Eliminating Multiple Intersections and Counterexamples to the Topological Tverberg Conjecture

ULI WAGNER

joint work with

S. Avvakumov, I. Mabillard, and A. Skopenkov

Postnikov Memorial Seminar, Moscow State University, March 29, 2016

Setting: Maps from Simplicial Complexes to \mathbb{R}^d

- K a finite simplicial complex
- $f: K \to \mathbb{R}^d$ a linear / piecewise-linear (PL) / continuous map

linear

continuous

[Picture from Hocking & Young, Topology, pp. 176-177]

Question

Under which conditions does there exist a (PL) map $f: K \to \mathbb{R}^d$ without self-intersections of high multiplicity?

r-fold Intersection Points

 $f\colon K\to \mathbb{R}^d, \ r\geq 2$

▶ $y \in \mathbb{R}^d$ is an *r*-fold point of *f* if it has *r* distinct preimages

$$y = f(x_1) = \cdots = f(x_r), \quad x_i \in K, \quad x_i \neq x_j, i \neq j$$

► $y \in \mathbb{R}^d$ is a global *r*-fold point¹ of *f* if it has preimages in *r* pairwise disjoint simplices of *K*,

¹With respect to a fixed triangulation.

(r-)Embeddings & Almost-(r-)Embeddings

- embedding $f: K \hookrightarrow \mathbb{R}^d$ = map without 2-fold points
- ► almost-embedding f: K → ℝ^d = map without global 2-fold points
- *r*-embedding $f: K \hookrightarrow \mathbb{R}^d$ = map without *r*-fold points
- ► almost-*r*-embedding f: K → ℝ^d = map without global r-fold points

Question

Necessary and sufficient conditions for (almost-)r-embeddability?

- Classical case r = 2:
 - Vanishing of the van Kampen obstruction gives a complete (necessary and sufficient) criterion for embeddability if dim K = m, d = 2m, m ≠ 2
 - ▶ Generalization: Haefliger–Weber Theorem: deleted product criterion complete in the metastable range d ≥ 3(m + 1)/2.

Higher multiplicities r ≥ 3?

History: Tverberg's Theorem

Theorem (Tverberg 1966) Let $r \ge 2, d \ge 1$. Set N := (d+1)(r-1). Every $S \subseteq \mathbb{R}^d$ with $|S| \ge N+1$ has an *r*-Tverberg partition, i.e.,

$$S = A_1 \sqcup \ldots \sqcup A_r$$

with

$$\operatorname{conv}(A_1) \cap \ldots \cap \operatorname{conv}(A_r) \neq \emptyset.$$

History: Tverberg's Theorem

Theorem (Tverberg 1966) Let $r \ge 2, d \ge 1$. Set N := (d+1)(r-1). Every $S \subseteq \mathbb{R}^d$ with $|S| \ge N+1$ has an *r*-Tverberg partition, i.e.,

$$S = A_1 \sqcup \ldots \sqcup A_r$$

with

$$\operatorname{conv}(A_1) \cap \ldots \cap \operatorname{conv}(A_r) \neq \emptyset.$$

Motivation: Topological Tverberg Conjecture

Theorem (Tverberg, equivalent form) Let $r \ge 2, d \ge 1$, N = (d+1)(r-1), $\sigma^N = N$ -dimensional simplex Then every linear map $f : \sigma^N \to \mathbb{R}^d$ has a global r-fold point.

Motivation: Topological Tverberg Conjecture

Theorem (Tverberg, equivalent form) Let $r \ge 2, d \ge 1$, N = (d+1)(r-1), $\sigma^N = N$ -dimensional simplex Then every linear map $f : \sigma^N \to \mathbb{R}^d$ has a global r-fold point.

Continuous maps? [Bajmoczy–Bárány and Tverberg, 1979]

Conjecture (Topological Tverberg Conjecture) Let $r \ge 2$, $d \ge 1$, and N = (d + 1)(r - 1). Then there is no almost-r-embedding $\sigma^N \to \mathbb{R}^d$, i.e., every continuous map $f : \sigma^N \to \mathbb{R}^d$ has a global r-fold point.

Motivation: Topological Tverberg Conjecture

Theorem (Tverberg, equivalent form) Let $r \ge 2, d \ge 1$, N = (d+1)(r-1), $\sigma^N = N$ -dimensional simplex Then every linear map $f: \sigma^N \to \mathbb{R}^d$ has a global r-fold point.

Continuous maps? [Bajmoczy–Bárány and Tverberg, 1979]

Conjecture (Topological Tverberg Conjecture) Let $r \ge 2$, $d \ge 1$, and N = (d + 1)(r - 1). Then there is no almost-r-embedding $\sigma^N \to \mathbb{R}^d$, i.e., every continuous map $f : \sigma^N \to \mathbb{R}^d$ has a global r-fold point.

True for

- r = 2 [Bajmoczy–Bárány 1979]
- r prime [Bárány–Shlosman–Szűcs 1981]
- ▶ r = pⁿ prime power [Özaydin 1987][Volovikov 1996]

Long-standing open problem:

What if r not a prime power?

Other topological Tverberg-type problems

Many variants of (topological) Tverberg-type problems/results, e.g., generalized Van Kampen–Flores-type theorem [Sarkaria; Volovikov] Proposition (Gromov; Blagojević–Frick–Ziegler)

Let $r \ge 2$, $d \ge 1$, $m = \lceil \frac{r-1}{r} d \rceil$, M := (d+2)(r-1). If there is an almost-r-embedding $g : : \operatorname{skel}_m(\sigma^M) \to \mathbb{R}^d$ then there exists an almost r-embedding $f : \sigma^M \to \mathbb{R}^{d+1}$.

Corollary (Van Kampen; Flores; Sarkaria; Volovikov) If r is a prime power then there is no almost r-embedding $g: \operatorname{skel}_m(\sigma^M) \to \mathbb{R}^d$

Other topological Tverberg-type problems

Many variants of (topological) Tverberg-type problems/results, e.g., generalized Van Kampen–Flores-type theorem [Sarkaria; Volovikov] Proposition (Gromov; Blagojević–Frick–Ziegler)

Let $r \ge 2$, $d \ge 1$, $m = \lceil \frac{r-1}{r} d \rceil$, M := (d+2)(r-1). If there is an almost-r-embedding g : : skel_m(σ^M) $\rightarrow \mathbb{R}^d$ then there exists an almost r-embedding $f : \sigma^M \rightarrow \mathbb{R}^{d+1}$.

Corollary (Van Kampen; Flores; Sarkaria; Volovikov) If r is a prime power then there is no almost r-embedding $g: \operatorname{skel}_m(\sigma^M) \to \mathbb{R}^d$

Proof of the proposition.

Given g, extend arbitrarily to $\hat{g}: \sigma^M \to \mathbb{R}^d$. Define $f: \sigma^M \to \mathbb{R}^D$ by $f(x) = (\hat{g}(x), \text{dist}(x, K))$. If $y \in f(\sigma_1) \cap \cdots \cap f(\sigma_r)$ is a global r-fold point of f, then one σ_i has dimension $\leq m$ (pigeonholing), hence all σ_i do, hence y is a global r-fold point of g.

Deleted Product Criterion

Lemma (Necessity of the Deleted Product Criterion) If there exists a map $f : K \to \mathbb{R}^d$ without global r-fold points then there exists an equivariant map

$$\widetilde{f}: \mathcal{K}^{r}_{\Delta} \to_{\mathfrak{S}_{r}} (\mathbb{R}^{d})^{r} \setminus \delta_{r}(\mathbb{R}^{d}) \simeq_{\mathfrak{S}_{r}} S^{d(r-1)-1}$$
$$(x_{1}, \ldots, x_{r}) \mapsto (f(x_{1}), \ldots, f(x_{r}))$$

where

deleted product

 $\mathcal{K}_{\Delta}^{r} := \bigcup \{ \sigma_{1} \times \cdots \times \sigma_{r} \mid \sigma_{i} \cap \sigma_{j} = \emptyset, 1 \leq i < j \leq r \} \subset \mathcal{K}^{r}$

- ▶ thin diagonal $\delta_r(\mathbb{R}^d) = \{(y, \dots, y) \colon y \in \mathbb{R}^d\}$
- symmetric group \mathfrak{S}_r acts by permuting components²

²The action is free on K_{Δ}^{r} for all r, not free on $S^{d(r-1)-1}$ $r \in \mathbb{R}^{n}$ $r \in \mathbb{R}^{n}$

Lemma

Suppose dim $K_{\Delta}^r = n := d(r-1)$. Then there exists an equivariant map $F : K_{\Delta}^r \to_{\mathfrak{S}_r} (\mathbb{R}^d)^r \setminus \delta_r(\mathbb{R}^d) \simeq S^{n-1}$ if and only if $\mathfrak{o}(K_{\Delta}^r) = 0$.

▶ *r*-fold Van Kampen obstruction $\mathfrak{o}(K^r_{\Delta}) \in H^n_{\mathfrak{S}_r}(K^r_{\Delta}; \mathcal{Z})$

$$(\mathcal{Z} = \text{integers with } \mathfrak{S}_r\text{-action given by } \pi \cdot a = (\operatorname{sgn} \pi)^d a$$

= $\pi_{n-1}(S^{n-1})$ with $\mathfrak{S}_r\text{-action})$

Lemma

Suppose dim $K_{\Delta}^r = n := d(r-1)$. Then there exists an equivariant map $F : K_{\Delta}^r \to_{\mathfrak{S}_r} (\mathbb{R}^d)^r \setminus \delta_r(\mathbb{R}^d) \simeq S^{n-1}$ if and only if $\mathfrak{o}(K_{\Delta}^r) = 0$.

▶ *r*-fold Van Kampen obstruction $\mathfrak{o}(K^r_{\Delta}) \in H^n_{\mathfrak{S}_r}(K^r_{\Delta}; \mathcal{Z})$

$$(\mathcal{Z} = \text{integers with } \mathfrak{S}_r\text{-action given by } \pi \cdot a = (\operatorname{sgn} \pi)^d a$$

= $\pi_{n-1}(S^{n-1})$ with $\mathfrak{S}_r\text{-action})$

special case of *primary equivariant obstruction* in equivariant obstruction theory

Lemma

Suppose dim $K_{\Delta}^r = n := d(r-1)$. Then there exists an equivariant map $F : K_{\Delta}^r \to_{\mathfrak{S}_r} (\mathbb{R}^d)^r \setminus \delta_r(\mathbb{R}^d) \simeq S^{n-1}$ if and only if $\mathfrak{o}(K_{\Delta}^r) = 0$.

▶ *r*-fold Van Kampen obstruction $\mathfrak{o}(K^r_{\Delta}) \in H^n_{\mathfrak{S}_r}(K^r_{\Delta}; \mathcal{Z})$

$$(\mathcal{Z} = \text{integers with } \mathfrak{S}_r\text{-action given by } \pi \cdot a = (\operatorname{sgn} \pi)^d a$$

= $\pi_{n-1}(S^{n-1})$ with $\mathfrak{S}_r\text{-action})$

- special case of *primary equivariant obstruction* in equivariant obstruction theory
- r = 2, dim K = m, and d = 2m: o(K²_∆) is the classical Van Kampen obstruction to embeddability of K into ℝ^{2m}

Lemma

Suppose dim $K_{\Delta}^r = n := d(r-1)$. Then there exists an equivariant map $F : K_{\Delta}^r \to_{\mathfrak{S}_r} (\mathbb{R}^d)^r \setminus \delta_r(\mathbb{R}^d) \simeq S^{n-1}$ if and only if $\mathfrak{o}(K_{\Delta}^r) = 0$.

▶ *r*-fold Van Kampen obstruction $\mathfrak{o}(K^r_{\Delta}) \in H^n_{\mathfrak{S}_r}(K^r_{\Delta}; \mathcal{Z})$

$$(\mathcal{Z} = \text{integers with } \mathfrak{S}_r\text{-action given by } \pi \cdot a = (\operatorname{sgn} \pi)^d a$$

= $\pi_{n-1}(S^{n-1})$ with $\mathfrak{S}_r\text{-action})$

- special case of *primary equivariant obstruction* in equivariant obstruction theory
- r = 2, dim K = m, and d = 2m: o(K²_∆) is the classical Van Kampen obstruction to embeddability of K into ℝ^{2m}
- Given $G: K^r_{\Delta} \to_{\mathfrak{S}_r} (\mathbb{R}^d)^r$ in general position, $\mathfrak{o}(K^r_{\Delta}) = [\varphi_G]$,

$$\varphi_{\boldsymbol{G}}(\sigma_1 \times \cdots \times \sigma_r) := \boldsymbol{G}(\sigma_1 \times \cdots \times \sigma_r) \boldsymbol{\cdot} \delta_r(\mathbb{R}^d) \in \mathbb{Z}$$

algebraic intersection number with thin diagonal w.r.t. specified orientations, defines $\varphi_{\mathcal{G}} \in Z^n_{\mathfrak{S}_r}(K^r_{\Delta}; \mathcal{Z})$

Caveat:

▶ $\mathfrak{o}(K_{\Delta}^{r}) = 0$ implies the existence of an equivariant map $F \colon K_{\Delta}^{r} \to_{\mathfrak{S}_{r}} (\mathbb{R}^{d})^{r} \setminus \delta_{r}(\mathbb{R}^{d})$

Caveat:

- $\mathfrak{o}(K_{\Delta}^{r}) = 0$ implies the existence of an equivariant map $F \colon K_{\Delta}^{r} \to_{\mathfrak{S}_{r}} (\mathbb{R}^{d})^{r} \setminus \delta_{r}(\mathbb{R}^{d})$
- ► However, it does not imply that F is of the form *f*, i.e., induced by an almost r-embedding f: K → ℝ^d without r-Tverberg points.

Caveat:

- $\mathfrak{o}(K_{\Delta}^{r}) = 0$ implies the existence of an equivariant map $F \colon K_{\Delta}^{r} \to_{\mathfrak{S}_{r}} (\mathbb{R}^{d})^{r} \setminus \delta_{r}(\mathbb{R}^{d})$
- ► However, it does not imply that F is of the form *f*, i.e., induced by an almost r-embedding f: K → ℝ^d without r-Tverberg points.
- ► Thus, if o(K^r_Δ) = 0 then it is unclear whether the deleted product criterion is incomplete, or whether such a map f does indeed exist

Caveat:

- $\mathfrak{o}(K_{\Delta}^{r}) = 0$ implies the existence of an equivariant map $F \colon K_{\Delta}^{r} \to_{\mathfrak{S}_{r}} (\mathbb{R}^{d})^{r} \setminus \delta_{r}(\mathbb{R}^{d})$
- However, it does not imply that F is of the form *f*, i.e., induced by an almost r-embedding f: K → ℝ^d without r-Tverberg points.
- ► Thus, if o(K^r_Δ) = 0 then it is unclear whether the deleted product criterion is incomplete, or whether such a map f does indeed exist
- ► Example: For $K = \sigma^N$, N = (d+1)(r-1), Özaydin showed $\mathfrak{o}((\sigma^N)^r_{\Delta}) = 0 \Leftrightarrow r \text{ not a prime power}$

Caveat:

- $\mathfrak{o}(K_{\Delta}^{r}) = 0$ implies the existence of an equivariant map $F \colon K_{\Delta}^{r} \to_{\mathfrak{S}_{r}} (\mathbb{R}^{d})^{r} \setminus \delta_{r}(\mathbb{R}^{d})$
- However, it does not imply that F is of the form *f*, i.e., induced by an almost r-embedding f: K → ℝ^d without r-Tverberg points.
- ► Thus, if o(K^r_Δ) = 0 then it is unclear whether the deleted product criterion is incomplete, or whether such a map f does indeed exist
- ► Example: For $K = \sigma^N$, N = (d+1)(r-1), Özaydin showed $\mathfrak{o}((\sigma^N)^r_{\Delta}) = 0 \Leftrightarrow r \text{ not a prime power}$
- Implies the topological Tverberg conjecture for prime powers

Caveat:

- $\mathfrak{o}(K_{\Delta}^{r}) = 0$ implies the existence of an equivariant map $F \colon K_{\Delta}^{r} \to_{\mathfrak{S}_{r}} (\mathbb{R}^{d})^{r} \setminus \delta_{r}(\mathbb{R}^{d})$
- ► However, it does not imply that F is of the form *f*, i.e., induced by an almost r-embedding f: K → ℝ^d without r-Tverberg points.
- ► Thus, if o(K^r_Δ) = 0 then it is unclear whether the deleted product criterion is incomplete, or whether such a map f does indeed exist
- ► Example: For $K = \sigma^N$, N = (d + 1)(r 1), Özaydin showed $\mathfrak{o}((\sigma^N)^r_{\Delta}) = 0 \Leftrightarrow r$ not a prime power
- Implies the topological Tverberg conjecture for prime powers
- How about non-prime-powers?
- Can one show sufficiency of the deleted product obstruction, under suitable conditions?

Sufficiency of the Deleted Product Criterion for r = 2

Recall: almost-embedding = map without global 2-fold points Theorem (Van Kampen–Shapiro–Wu)

Let K be a simplicial complex, $m := \dim K \ge 3$.

- (VK1) There exists an almost-embedding $f: K \to \mathbb{R}^{2m}$ iff there exists an equivariant map $K^2_{\Delta} \to_{\mathfrak{S}_2} S^{2m-1}$.
- (VK2) If there an almost-embedding $f: K \to \mathbb{R}^{2m}$ then there exists an embedding $g: K \hookrightarrow \mathbb{R}^{2m}$; moreover, g can be taken to be piecewise-linear.

Sufficiency of the Deleted Product Criterion for r = 2

Recall: almost-embedding = map without global 2-fold points Theorem (Van Kampen–Shapiro–Wu)

Let K be a simplicial complex, $m := \dim K \ge 3$.

- (VK1) There exists an almost-embedding $f: K \to \mathbb{R}^{2m}$ iff there exists an equivariant map $K^2_{\Delta} \to_{\mathfrak{S}_2} S^{2m-1}$.
- (VK2) If there an almost-embedding $f: K \to \mathbb{R}^{2m}$ then there exists an embedding $g: K \hookrightarrow \mathbb{R}^{2m}$; moreover, g can be taken to be piecewise-linear.
 - Remains true for m = 1, (Hanani-Tutte Theorem), but with different proof method
 - ▶ Fails for *m* = 2 [Freedman–Krushkal–Teichner]

Our Result: Sufficiency of the Deleted Product Criterion

Theorem (Mabillard–W.)

Let $k \ge 3$, dim K = m = (r - 1)k, d = rk. Then the following are equivalent:

(i) There exists an almost r-embedding $f : K \to \mathbb{R}^d$ (no global r-fold points)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

(ii) There exists an equivariant map $F : K_{\Delta}^r \to_{\mathfrak{S}_r} S^{d(r-1)-1}$. (iii) $\mathfrak{o}(K_{\Delta}^r) = 0$. Our Result: Sufficiency of the Deleted Product Criterion

Theorem (Mabillard-W.)

Let $k \ge 3$, dim K = m = (r - 1)k, d = rk. Then the following are equivalent:

(i) There exists an almost r-embedding $f : K \to \mathbb{R}^d$ (no global r-fold points)

(ii) There exists an equivariant map $F : K_{\Delta}^r \to_{\mathfrak{S}_r} S^{d(r-1)-1}$. (iii) $\mathfrak{o}(K_{\Delta}^r) = 0$.

Theorem (Avvakumov–Mabillard–Skopenkov–W.)

The statements are equivalent also for $k \ge 2$ (codimension 2), provided $r \ge 3$.

Corollary

There is an algorithm to decide if a given K as above admits an almost r-embedding to \mathbb{R}^d ; the running time is polynomial in the size (number of simplices) of K if r and m are fixed.

Motivation: Özaydin's Theorem

Theorem (Özaydin)

Let $d \ge 1$ and $r \ge 2$ not a prime power. Suppose \mathfrak{S}_r acts freely on a cell complex X of dimension d(r-1). There exists an equivariant map $F: X \to_{\mathfrak{S}_r} S^{d(r-1)-1}$.

Motivation: Özaydin's Theorem

Theorem (Özaydin)

Let $d \ge 1$ and $r \ge 2$ not a prime power. Suppose \mathfrak{S}_r acts freely on a cell complex X of dimension d(r-1). There exists an equivariant map $F: X \to_{\mathfrak{S}_r} S^{d(r-1)-1}$.

Example

$$X = K_{\Delta}^r$$
, if dim $K \leq \frac{r-1}{r}d$, or $K = \sigma^{(d+1)(r-1)}$.

Guiding Question

Özaydin + Sufficiency of Deleted Product Criterion = Counterexamples to the topological Tverberg conjecture?

Özaydin & the Codimension 3 Barrier

Corollary

If r is not a prime power then $K_{\Delta}^r \to_{\mathfrak{S}_r} S^{d(r-1)-1}$, whenever dim $K_{\Delta}^r \leq d(r-1)$, e.g., if dim $K \leq \frac{r-1}{r}d$ or if $K = \sigma^N$, N = (d+1)(r-1).

Guiding Question

Özaydin + Sufficiency of Deleted Product Criterion = Counterexamples to the topological Tverberg conjecture?

Difficulty: **Codimension barrier difficulty**! Sufficiency of the deleted product criterion applies only in codimension at least 2!

Counterexamples 1: Frick's solution

Theorem (Frick)

Suppose $r \ge 6$ is not a prime power. Then there exists an almost r-embedding $f: \sigma^{(3r+2)(r-1)} \to \mathbb{R}^{3r+1}$ without r-Tverberg point.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Counterexamples 1: Frick's solution

Theorem (Frick)

Suppose $r \ge 6$ is not a prime power. Then there exists an almost r-embedding $f: \sigma^{(3r+2)(r-1)} \to \mathbb{R}^{3r+1}$ without r-Tverberg point.

• Minimal counterexample: almost-6-embedding $\sigma^{100} \rightarrow \mathbb{R}^{19}$.

Proposition (Gromov; Blagojević–Frick–Ziegler)

Let $r \ge 2$, $d \ge 1$, $m = \lceil \frac{r-1}{r} d \rceil$, M := (d+2)(r-1). If there is an almost-r-embedding $g : : \operatorname{skel}_m(\sigma^M) \to \mathbb{R}^d$ then there exists an almost r-embedding $f : \sigma^M \to \mathbb{R}^{d+1}$.

Proof of Frick's theorem.

Codimension of $\text{skel}_m(\sigma^M)$ equals d - m = 3, so g exists by Özaydin & sufficiency of the DPC in codimension 3.

▶ Sufficiency of DPC in codimension 2 imples improved counterexample, almost 6-embedding $\sigma^{70} \rightarrow \mathbb{R}^{13}$

Counterexamples 2: Prismatic Maps

Theorem (Avvakumov–Mabillard–Skopenkov–W.) Suppose $r \ge 6$ is not a prime power and let N := (2r + 1)(r - 1)Then there exists a map $f : \sigma^N \to \mathbb{R}^{2r}$ without r-Tverberg point.

• Use restricted family of prismatic maps $f: \sigma^N \to \sigma^{2(r-1)} \times \sigma^2$.

- Structure of the maps forces all *r*-Tverberg points to lie on a "colorful" subcomplex *C* of dimension 2(*r*−1); apply Özaydin plus a relative version of the Deleted Product Criterion.
- Minimal counterexample: Almost-6-embedding $\sigma^{65} \rightarrow \mathbb{R}^{12}$.

Sufficiency of DelProdCrit: Structure of the Proof

Structured along the same lines as proof of classical (VK1):

 r-fold Van Kampen obstruction represented by r-fold intersection number cocycle: For arbitrary f: K → ℝ^d in general position, o(K^r_Δ) = [φ_f],

$$\varphi_f(\sigma_1 \times \cdots \times \sigma_r) = \underbrace{f(\sigma_1) \cdot \ldots \cdot f(\sigma_r)}_{f(\sigma_1)}$$

r-fold algebraic intersection number

Sufficiency of DelProdCrit: Structure of the Proof

Structured along the same lines as proof of classical (VK1):

1. *r*-fold Van Kampen obstruction represented by *r*-fold intersection number cocycle: For arbitrary $f: K \to \mathbb{R}^d$ in general position, $\mathfrak{o}(K^r_{\Delta}) = [\varphi_f]$,

$$\varphi_f(\sigma_1 \times \cdots \times \sigma_r) = \underbrace{f(\sigma_1) \cdot \ldots \cdot f(\sigma_r)}_{\bullet}$$

 $r\mbox{-}{\rm fold}$ algebraic intersection number

 If o(K^r_Δ) = 0, then we can modify arbitrary initial f by r-fold Finger Moves to obtain g: K → ℝ^d with φ_g = 0 as a cocycle, i.e., for every disjoint σ₁,..., σ_r, ∑_i dim σ_i = d(r - 1), g(σ₁) ∩ ··· ∩ g(σ_r) consists of pairs of r-fold points of opposite sign

Sufficiency of DelProdCrit: Structure of the Proof

Structured along the same lines as proof of classical (VK1):

 r-fold Van Kampen obstruction represented by r-fold intersection number cocycle: For arbitrary f: K → ℝ^d in general position, o(K^r_Δ) = [φ_f],

$$\varphi_f(\sigma_1 \times \cdots \times \sigma_r) = \underbrace{f(\sigma_1) \cdot \ldots \cdot f(\sigma_r)}_{\bullet}$$

 $r\mbox{-}{\rm fold}$ algebraic intersection number

- If o(K^r_Δ) = 0, then we can modify arbitrary initial f by r-fold Finger Moves to obtain g: K → ℝ^d with φ_g = 0 as a cocycle, i.e., for every disjoint σ₁,..., σ_r, ∑_i dim σ_i = d(r - 1), g(σ₁) ∩ ··· ∩ g(σ_r) consists of pairs of r-fold points of opposite sign
- 3. Use *r*-fold generalization of the Whitney trick to modify *g* and eliminate these pairs without introducing new *r*-fold points

The Classical Whitney Trick

Classical PL Whitney trick [Weber]:

Eliminate a pair of isolated double points of opposite sign of a PL map by an ambient isotopy fixed outside a small ball, provided the codimension is at least 3.

- Idea: "push" f(σ₂) upwards until the two intersections points x and y disappear, keeping the boundary of f(σ₂) fixed.
- In low codimensions, doing this might require passing over some obstacles and/or introducing new double points, but if d − dim(σ_i) ≥ 3, i = 1,2 this can be avoided.

r-Fold Whitney Trick

Theorem (**Higher-Multiplicity Whitney Trick**) Let $r \ge 2$, and let $\sigma_1, \ldots, \sigma_r$ simplices³, dim $\sigma_i = m_i$, such that $\sum_{i=1}^{r} m_i = d(r-1)$ and $d - m_i \ge 3$, $1 \le i \le r$. Let

$$f:\sigma_1\sqcup\cdots\sqcup\sigma_r\to\mathbb{R}^d$$

be a PL map in general position. Suppose that $f(\sigma_1) \cap f(\sigma_2) \cap \cdots \cap f(\sigma_r) = \{x, y\}$ consists of two *r*-fold points of opposite signs. Then there exist ambient isotopies $H^i : \mathbb{R}^d \times [0, 1] \to \mathbb{R}^d \times [0, 1]$,

Then there exist ambient isotopies $H' : \mathbb{R}^n \times [0, 1] \to \mathbb{R}^n \times 2 \le i \le r$ such that

$$f(\sigma_1) \cap H_1^2(f(\sigma_2)) \cap \cdots \cap H_1^r(f(\sigma_r) = \emptyset$$

Isotopies can be chosen to be **local**: Given any closed polyhedron $L \subset \mathbb{R}^d$, dim $L \leq d - 3$, $x, y \notin L$, there exists a PL ball $B^d \subset \mathbb{R}^d$ disjoint from L such that H^i is fixed outside of \mathring{B}^d , $2 \leq i \leq r$.

 $^{^{3}}$ More generally, connected, orientable PL manifolds $\rightarrow \langle \mathbb{P} \rightarrow \langle \mathbb{P$

r-Fold Whitney Trick, cont'd

- A triple Whitney trick in codimension 3 was independently discovered by Melikhov (unpublished) and used to classify ornaments S^{2k-1} ⊔ S^{2k-1} ⊔ S^{2k-1} → ℝ^{3k-1} up to ornament homotopy.
- For codimension k = 2 and multiplicity r ≥ 3, we only have a partial analogue of the Whitney trick: We can eliminate global r-fold points in pairs of opposite signs, but we may introduce local r-fold points (e.g., self-intersections of the f(σ_i) in the process.

1. Close *r*-fold points: Eliminate arbitrary *r*-fold points, not only global ones (work in progress)

- 1. Close *r*-fold points: Eliminate arbitrary *r*-fold points, not only global ones (work in progress)
- 2. Codimension 1?
- 3. The Planar Case and Hanani–Tutte. Is there an analogue of the Hanani–Tutte Theorem for *r*-fold points? For d = 2, does $K_{\Delta}^r \to_{\mathfrak{S}_r} S^{2(r-1)-1}$ imply that there is an almost *r*-embedding $K \to \mathbb{R}^2$? By Özaydin, this would yield counterexamples to the topological Tverberg conjecture for d = 2.

- 1. Close *r*-fold points: Eliminate arbitrary *r*-fold points, not only global ones (work in progress)
- 2. Codimension 1?
- 3. The Planar Case and Hanani–Tutte. Is there an analogue of the Hanani–Tutte Theorem for *r*-fold points? For d = 2, does $K_{\Delta}^r \to_{\mathfrak{S}_r} S^{2(r-1)-1}$ imply that there is an almost *r*-embedding $K \to \mathbb{R}^2$? By Özaydin, this would yield counterexamples to the topological Tverberg conjecture for d = 2.
- Complexity of Almost-*r*-Embeddings. For *r* = 2 and *m* ≥ 3, there are *m*-complexes with o(K²_Δ) = 0 and *n* simplices, s.t. any PL embedding into ℝ^{2m} requires subdivision with at least Cⁿ simplices [Freedman–Krushkal].

- 1. Close *r*-fold points: Eliminate arbitrary *r*-fold points, not only global ones (work in progress)
- 2. Codimension 1?
- 3. The Planar Case and Hanani–Tutte. Is there an analogue of the Hanani–Tutte Theorem for *r*-fold points? For d = 2, does $K_{\Delta}^r \to_{\mathfrak{S}_r} S^{2(r-1)-1}$ imply that there is an almost *r*-embedding $K \to \mathbb{R}^2$? By Özaydin, this would yield counterexamples to the topological Tverberg conjecture for d = 2.
- 4. Complexity of Almost-*r*-Embeddings. For *r* = 2 and *m* ≥ 3, there are *m*-complexes with o(K²_Δ) = 0 and *n* simplices, s.t. any PL embedding into R^{2m} requires subdivision with at least Cⁿ simplices [Freedman–Krushkal]. Similar bounds for almost-*r*-embeddings K → R^d, dim K = m = (r 1)k, d = mk, k ≥ 3?

Thank you for your attention!