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Setting: Maps from Simplicial Complexes to Rd

I K a finite simplicial complex

I f : K → R
d a linear / piecewise-linear (PL) / continuous map

linear piecewise-linear (PL) continuous

[Picture from Hocking & Young,
Topology, pp. 176-177]

Question
Under which conditions does there exist a (PL) map f : K → R

d

without self-intersections of high multiplicity?



r -fold Intersection Points

f : K → R
d , r ≥ 2

I y ∈ Rd is an r -fold point of f if it has r distinct preimages

y = f (x1) = · · · = f (xr ), xi ∈ K , xi 6= xj , i 6= j

I y ∈ Rd is a global r -fold point1 of f if it has preimages in r
pairwise disjoint simplices of K ,

y ∈ f (σ1) ∩ · · · ∩ f (σr ), σi ∩ σj = ∅, i 6= j

y

σ3

σ1
σ2

3-fold point

yσ3

σ1

σ2

global 3-fold point

1With respect to a fixed triangulation.



(r -)Embeddings & Almost-(r -)Embeddings

I embedding f : K ↪→ R
d = map without 2-fold points

I almost-embedding f : K → R
d = map without global 2-fold

points

I r -embedding f : K ↪→ R
d = map without r -fold points

I almost-r -embedding f : K → R
d = map without global r -fold

points

Question
Necessary and sufficient conditions for (almost-)r -embeddability?

I Classical case r = 2:

I Vanishing of the van Kampen obstruction gives a complete
(necessary and sufficient) criterion for embeddability if
dimK = m, d = 2m, m 6= 2

I Generalization: Haefliger–Weber Theorem: deleted product
criterion complete in the metastable range d ≥ 3(m + 1)/2.

I Higher multiplicities r ≥ 3?



History: Tverberg’s Theorem

Theorem (Tverberg 1966)

Let r ≥ 2, d ≥ 1. Set N := (d + 1)(r − 1).
Every S ⊆ Rd with |S | ≥ N + 1 has an r -Tverberg partition, i.e.,

S = A1 t . . . t Ar

with
conv(A1) ∩ . . . ∩ conv(Ar ) 6= ∅.

d = 2, r = 3, N + 1 = 7

d = 2, r = 3, N + 1 = 7
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Motivation: Topological Tverberg Conjecture

Theorem (Tverberg, equivalent form)

Let r ≥ 2, d ≥ 1, N = (d + 1)(r − 1), σN = N-dimensional simplex
Then every linear map f : σN → R

d has a global r -fold point.

I Continuous maps? [Bajmoczy–Bárány and Tverberg, 1979]

Conjecture (Topological Tverberg Conjecture)

Let r ≥ 2, d ≥ 1, and N = (d + 1)(r − 1).
Then there is no almost-r -embedding σN → R

d , i.e., every
continuous map f : σN → R

d has a global r -fold point.

True for

I r = 2 [Bajmoczy–Bárány 1979]

I r prime [Bárány–Shlosman–Szűcs 1981]

I r = pn prime power [Özaydin 1987][Volovikov 1996]

Long-standing open problem:

I What if r not a prime power?
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I r = pn prime power [Özaydin 1987][Volovikov 1996]

Long-standing open problem:

I What if r not a prime power?



Other topological Tverberg-type problems

Many variants of (topological) Tverberg-type problems/results, e.g.,
generalized Van Kampen–Flores-type theorem [Sarkaria; Volovikov]

Proposition (Gromov; Blagojević–Frick–Ziegler)

Let r ≥ 2, d ≥ 1, m = d r−1
r de, M := (d + 2)(r − 1). If there is an

almost-r -embedding g : : skelm(σM)→ R
d then there exists an

almost r -embedding f : σM → R
d+1.

Corollary (Van Kampen; Flores; Sarkaria; Volovikov)

If r is a prime power then there is no almost r -embedding
g : skelm(σM)→ R

d

Proof of the proposition.

Given g , extend arbitrarily to ĝ : σM → R
d . Define f : σM → R

D

by f (x) = (ĝ(x), dist(x ,K )). If y ∈ f (σ1) ∩ · · · ∩ f (σr ) is a global
r -fold point of f , then one σi has dimension ≤ m (pigeonholing),
hence all σi do, hence y is a global r -fold point of g .
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by f (x) = (ĝ(x), dist(x ,K )). If y ∈ f (σ1) ∩ · · · ∩ f (σr ) is a global
r -fold point of f , then one σi has dimension ≤ m (pigeonholing),
hence all σi do, hence y is a global r -fold point of g .



Deleted Product Criterion

Lemma (Necessity of the Deleted Product Criterion)

If there exists a map f : K → R
d without global r -fold points then

there exists an equivariant map

f̃ : K r
∆ →Sr (Rd)r \ δr (Rd) 'Sr S

d(r−1)−1

(x1, . . . , xr ) 7→ (f (x1), . . . , f (xr ))

where

I deleted product
K r

∆ :=
⋃{σ1 × · · · × σr | σi ∩ σj = ∅, 1 ≤ i < j ≤ r} ⊂ K r

I thin diagonal δr (Rd) = {(y , . . . , y) : y ∈ Rd}
I symmetric group Sr acts by permuting components2

2The action is free on K r
∆ for all r , not free on Sd(r−1)−1.



The Generalized Van Kampen Obstruction

Lemma
Suppose dimK r

∆ = n := d(r − 1). Then there exists an equivariant
map F : K r

∆ →Sr (Rd)r \ δr (Rd) ' Sn−1 if and only if o(K r
∆) = 0.

I r -fold Van Kampen obstruction o(K r
∆) ∈ Hn

Sr
(K r

∆;Z)

(Z = integers with Sr -action given by π · a = (sgnπ)da

= πn−1(Sn−1) with Sr -action)

I special case of primary equivariant obstruction in equivariant
obstruction theory

I r = 2, dimK = m, and d = 2m: o(K 2
∆) is the classical Van

Kampen obstruction to embeddability of K into R2m

I Given G : K r
∆ →Sr (Rd)r in general position, o(K r

∆) = [ϕG ],

ϕG (σ1 × · · · × σr ) := G (σ1 × · · · × σr )· δr (Rd) ∈ Z

algebraic intersection number with thin diagonal w.r.t.
specified orientations, defines ϕG ∈ Zn

Sr
(K r

∆;Z)
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The Generalized Van Kampen Obstruction, cont’d

Caveat:

I o(K r
∆) = 0 implies the existence of an equivariant map

F : K r
∆ →Sr (Rd)r \ δr (Rd)

I However, it does not imply that F is of the form f̃ , i.e.,
induced by an almost r -embedding f : K → R

d without
r -Tverberg points.

I Thus, if o(K r
∆) = 0 then it is unclear whether the deleted

product criterion is incomplete, or whether such a map f does
indeed exist

I Example: For K = σN , N = (d + 1)(r − 1), Özaydin showed
o((σN)

r
∆) = 0⇔ r not a prime power

I Implies the topological Tverberg conjecture for prime powers

I How about non-prime-powers?

I Can one show sufficiency of the deleted product obstruction,
under suitable conditions?
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Sufficiency of the Deleted Product Criterion for r = 2

Recall: almost-embedding = map without global 2-fold points

Theorem (Van Kampen–Shapiro–Wu)

Let K be a simplicial complex, m := dimK ≥ 3.

(VK1) There exists an almost-embedding f : K → R
2m iff there

exists an equivariant map K 2
∆ →S2 S2m−1.

(VK2) If there an almost-embedding f : K → R
2m then there exists

an embedding g : K ↪→ R
2m; moreover, g can be taken to be

piecewise-linear.

I Remains true for m = 1, (Hanani–Tutte Theorem), but with
different proof method

I Fails for m = 2 [Freedman–Krushkal–Teichner]
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Our Result: Sufficiency of the Deleted Product Criterion

Theorem (Mabillard–W.)

Let k ≥ 3, dimK = m = (r − 1)k , d = rk. Then the following are
equivalent:

(i) There exists an almost r -embedding f : K → R
d (no global

r -fold points)

(ii) There exists an equivariant map F : K r
∆ →Sr S

d(r−1)−1.

(iii) o(K r
∆) = 0.

Theorem (Avvakumov–Mabillard–Skopenkov–W.)

The statements are equivalent also for k ≥ 2 (codimension 2),
provided r ≥ 3.

Corollary

There is an algorithm to decide if a given K as above admits an
almost r -embedding to Rd ; the running time is polynomial in the
size (number of simplices) of K if r and m are fixed.
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Motivation: Özaydin’s Theorem

Theorem (Özaydin)

Let d ≥ 1 and r ≥ 2 not a prime power. Suppose Sr acts freely on
a cell complex X of dimension d(r − 1). There exists an
equivariant map F : X →Sr S

d(r−1)−1.

Example

X = K r
∆, if dimK ≤ r−1

r d , or K = σ(d+1)(r−1).

Guiding Question

Özaydin + Sufficiency of Deleted Product Criterion
= Counterexamples to the topological Tverberg conjecture?
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Özaydin & the Codimension 3 Barrier

Corollary

If r is not a prime power then K r
∆ →Sr S

d(r−1)−1, whenever
dimK r

∆ ≤ d(r − 1), e.g., if dimK ≤ r−1
r d or if K = σN ,

N = (d + 1)(r − 1).

Guiding Question

Özaydin + Sufficiency of Deleted Product Criterion
= Counterexamples to the topological Tverberg conjecture?

Difficulty: Codimension barrier difficulty! Sufficiency of the
deleted product criterion applies only in codimension at least 2!



Counterexamples 1: Frick’s solution

Theorem (Frick)

Suppose r ≥ 6 is not a prime power. Then there exists an almost
r -embedding f : σ(3r+2)(r−1) → R

3r+1 without r -Tverberg point.

I Minimal counterexample: almost-6-embedding σ100 → R
19.

Proposition (Gromov; Blagojević–Frick–Ziegler)

Let r ≥ 2, d ≥ 1, m = d r−1
r de, M := (d + 2)(r − 1). If there is an

almost-r -embedding g : : skelm(σM)→ R
d then there exists an

almost r -embedding f : σM → R
d+1.

Proof of Frick’s theorem.
Codimension of skelm(σM) equals d −m = 3, so g exists by
Özaydin & sufficiency of the DPC in codimension 3.

I Sufficiency of DPC in codimension 2 imples improved
counterexample, almost 6-embedding σ70 → R

13
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Counterexamples 2: Prismatic Maps

Theorem (Avvakumov–Mabillard–Skopenkov–W.)

Suppose r ≥ 6 is not a prime power and let N := (2r + 1)(r − 1)
Then there exists a map f : σN → R

2r without r -Tverberg point.

I Use restricted family of prismatic maps f : σN → σ2(r−1)× σ2.

σ8 f−→ σ2 × σ1

σ2
σ1

I Structure of the maps forces all r -Tverberg points to lie on a
“colorful” subcomplex C of dimension 2(r − 1); apply Özaydin
plus a relative version of the Deleted Product Criterion.

I Minimal counterexample: Almost-6-embedding σ65 → R
12.



Sufficiency of DelProdCrit: Structure of the Proof

Structured along the same lines as proof of classical (VK1):

1. r -fold Van Kampen obstruction represented by r -fold
intersection number cocycle: For arbitrary f : K → R

d in
general position, o(K r

∆) = [ϕf ],

ϕf (σ1 × · · · × σr ) = f (σ1)· . . . · f (σr )︸ ︷︷ ︸
r -fold algebraic intersection number

2. If o(K r
∆) = 0, then we can modify arbitrary initial f by r -fold

Finger Moves to obtain g : K → R
d with ϕg = 0 as a cocycle,

i.e., for every disjoint σ1, . . . , σr ,
∑

i dimσi = d(r − 1),
g(σ1) ∩ · · · ∩ g(σr ) consists of pairs of r -fold points of
opposite sign

3. Use r -fold generalization of the Whitney trick to modify g and
eliminate these pairs without introducing new r -fold points
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Structured along the same lines as proof of classical (VK1):

1. r -fold Van Kampen obstruction represented by r -fold
intersection number cocycle: For arbitrary f : K → R

d in
general position, o(K r

∆) = [ϕf ],

ϕf (σ1 × · · · × σr ) = f (σ1)· . . . · f (σr )︸ ︷︷ ︸
r -fold algebraic intersection number

2. If o(K r
∆) = 0, then we can modify arbitrary initial f by r -fold

Finger Moves to obtain g : K → R
d with ϕg = 0 as a cocycle,

i.e., for every disjoint σ1, . . . , σr ,
∑

i dimσi = d(r − 1),
g(σ1) ∩ · · · ∩ g(σr ) consists of pairs of r -fold points of
opposite sign

3. Use r -fold generalization of the Whitney trick to modify g and
eliminate these pairs without introducing new r -fold points



The Classical Whitney Trick

Classical PL Whitney trick [Weber]:

I Eliminate a pair of isolated double points of opposite sign of a
PL map by an ambient isotopy fixed outside a small ball,
provided the codimension is at least 3.

x y

f(σ2)

f(σ1)

L

I Idea: “push” f (σ2) upwards until the two intersections points
x and y disappear, keeping the boundary of f (σ2) fixed.

I In low codimensions, doing this might require passing over
some obstacles and/or introducing new double points, but if
d − dim(σi ) ≥ 3, i = 1, 2 this can be avoided.



r -Fold Whitney Trick

Theorem (Higher-Multiplicity Whitney Trick)

Let r ≥ 2, and let σ1, . . . , σr simplices3, dimσi = mi , such that∑r
i=1 mi = d(r − 1) and d −mi ≥ 3, 1 ≤ i ≤ r . Let

f : σ1 t · · · t σr → R
d

be a PL map in general position.
Suppose that f (σ1) ∩ f (σ2) ∩ · · · ∩ f (σr ) = {x , y} consists of two
r -fold points of opposite signs.
Then there exist ambient isotopies H i : Rd × [0, 1]→ R

d × [0, 1],
2 ≤ i ≤ r such that

f (σ1) ∩ H2
1 (f (σ2)) ∩ · · · ∩ H r

1(f (σr ) = ∅

Isotopies can be chosen to be local: Given any closed polyhedron
L ⊂ Rd , dim L ≤ d − 3, x , y 6∈ L, there exists a PL ball Bd ⊂ Rd

disjoint from L such that H i is fixed outside of B̊d , 2 ≤ i ≤ r .
3More generally, connected, orientable PL manifolds.



r -Fold Whitney Trick, cont’d

I A triple Whitney trick in codimension 3 was independently
discovered by Melikhov (unpublished) and used to classify
ornaments S2k−1 t S2k−1 t S2k−1 → R

3k−1 up to ornament
homotopy.

I For codimension k = 2 and multiplicity r ≥ 3, we only have a
partial analogue of the Whitney trick: We can eliminate global
r -fold points in pairs of opposite signs, but we may introduce
local r -fold points (e.g., self-intersections of the f (σi ) in the
process.



Ongoing and Future Work / Open Questions

1. Close r -fold points: Eliminate arbitrary r -fold points, not
only global ones (work in progress)

2. Codimension 1?

3. The Planar Case and Hanani–Tutte. Is there an analogue
of the Hanani–Tutte Theorem for r -fold points? For d = 2,
does K r

∆ →Sr S
2(r−1)−1 imply that there is an almost

r -embedding K → R
2? By Özaydin, this would yield

counterexamples to the topological Tverberg conjecture for
d = 2.

4. Complexity of Almost-r-Embeddings. For r = 2 and
m ≥ 3, there are m-complexes with o(K 2

∆) = 0 and n
simplices, s.t. any PL embedding into R2m requires
subdivision with at least Cn simplices [Freedman–Krushkal].
Similar bounds for almost-r -embeddings K → R

d ,
dimK = m = (r − 1)k , d = mk , k ≥ 3?
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Thank you for your attention!


