps φ_{i} induce isomorphisms $\varphi_{i *}: \pi_{j}(Y) \cong \pi_{j}\left(P_{i}\right)$ for $j \leq i$ and $\pi_{j}\left(P_{i}\right)=0$ for all $j>i$.

Postnikov Systems

Postnikov system for (simply connected) Y :

- stages $P_{0}, P_{1}, P_{2}, \ldots$, build from Eilenberg-Mac Lane spaces $K\left(\pi_{j}(Y), j\right)$.
- maps φ_{i} induce isomorphisms $\varphi_{i *}: \pi_{j}(Y) \cong \pi_{j}\left(P_{i}\right)$ for $j \leq i$ and $\pi_{j}\left(P_{i}\right)=0$ for all $j>i$.
- $[X, Y] \cong\left[X, P_{i}\right]$ for $\operatorname{dim} X \leq i$.

Postnikov Systems

Postnikov system for (simply connected) Y :

- stages $P_{0}, P_{1}, P_{2}, \ldots$, build from Eilenberg-Mac Lane spaces $K\left(\pi_{j}(Y), j\right)$.
- maps φ_{i} induce isomorphisms $\varphi_{i *}: \pi_{j}(Y) \cong \pi_{j}\left(P_{i}\right)$ for $j \leq i$ and $\pi_{j}\left(P_{i}\right)=0$ for all $j>i$.
- $[X, Y] \cong\left[X, P_{i}\right]$ for $\operatorname{dim} X \leq i$.
- If Y is r-connected then the stable stages $P_{i}, i \leq 2 r$ have a canonical H -space structure ("addition up to homotopy"), makes $\left[X, P_{i}\right]$ into a finitely generated abelian group.

Postnikov Systems, cont'd

- ith stage P_{i} obtained from previous stage as "twisted product" with an Eilenberg-Mac Lane space,

$$
P_{i}=P_{i-1} \times_{k_{i-1}} K\left(\pi_{i}, i\right),
$$

where $\pi_{i}=\pi_{i}(Y)$ and k_{i-1} "Postnikov class/invariant"

Postnikov Systems, cont'd

- ith stage P_{i} obtained from previous stage as "twisted product" with an Eilenberg-Mac Lane space,

$$
P_{i}=P_{i-1} \times_{k_{i-1}} K\left(\pi_{i}, i\right),
$$

where $\pi_{i}=\pi_{i}(Y)$ and k_{i-1} "Postnikov class/invariant"

- In the stable range, exact sequence of abelian groups
$\left[S X, P_{i-1}\right] \longrightarrow\left[X, K\left(\pi_{i}, i\right)\right] \longrightarrow\left[X, P_{i}\right]$

$$
\begin{array}{r}
\stackrel{\left.\mid p_{i *}\right]}{ } \\
{\left[X, P_{i-1}\right]}
\end{array} \xrightarrow{\left.\left[k_{(i-1)}\right)^{*}\right]}\left[X, K\left(\pi_{i}, i+1\right)\right]
$$

where $S X=$ suspension; inductively, compute $\left[X, P_{i}\right]$

- Challenges: Make everything algorithmic, handle homology computations for infinite simplicial sets (Eilenberg-Mac Lane spaces and Postnikov stages); use framework of objects with effective homology pioneered by Sergeraert, Rubio, and collaborators.

Sketch of Undecidability

- Based on undecidability of systems of quadratic Diophantine equations (quadratic equations over the integers)
- How to encode one quadratic equation $x_{1} x_{2}=b$?

Sketch of Undecidability

- Based on undecidability of systems of quadratic Diophantine equations (quadratic equations over the integers)
- How to encode one quadratic equation $x_{1} x_{2}=b$?
- $X=\left(S^{2} \times S^{2}\right) \backslash D^{4}, A=\partial D^{4}=S^{3}, Y=S^{2}$. $f: A \rightarrow Y$ given by $[f]=b \in \pi_{3}(Y) \cong \mathbb{Z}$.
Any map $X \rightarrow Y$ determined by its restrictions to the "factors" $S_{x_{i}}^{2}$, these correspond to integers $x_{i} \in \pi_{2}(Y) \cong \mathbb{Z}$. f is extendable if there are choices x_{1}, x_{2} such that $x_{1} x_{2}=b$ (Whitehead products)

Hardness of EMBED ${ }_{2 \rightarrow 4}$: A Sketch

Theorem
It is NP-hard to decide whether a given 2-complex embeds into \mathbb{R}^{4}.

- Reduction from 3-SAT: for every 3-CNF formula φ, e.g.,

$$
\varphi=\left(x_{1} \vee \bar{x}_{2} \vee x_{4}\right) \wedge\left(x_{1} \vee \bar{x}_{4} \vee x_{5}\right) \wedge \ldots
$$

construct a 2-dimensional simplicial complex K_{φ} such that

$$
\varphi \text { is satisfiable } \Leftrightarrow K_{\varphi} \hookrightarrow \mathbb{R}^{4}
$$

- K_{φ} is built from clause gadgets and conflict gadgets
- Gadgets based on examples of Freedman, Krushkal and Teichner showing that the van Kampen obstruction is incomplete for embeddings into \mathbb{R}^{4}.

Clause Gadget

- start with K_{7}^{2} (all triangles on 7 vertices)
- make small holes (openings) in the interiors of three triangles sharing a vertex
- for each opening, there is a complementary 2-sphere

Linking Lemma

Lemma

1. For every PL embedding $f: G \hookrightarrow \mathbb{R}^{4}$, there is an opening ω_{i} such that the images $f\left(\partial \omega_{i}\right)$ and $f\left(S_{\omega_{i}}\right)$ have odd linking number.
2. For every i, there exists and embedding such that only $f\left(\partial \omega_{i}\right)$ and $f\left(S_{\omega_{i}}\right)$ are linked.

Conflict Gadget

- Squeezed torus, obtained by glueing an octagon to "two circles with a stick".

- Can be embedded into \mathbb{R}^{3} if one of the circles is "free" (not linked with any obstacles); asymmetry in the embedding.
- Cannot be embedded into \mathbb{R}^{4} if both circles are blocked (linked with 2-spheres).

Reduction Sketch

Algorithmic Embeddability in \mathbb{R}^{3}

- $\mathrm{EMBED}_{2 \rightarrow 3}$ and $\mathrm{EMBED}_{3 \rightarrow 3}$ can be reduced, possibly with exponential-time overhead, to the following question: Given a compact 3 -manifold X with boundary, does it embed in S^{3} ?
- First test if K can be thickened to a 3 -manifold X, check all possible thickenings.

Algorithmic Embeddability in \mathbb{R}^{3}

- $\mathrm{EMBED}_{2 \rightarrow 3}$ and $\mathrm{EMBED}_{3 \rightarrow 3}$ can be reduced, possibly with exponential-time overhead, to the following question: Given a compact 3-manifold X with boundary, does it embed in S^{3} ?
- First test if K can be thickened to a 3 -manifold X, check all possible thickenings.
- The boundary of an embeddable X must be a disjoint union of orientable surfaces (spheres with handles).

Algorithmic Embeddability in \mathbb{R}^{3}

- $\mathrm{EMBED}_{2 \rightarrow 3}$ and $\mathrm{EMBED}_{3 \rightarrow 3}$ can be reduced, possibly with exponential-time overhead, to the following question: Given a compact 3-manifold X with boundary, does it embed in S^{3} ?
- First test if K can be thickened to a 3 -manifold X, check all possible thickenings.
- The boundary of an embeddable X must be a disjoint union of orientable surfaces (spheres with handles).
- Theorem (Fox): If X can be embedded in S^{3}, then there is an embedding such that the complement is a union of balls and handle bodies (solid tori).

Algorithmic Embeddability in \mathbb{R}^{3}

- $\mathrm{EMBED}_{2 \rightarrow 3}$ and $\mathrm{EMBED}_{3 \rightarrow 3}$ can be reduced, possibly with exponential-time overhead, to the following question: Given a compact 3 -manifold X with boundary, does it embed in S^{3} ?
- First test if K can be thickened to a 3 -manifold X, check all possible thickenings.
- The boundary of an embeddable X must be a disjoint union of orientable surfaces (spheres with handles).
- Theorem (Fox): If X can be embedded in S^{3}, then there is an embedding such that the complement is a union of balls and handle bodies (solid tori).
- Strategy: "Guess" a meridian γ, glue a thickened disk to X along γ.

This preserves embeddability, simplifies ∂X. Recurse.

Algorithmic Embeddability in \mathbb{R}^{3}, cont'd

Key technical result, proved using normal surface theory:
Theorem (Short Meridians; Matoušek, Sedgwick, Tancer, W.)
Suppose that X is a 3-manifold with boundary ${ }^{1}$ that embeds in S^{3}. Then there exists (a possibly different) embedding of X for which there is a short meridian γ, i.e., an essential ${ }^{2}$ normal curve $\gamma \subset \partial X$ bounding a disk in $S^{3} \backslash X$ such that the length of γ, measured as the number of intersections of γ with the edges of the triangulation, is bounded by a computable function of the number of tetrahedra.

[^0]
Conclusions and Questions

- Embeddability outside the metastable range?

Conclusions and Questions

- Embeddability outside the metastable range?
- codimension $d-k \geq 3$?
- codimension $d-k=2$?
- Explicit construction of embeddings? If the embeddability test tells us $K \hookrightarrow \mathbb{R}^{d}$, can we compute an explicit PL embedding?
- Recent result (Freedman-Krushkal): In the case $d=2 k, k \geq 3$, an exponential number of subdivisions is sufficient and sometimes necessary.

Conclusions and Questions

- Embeddability outside the metastable range?
- codimension $d-k \geq 3$?
- codimension $d-k=2$?
- Explicit construction of embeddings? If the embeddability test tells us $K \hookrightarrow \mathbb{R}^{d}$, can we compute an explicit PL embedding?
- Recent result (Freedman-Krushkal): In the case $d=2 k, k \geq 3$, an exponential number of subdivisions is sufficient and sometimes necessary.
- Testing embeddability into other ambient manifolds?

Conclusions and Questions

- Embeddability outside the metastable range?
- codimension $d-k \geq 3$?
- codimension $d-k=2$?
- Explicit construction of embeddings? If the embeddability test tells us $K \hookrightarrow \mathbb{R}^{d}$, can we compute an explicit PL embedding?
- Recent result (Freedman-Krushkal): In the case $d=2 k, k \geq 3$, an exponential number of subdivisions is sufficient and sometimes necessary.
- Testing embeddability into other ambient manifolds?

Thank you for your attention!

[^0]: ${ }^{1}$ Caveat: We first need to do some preprocessing to ensure that X has certain helpful technical properties:

 - X is irreducible, neither a ball nor an S^{3},
 - X has incompressible boundary,
 - X is equipped with a 0-efficient triangulation.
 ${ }^{2}$ Meaning that γ does not bound a disk in ∂X.

