Eliminating Multiple Intersections
 and Counterexamples to the Topological Tverberg Conjecture

Uli Wagner

Institute of Science and Technology
joint work with
S. Avvakumov, I. Mabillard, and A. Skopenkov

Postnikov Memorial Seminar, Moscow State University, March 29, 2016

Setting: Maps from Simplicial Complexes to \mathbb{R}^{d}

- K a finite simplicial complex
- $f: K \rightarrow \mathbb{R}^{d}$ a linear / piecewise-linear (PL) / continuous map

piecewise-linear (PL)

[Picture from Hocking \& Young, Topology, pp. 176-177]

Question
Under which conditions does there exist a (PL) map $f: K \rightarrow \mathbb{R}^{d}$ without self-intersections of high multiplicity?

r-fold Intersection Points

$f: K \rightarrow \mathbb{R}^{d}, r \geq 2$

- $y \in \mathbb{R}^{d}$ is an r-fold point of f if it has r distinct preimages

$$
y=f\left(x_{1}\right)=\cdots=f\left(x_{r}\right), \quad x_{i} \in K, \quad x_{i} \neq x_{j}, i \neq j
$$

- $y \in \mathbb{R}^{d}$ is a global r-fold point ${ }^{1}$ of f if it has preimages in r pairwise disjoint simplices of K,

$$
y \in f\left(\sigma_{1}\right) \cap \cdots \cap f\left(\sigma_{r}\right), \quad \sigma_{i} \cap \sigma_{j}=\emptyset, i \neq j
$$

${ }^{1}$ With respect to a fixed triangulation.

$(r-)$ Embeddings \& Almost- $(r-)$ Embeddings

- embedding $f: K \hookrightarrow \mathbb{R}^{d}=$ map without 2-fold points
- almost-embedding $f: K \rightarrow \mathbb{R}^{d}=$ map without global 2-fold points
- r-embedding $f: K \hookrightarrow \mathbb{R}^{d}=$ map without r-fold points
- almost-r-embedding $f: K \rightarrow \mathbb{R}^{d}=$ map without global r-fold points

Question

Necessary and sufficient conditions for (almost-)r-embeddability?

- Classical case $r=2$:
- Vanishing of the van Kampen obstruction gives a complete (necessary and sufficient) criterion for embeddability if $\operatorname{dim} K=m, d=2 m, m \neq 2$
- Generalization: Haefliger-Weber Theorem: deleted product criterion complete in the metastable range $d \geq 3(m+1) / 2$.
- Higher multiplicities $r \geq 3$?

History: Tverberg's Theorem

Theorem (Tverberg 1966)
Let $r \geq 2, d \geq 1$. Set $N:=(d+1)(r-1)$. Every $S \subseteq \mathbb{R}^{d}$ with $|S| \geq N+1$ has an r-Tverberg partition, i.e.,

$$
S=A_{1} \sqcup \ldots \sqcup A_{r}
$$

with

$$
\operatorname{conv}\left(A_{1}\right) \cap \ldots \cap \operatorname{conv}\left(A_{r}\right) \neq \emptyset
$$

$$
d=2, r=3, N+1=7
$$

History: Tverberg's Theorem

Theorem (Tverberg 1966)
Let $r \geq 2, d \geq 1$. Set $N:=(d+1)(r-1)$. Every $S \subseteq \mathbb{R}^{d}$ with $|S| \geq N+1$ has an r-Tverberg partition, i.e.,

$$
S=A_{1} \sqcup \ldots \sqcup A_{r}
$$

with

$$
\operatorname{conv}\left(A_{1}\right) \cap \ldots \cap \operatorname{conv}\left(A_{r}\right) \neq \emptyset
$$

$$
d=2, r=3, N+1=7
$$

Motivation: Topological Tverberg Conjecture

Theorem (Tverberg, equivalent form)
Let $r \geq 2, d \geq 1, N=(d+1)(r-1), \sigma^{N}=N$-dimensional simplex Then every linear map $f: \sigma^{N} \rightarrow \mathbb{R}^{d}$ has a global r-fold point.

Motivation: Topological Tverberg Conjecture

Theorem (Tverberg, equivalent form)
Let $r \geq 2, d \geq 1, N=(d+1)(r-1), \sigma^{N}=N$-dimensional simplex Then every linear map $f: \sigma^{N} \rightarrow \mathbb{R}^{d}$ has a global r-fold point.

- Continuous maps? [Bajmoczy-Bárány and Tverberg, 1979]

Conjecture (Topological Tverberg Conjecture)
Let $r \geq 2, d \geq 1$, and $N=(d+1)(r-1)$.
Then there is no almost-r-embedding $\sigma^{N} \rightarrow \mathbb{R}^{d}$, i.e., every continuous map $f: \sigma^{N} \rightarrow \mathbb{R}^{d}$ has a global r-fold point.

Motivation: Topological Tverberg Conjecture

Theorem (Tverberg, equivalent form)
Let $r \geq 2, d \geq 1, N=(d+1)(r-1), \sigma^{N}=N$-dimensional simplex Then every linear map $f: \sigma^{N} \rightarrow \mathbb{R}^{d}$ has a global r-fold point.

- Continuous maps? [Bajmoczy-Bárány and Tverberg, 1979]

Conjecture (Topological Tverberg Conjecture)
Let $r \geq 2, d \geq 1$, and $N=(d+1)(r-1)$.
Then there is no almost-r-embedding $\sigma^{N} \rightarrow \mathbb{R}^{d}$, i.e., every continuous map $f: \sigma^{N} \rightarrow \mathbb{R}^{d}$ has a global r-fold point.

True for

- $r=2$ [Bajmoczy-Bárány 1979]
- r prime [Bárány-Shlosman-Szűcs 1981]
- $r=p^{n}$ prime power [Özaydin 1987][Volovikov 1996]

Long-standing open problem:

- What if r not a prime power?

Other topological Tverberg-type problems

Many variants of (topological) Tverberg-type problems/results, e.g., generalized Van Kampen-Flores-type theorem [Sarkaria; Volovikov]

Proposition (Gromov; Blagojević-Frick-Ziegler)
Let $r \geq 2, d \geq 1, m=\left\lceil\frac{r-1}{r} d\right\rceil, M:=(d+2)(r-1)$. If there is an almost-r-embedding $g:: \operatorname{skel}_{m}\left(\sigma^{M}\right) \rightarrow \mathbb{R}^{d}$ then there exists an almost r-embedding $f: \sigma^{M} \rightarrow \mathbb{R}^{d+1}$.

Corollary (Van Kampen; Flores; Sarkaria; Volovikov)
If r is a prime power then there is no almost r-embedding $g: \operatorname{skel}_{m}\left(\sigma^{M}\right) \rightarrow \mathbb{R}^{d}$

Other topological Tverberg-type problems

Many variants of (topological) Tverberg-type problems/results, e.g., generalized Van Kampen-Flores-type theorem [Sarkaria; Volovikov]

Proposition (Gromov; Blagojević-Frick-Ziegler)
Let $r \geq 2, d \geq 1, m=\left\lceil\frac{r-1}{r} d\right\rceil, M:=(d+2)(r-1)$. If there is an almost-r-embedding $g:: \operatorname{skel}_{m}\left(\sigma^{M}\right) \rightarrow \mathbb{R}^{d}$ then there exists an almost r-embedding $f: \sigma^{M} \rightarrow \mathbb{R}^{d+1}$.

Corollary (Van Kampen; Flores; Sarkaria; Volovikov)
If r is a prime power then there is no almost r-embedding $g: \operatorname{skel}_{m}\left(\sigma^{M}\right) \rightarrow \mathbb{R}^{d}$

Proof of the proposition.
Given g, extend arbitrarily to $\hat{g}: \sigma^{M} \rightarrow \mathbb{R}^{d}$. Define $f: \sigma^{M} \rightarrow \mathbb{R}^{D}$ by $f(x)=(\hat{g}(x)$, $\operatorname{dist}(x, K))$. If $y \in f\left(\sigma_{1}\right) \cap \cdots \cap f\left(\sigma_{r}\right)$ is a global r-fold point of f, then one σ_{i} has dimension $\leq m$ (pigeonholing), hence all σ_{i} do, hence y is a global r-fold point of g.

Deleted Product Criterion

Lemma (Necessity of the Deleted Product Criterion)

If there exists a map $f: K \rightarrow \mathbb{R}^{d}$ without global r-fold points then there exists an equivariant map

$$
\begin{array}{rll}
\tilde{f}: K_{\Delta}^{r} & \rightarrow_{\mathfrak{S}_{r}} & \left(\mathbb{R}^{d}\right)^{r} \backslash \delta_{r}\left(\mathbb{R}^{d}\right) \simeq_{\mathfrak{S}_{r}} S^{d(r-1)-1} \\
\left(x_{1}, \ldots, x_{r}\right) & \mapsto & \left(f\left(x_{1}\right), \ldots, f\left(x_{r}\right)\right)
\end{array}
$$

where

- deleted product

$$
K_{\Delta}^{r}:=\bigcup\left\{\sigma_{1} \times \cdots \times \sigma_{r} \mid \sigma_{i} \cap \sigma_{j}=\emptyset, 1 \leq i<j \leq r\right\} \subset K^{r}
$$

- thin diagonal $\delta_{r}\left(\mathbb{R}^{d}\right)=\left\{(y, \ldots, y): y \in \mathbb{R}^{d}\right\}$
- symmetric group \mathfrak{S}_{r} acts by permuting components ${ }^{2}$
${ }^{2}$ The action is free on K_{Δ}^{r} for all r, not free on $S^{d(r-1)-1}$

The Generalized Van Kampen Obstruction

Lemma

Suppose $\operatorname{dim} K_{\Delta}^{r}=n:=d(r-1)$. Then there exists an equivariant $\operatorname{map} F: K_{\Delta}^{r} \rightarrow_{\mathfrak{S}_{r}}\left(\mathbb{R}^{d}\right)^{r} \backslash \delta_{r}\left(\mathbb{R}^{d}\right) \simeq S^{n-1}$ if and only if $\mathfrak{o}\left(K_{\Delta}^{r}\right)=0$.

- r-fold Van Kampen obstruction $\mathfrak{o}\left(K_{\Delta}^{r}\right) \in H_{\mathfrak{S}_{r}}^{n}\left(K_{\Delta}^{r} ; \mathcal{Z}\right)$
$\left(\mathcal{Z}=\right.$ integers with \mathfrak{S}_{r}-action given by $\pi \cdot a=(\operatorname{sgn} \pi)^{d} a$
$=\pi_{n-1}\left(S^{n-1}\right)$ with \mathfrak{S}_{r}-action $)$

The Generalized Van Kampen Obstruction

Lemma

Suppose $\operatorname{dim} K_{\Delta}^{r}=n:=d(r-1)$. Then there exists an equivariant $\operatorname{map} F: K_{\Delta}^{r} \rightarrow_{\mathfrak{S}_{r}}\left(\mathbb{R}^{d}\right)^{r} \backslash \delta_{r}\left(\mathbb{R}^{d}\right) \simeq S^{n-1}$ if and only if $\mathfrak{o}\left(K_{\Delta}^{r}\right)=0$.

- r-fold Van Kampen obstruction $\mathfrak{o}\left(K_{\Delta}^{r}\right) \in H_{\mathfrak{S}_{r}}^{n}\left(K_{\Delta}^{r} ; \mathcal{Z}\right)$
$\left(\mathcal{Z}=\right.$ integers with \mathfrak{S}_{r}-action given by $\pi \cdot a=(\operatorname{sgn} \pi)^{d} a$
$=\pi_{n-1}\left(S^{n-1}\right)$ with \mathfrak{S}_{r}-action)
- special case of primary equivariant obstruction in equivariant obstruction theory

The Generalized Van Kampen Obstruction

Lemma

Suppose $\operatorname{dim} K_{\Delta}^{r}=n:=d(r-1)$. Then there exists an equivariant $\operatorname{map} F: K_{\Delta}^{r} \rightarrow_{\mathfrak{S}_{r}}\left(\mathbb{R}^{d}\right)^{r} \backslash \delta_{r}\left(\mathbb{R}^{d}\right) \simeq S^{n-1}$ if and only if $\mathfrak{o}\left(K_{\Delta}^{r}\right)=0$.

- r-fold Van Kampen obstruction $\mathfrak{o}\left(K_{\Delta}^{r}\right) \in H_{\mathfrak{S}_{r}}^{n}\left(K_{\Delta}^{r} ; \mathcal{Z}\right)$
$\left(\mathcal{Z}=\right.$ integers with \mathfrak{S}_{r}-action given by $\pi \cdot a=(\operatorname{sgn} \pi)^{d} a$
$=\pi_{n-1}\left(S^{n-1}\right)$ with \mathfrak{S}_{r}-action)
- special case of primary equivariant obstruction in equivariant obstruction theory
- $r=2, \operatorname{dim} K=m$, and $d=2 m: \mathfrak{o}\left(K_{\Delta}^{2}\right)$ is the classical Van Kampen obstruction to embeddability of K into $\mathbb{R}^{2 m}$

The Generalized Van Kampen Obstruction

Lemma

Suppose $\operatorname{dim} K_{\Delta}^{r}=n:=d(r-1)$. Then there exists an equivariant $\operatorname{map} F: K_{\Delta}^{r} \rightarrow_{\mathfrak{S}_{r}}\left(\mathbb{R}^{d}\right)^{r} \backslash \delta_{r}\left(\mathbb{R}^{d}\right) \simeq S^{n-1}$ if and only if $\mathfrak{o}\left(K_{\Delta}^{r}\right)=0$.

- r-fold Van Kampen obstruction $\mathfrak{o}\left(K_{\Delta}^{r}\right) \in H_{\mathfrak{S}_{r}}^{n}\left(K_{\Delta}^{r} ; \mathcal{Z}\right)$
$\left(\mathcal{Z}=\right.$ integers with \mathfrak{S}_{r}-action given by $\pi \cdot a=(\operatorname{sgn} \pi)^{d} a$
$=\pi_{n-1}\left(S^{n-1}\right)$ with \mathfrak{S}_{r}-action $)$
- special case of primary equivariant obstruction in equivariant obstruction theory
- $r=2, \operatorname{dim} K=m$, and $d=2 m: \mathfrak{o}\left(K_{\Delta}^{2}\right)$ is the classical Van Kampen obstruction to embeddability of K into $\mathbb{R}^{2 m}$
- Given $G: K_{\Delta}^{r} \rightarrow_{\mathfrak{S}_{r}}\left(\mathbb{R}^{d}\right)^{r}$ in general position, $\mathfrak{o}\left(K_{\Delta}^{r}\right)=\left[\varphi_{G}\right]$,

$$
\varphi_{G}\left(\sigma_{1} \times \cdots \times \sigma_{r}\right):=G\left(\sigma_{1} \times \cdots \times \sigma_{r}\right) \cdot \delta_{r}\left(\mathbb{R}^{d}\right) \in \mathbb{Z}
$$

algebraic intersection number with thin diagonal w.r.t. specified orientations, defines $\varphi_{G} \in Z_{\mathfrak{S}_{r}}^{n}\left(K_{\Delta}^{r} ; \mathcal{Z}\right)$

The Generalized Van Kampen Obstruction, cont'd

Caveat:

- $\mathfrak{o}\left(K_{\Delta}^{r}\right)=0$ implies the existence of an equivariant map $F: K_{\Delta}^{r} \rightarrow_{\mathfrak{S}_{r}}\left(\mathbb{R}^{d}\right)^{r} \backslash \delta_{r}\left(\mathbb{R}^{d}\right)$

The Generalized Van Kampen Obstruction, cont'd

Caveat:

- $\mathfrak{o}\left(K_{\Delta}^{r}\right)=0$ implies the existence of an equivariant map $F: K_{\Delta}^{r} \rightarrow_{\mathfrak{S}_{r}}\left(\mathbb{R}^{d}\right)^{r} \backslash \delta_{r}\left(\mathbb{R}^{d}\right)$
- However, it does not imply that F is of the form \widetilde{f}, i.e., induced by an almost r-embedding $f: K \rightarrow \mathbb{R}^{d}$ without r-Tverberg points.

The Generalized Van Kampen Obstruction, cont'd

Caveat:

- $\mathfrak{o}\left(K_{\Delta}^{r}\right)=0$ implies the existence of an equivariant map $F: K_{\Delta}^{r} \rightarrow_{\mathfrak{S}_{r}}\left(\mathbb{R}^{d}\right)^{r} \backslash \delta_{r}\left(\mathbb{R}^{d}\right)$
- However, it does not imply that F is of the form \widetilde{f}, i.e., induced by an almost r-embedding $f: K \rightarrow \mathbb{R}^{d}$ without r-Tverberg points.
- Thus, if $\mathfrak{o}\left(K_{\Delta}^{r}\right)=0$ then it is unclear whether the deleted product criterion is incomplete, or whether such a map f does indeed exist

The Generalized Van Kampen Obstruction, cont'd

Caveat:

- $\mathfrak{o}\left(K_{\Delta}^{r}\right)=0$ implies the existence of an equivariant map $F: K_{\Delta}^{r} \rightarrow_{\mathfrak{S}_{r}}\left(\mathbb{R}^{d}\right)^{r} \backslash \delta_{r}\left(\mathbb{R}^{d}\right)$
- However, it does not imply that F is of the form \widetilde{f}, i.e., induced by an almost r-embedding $f: K \rightarrow \mathbb{R}^{d}$ without r-Tverberg points.
- Thus, if $\mathfrak{o}\left(K_{\Delta}^{r}\right)=0$ then it is unclear whether the deleted product criterion is incomplete, or whether such a map f does indeed exist
- Example: For $K=\sigma^{N}, N=(d+1)(r-1)$, Özaydin showed $\mathfrak{o}\left(\left(\sigma^{N}\right)_{\Delta}^{r}\right)=0 \Leftrightarrow r$ not a prime power

The Generalized Van Kampen Obstruction, cont'd

Caveat:

- $\mathfrak{o}\left(K_{\Delta}^{r}\right)=0$ implies the existence of an equivariant map $F: K_{\Delta}^{r} \rightarrow_{\mathfrak{S}_{r}}\left(\mathbb{R}^{d}\right)^{r} \backslash \delta_{r}\left(\mathbb{R}^{d}\right)$
- However, it does not imply that F is of the form \widetilde{f}, i.e., induced by an almost r-embedding $f: K \rightarrow \mathbb{R}^{d}$ without r-Tverberg points.
- Thus, if $\mathfrak{o}\left(K_{\Delta}^{r}\right)=0$ then it is unclear whether the deleted product criterion is incomplete, or whether such a map f does indeed exist
- Example: For $K=\sigma^{N}, N=(d+1)(r-1)$, Özaydin showed $\mathfrak{o}\left(\left(\sigma^{N}\right)_{\Delta}^{r}\right)=0 \Leftrightarrow r$ not a prime power
- Implies the topological Tverberg conjecture for prime powers

The Generalized Van Kampen Obstruction, cont'd

Caveat:

- $\mathfrak{o}\left(K_{\Delta}^{r}\right)=0$ implies the existence of an equivariant map $F: K_{\Delta}^{r} \rightarrow_{\mathfrak{S}_{r}}\left(\mathbb{R}^{d}\right)^{r} \backslash \delta_{r}\left(\mathbb{R}^{d}\right)$
- However, it does not imply that F is of the form \widetilde{f}, i.e., induced by an almost r-embedding $f: K \rightarrow \mathbb{R}^{d}$ without r-Tverberg points.
- Thus, if $\mathfrak{o}\left(K_{\Delta}^{r}\right)=0$ then it is unclear whether the deleted product criterion is incomplete, or whether such a map f does indeed exist
- Example: For $K=\sigma^{N}, N=(d+1)(r-1)$, Özaydin showed $\mathfrak{o}\left(\left(\sigma^{N}\right)_{\Delta}^{r}\right)=0 \Leftrightarrow r$ not a prime power
- Implies the topological Tverberg conjecture for prime powers
- How about non-prime-powers?
- Can one show sufficiency of the deleted product obstruction, under suitable conditions?

Sufficiency of the Deleted Product Criterion for $r=2$

Recall: almost-embedding = map without global 2-fold points
Theorem (Van Kampen-Shapiro-Wu)
Let K be a simplicial complex, $m:=\operatorname{dim} K \geq 3$.
(VK1) There exists an almost-embedding $f: K \rightarrow \mathbb{R}^{2 m}$ iff there exists an equivariant map $K_{\Delta}^{2} \rightarrow_{\mathfrak{S}_{2}} S^{2 m-1}$.
(VK2) If there an almost-embedding $f: K \rightarrow \mathbb{R}^{2 m}$ then there exists an embedding $g: K \hookrightarrow \mathbb{R}^{2 m}$; moreover, g can be taken to be piecewise-linear.

Sufficiency of the Deleted Product Criterion for $r=2$

Recall: almost-embedding = map without global 2-fold points
Theorem (Van Kampen-Shapiro-Wu)
Let K be a simplicial complex, $m:=\operatorname{dim} K \geq 3$.
(VK1) There exists an almost-embedding $f: K \rightarrow \mathbb{R}^{2 m}$ iff there exists an equivariant map $K_{\Delta}^{2} \rightarrow_{\mathfrak{S}_{2}} S^{2 m-1}$.
(VK2) If there an almost-embedding $f: K \rightarrow \mathbb{R}^{2 m}$ then there exists an embedding $g: K \hookrightarrow \mathbb{R}^{2 m}$; moreover, g can be taken to be piecewise-linear.

- Remains true for $m=1$, (Hanani-Tutte Theorem), but with different proof method
- Fails for $m=2$ [Freedman-Krushkal-Teichner]

Our Result: Sufficiency of the Deleted Product Criterion

Theorem (Mabillard-W.)
Let $k \geq 3, \operatorname{dim} K=m=(r-1) k, d=r k$. Then the following are equivalent:
(i) There exists an almost r-embedding $f: K \rightarrow \mathbb{R}^{d}$ (no global r-fold points)
(ii) There exists an equivariant map $F: K_{\Delta}^{r} \rightarrow_{\mathfrak{S}_{r}} S^{d(r-1)-1}$.
(iii) $\mathfrak{o}\left(K_{\Delta}^{r}\right)=0$.

Our Result: Sufficiency of the Deleted Product Criterion

Theorem (Mabillard-W.)
Let $k \geq 3, \operatorname{dim} K=m=(r-1) k, d=r k$. Then the following are equivalent:
(i) There exists an almost r-embedding $f: K \rightarrow \mathbb{R}^{d}$ (no global r-fold points)
(ii) There exists an equivariant map $F: K_{\Delta}^{r} \rightarrow_{\mathfrak{S}_{r}} S^{d(r-1)-1}$.
(iii) $\mathfrak{o}\left(K_{\Delta}^{r}\right)=0$.

Theorem (Avvakumov-Mabillard-Skopenkov-W.)
The statements are equivalent also for $k \geq 2$ (codimension 2), provided $r \geq 3$.

Corollary

There is an algorithm to decide if a given K as above admits an almost r-embedding to \mathbb{R}^{d}; the running time is polynomial in the size (number of simplices) of K if r and m are fixed.

Motivation: Özaydin's Theorem

Theorem (Özaydin)
Let $d \geq 1$ and $r \geq 2$ not a prime power. Suppose \mathfrak{S}_{r} acts freely on a cell complex X of dimension $d(r-1)$. There exists an equivariant map $F: X \rightarrow_{\mathfrak{S}_{r}} S^{d(r-1)-1}$.

Motivation: Özaydin's Theorem

Theorem (Özaydin)
Let $d \geq 1$ and $r \geq 2$ not a prime power. Suppose \mathfrak{S}_{r} acts freely on a cell complex X of dimension $d(r-1)$. There exists an equivariant map $F: X \rightarrow_{\mathfrak{S}_{r}} S^{d(r-1)-1}$.

Example
$X=K_{\Delta}^{r}$, if $\operatorname{dim} K \leq \frac{r-1}{r} d$, or $K=\sigma^{(d+1)(r-1)}$.
Guiding Question
Özaydin + Sufficiency of Deleted Product Criterion
$=$ Counterexamples to the topological Tverberg conjecture?

Özaydin \& the Codimension 3 Barrier

Corollary
If r is not a prime power then $K_{\Delta}^{r} \rightarrow \mathfrak{G}_{r} S^{d(r-1)-1}$, whenever $\operatorname{dim} K_{\Delta}^{r} \leq d(r-1)$, e.g., if $\operatorname{dim} K \leq \frac{r-1}{r} d$ or if $K=\sigma^{N}$,
$N=(d+1)(r-1)$.
Guiding Question
Özaydin + Sufficiency of Deleted Product Criterion
= Counterexamples to the topological Tverberg conjecture?

Difficulty: Codimension barrier difficulty! Sufficiency of the deleted product criterion applies only in codimension at least 2 !

Counterexamples 1: Frick's solution

Theorem (Frick)
Suppose $r \geq 6$ is not a prime power. Then there exists an almost r-embedding $f: \sigma^{(3 r+2)(r-1)} \rightarrow \mathbb{R}^{3 r+1}$ without r-Tverberg point.

Counterexamples 1: Frick's solution

Theorem (Frick)

Suppose $r \geq 6$ is not a prime power. Then there exists an almost r-embedding $f: \sigma^{(3 r+2)(r-1)} \rightarrow \mathbb{R}^{3 r+1}$ without r-Tverberg point.

- Minimal counterexample: almost-6-embedding $\sigma^{100} \rightarrow \mathbb{R}^{19}$.

Proposition (Gromov; Blagojević-Frick-Ziegler)

Let $r \geq 2, d \geq 1, m=\left\lceil\frac{r-1}{r} d\right\rceil, M:=(d+2)(r-1)$. If there is an almost-r-embedding $g:: \operatorname{skel}_{m}\left(\sigma^{M}\right) \rightarrow \mathbb{R}^{d}$ then there exists an almost r-embedding $f: \sigma^{M} \rightarrow \mathbb{R}^{d+1}$.

Proof of Frick's theorem.
Codimension of skel $m_{m}\left(\sigma^{M}\right)$ equals $d-m=3$, so g exists by Özaydin \& sufficiency of the DPC in codimension 3.

- Sufficiency of DPC in codimension 2 imples improved counterexample, almost 6 -embedding $\sigma^{70} \rightarrow \mathbb{R}^{13}$

Counterexamples 2: Prismatic Maps

Theorem (Avvakumov-Mabillard-Skopenkov-W.)
Suppose $r \geq 6$ is not a prime power and let $N:=(2 r+1)(r-1)$ Then there exists a map $f: \sigma^{N} \rightarrow \mathbb{R}^{2 r}$ without r-Tverberg point.

- Use restricted family of prismatic maps $f: \sigma^{N} \rightarrow \sigma^{2(r-1)} \times \sigma^{2}$.

- Structure of the maps forces all r-Tverberg points to lie on a "colorful" subcomplex C of dimension 2($r-1$); apply Özaydin plus a relative version of the Deleted Product Criterion.
- Minimal counterexample: Almost-6-embedding $\sigma^{65} \rightarrow \mathbb{R}^{12}$.

Sufficiency of DelProdCrit: Structure of the Proof

Structured along the same lines as proof of classical (VK1):

1. r-fold Van Kampen obstruction represented by r-fold intersection number cocycle: For arbitrary $f: K \rightarrow \mathbb{R}^{d}$ in general position, $\mathfrak{o}\left(K_{\Delta}^{r}\right)=\left[\varphi_{f}\right]$,

$$
\varphi_{f}\left(\sigma_{1} \times \cdots \times \sigma_{r}\right)=\underbrace{f\left(\sigma_{1}\right) \cdot \ldots \cdot f\left(\sigma_{r}\right)}_{r \text {-fold algebraic intersection number }}
$$

Sufficiency of DelProdCrit: Structure of the Proof

Structured along the same lines as proof of classical (VK1):

1. r-fold Van Kampen obstruction represented by r-fold intersection number cocycle: For arbitrary $f: K \rightarrow \mathbb{R}^{d}$ in general position, $\mathfrak{o}\left(K_{\Delta}^{r}\right)=\left[\varphi_{f}\right]$,

$$
\varphi_{f}\left(\sigma_{1} \times \cdots \times \sigma_{r}\right)=\underbrace{f\left(\sigma_{1}\right) \cdot \ldots \cdot f\left(\sigma_{r}\right)}
$$

r-fold algebraic intersection number
2. If $\mathfrak{o}\left(K_{\Delta}^{r}\right)=0$, then we can modify arbitrary initial f by r-fold Finger Moves to obtain $g: K \rightarrow \mathbb{R}^{d}$ with $\varphi_{g}=0$ as a cocycle, i.e., for every disjoint $\sigma_{1}, \ldots, \sigma_{r}, \sum_{i} \operatorname{dim} \sigma_{i}=d(r-1)$, $g\left(\sigma_{1}\right) \cap \cdots \cap g\left(\sigma_{r}\right)$ consists of pairs of r-fold points of opposite sign

Sufficiency of DelProdCrit: Structure of the Proof

Structured along the same lines as proof of classical (VK1):

1. r-fold Van Kampen obstruction represented by r-fold intersection number cocycle: For arbitrary $f: K \rightarrow \mathbb{R}^{d}$ in general position, $\mathfrak{o}\left(K_{\Delta}^{r}\right)=\left[\varphi_{f}\right]$,

$$
\varphi_{f}\left(\sigma_{1} \times \cdots \times \sigma_{r}\right)=\underbrace{f\left(\sigma_{1}\right) \cdot \ldots \cdot f\left(\sigma_{r}\right)}
$$

r-fold algebraic intersection number
2. If $\mathfrak{o}\left(K_{\Delta}^{r}\right)=0$, then we can modify arbitrary initial f by r-fold Finger Moves to obtain $g: K \rightarrow \mathbb{R}^{d}$ with $\varphi_{g}=0$ as a cocycle, i.e., for every disjoint $\sigma_{1}, \ldots, \sigma_{r}, \sum_{i} \operatorname{dim} \sigma_{i}=d(r-1)$, $g\left(\sigma_{1}\right) \cap \cdots \cap g\left(\sigma_{r}\right)$ consists of pairs of r-fold points of opposite sign
3. Use r-fold generalization of the Whitney trick to modify g and eliminate these pairs without introducing new r-fold points

The Classical Whitney Trick

Classical PL Whitney trick [Weber]:

- Eliminate a pair of isolated double points of opposite sign of a PL map by an ambient isotopy fixed outside a small ball, provided the codimension is at least 3.

- Idea: "push" $f\left(\sigma_{2}\right)$ upwards until the two intersections points x and y disappear, keeping the boundary of $f\left(\sigma_{2}\right)$ fixed.
- In low codimensions, doing this might require passing over some obstacles and/or introducing new double points, but if $d-\operatorname{dim}\left(\sigma_{i}\right) \geq 3, i=1,2$ this can be avoided.

r-Fold Whitney Trick

Theorem (Higher-Multiplicity Whitney Trick)

Let $r \geq 2$, and let $\sigma_{1}, \ldots, \sigma_{r}$ simplices ${ }^{3}, \operatorname{dim} \sigma_{i}=m_{i}$, such that $\sum_{i=1}^{r} m_{i}=d(r-1)$ and $d-m_{i} \geq 3,1 \leq i \leq r$. Let

$$
f: \sigma_{1} \sqcup \cdots \sqcup \sigma_{r} \rightarrow \mathbb{R}^{d}
$$

be a PL map in general position.
Suppose that $f\left(\sigma_{1}\right) \cap f\left(\sigma_{2}\right) \cap \cdots \cap f\left(\sigma_{r}\right)=\{x, y\}$ consists of two r-fold points of opposite signs.
Then there exist ambient isotopies $H^{i}: \mathbb{R}^{d} \times[0,1] \rightarrow \mathbb{R}^{d} \times[0,1]$, $2 \leq i \leq r$ such that

$$
f\left(\sigma_{1}\right) \cap H_{1}^{2}\left(f\left(\sigma_{2}\right)\right) \cap \cdots \cap H_{1}^{r}\left(f\left(\sigma_{r}\right)=\emptyset\right.
$$

Isotopies can be chosen to be local: Given any closed polyhedron $L \subset \mathbb{R}^{d}, \operatorname{dim} L \leq d-3, x, y \notin L$, there exists a $P L$ ball $B^{d} \subset \mathbb{R}^{d}$ disjoint from L such that H^{i} is fixed outside of $B^{d}, 2 \leq i \leq r$.
${ }^{3}$ More generally, connected, orientable PL manifolds.

r-Fold Whitney Trick, cont'd

- A triple Whitney trick in codimension 3 was independently discovered by Melikhov (unpublished) and used to classify ornaments $S^{2 k-1} \sqcup S^{2 k-1} \sqcup S^{2 k-1} \rightarrow \mathbb{R}^{3 k-1}$ up to ornament homotopy.
- For codimension $k=2$ and multiplicity $r \geq 3$, we only have a partial analogue of the Whitney trick: We can eliminate global r-fold points in pairs of opposite signs, but we may introduce local r-fold points (e.g., self-intersections of the $f\left(\sigma_{i}\right)$ in the process.

Ongoing and Future Work / Open Questions

1. Close \boldsymbol{r}-fold points: Eliminate arbitrary r-fold points, not only global ones (work in progress)

Ongoing and Future Work / Open Questions

1. Close \boldsymbol{r}-fold points: Eliminate arbitrary r-fold points, not only global ones (work in progress)
2. Codimension 1?
3. The Planar Case and Hanani-Tutte. Is there an analogue of the Hanani-Tutte Theorem for r-fold points? For $d=2$, does $K_{\Delta}^{r} \rightarrow_{\mathfrak{S}_{r}} S^{2(r-1)-1}$ imply that there is an almost r-embedding $K \rightarrow \mathbb{R}^{2}$? By Özaydin, this would yield counterexamples to the topological Tverberg conjecture for $d=2$.

Ongoing and Future Work / Open Questions

1. Close \boldsymbol{r}-fold points: Eliminate arbitrary r-fold points, not only global ones (work in progress)
2. Codimension 1?
3. The Planar Case and Hanani-Tutte. Is there an analogue of the Hanani-Tutte Theorem for r-fold points? For $d=2$, does $K_{\Delta}^{r} \rightarrow_{\mathfrak{S}_{r}} S^{2(r-1)-1}$ imply that there is an almost r-embedding $K \rightarrow \mathbb{R}^{2}$? By Özaydin, this would yield counterexamples to the topological Tverberg conjecture for $d=2$.
4. Complexity of Almost- r-Embeddings. For $r=2$ and $m \geq 3$, there are m-complexes with $\mathfrak{o}\left(K_{\Delta}^{2}\right)=0$ and n simplices, s.t. any PL embedding into $\mathbb{R}^{2 m}$ requires subdivision with at least C^{n} simplices [Freedman-Krushkal].

Ongoing and Future Work / Open Questions

1. Close \boldsymbol{r}-fold points: Eliminate arbitrary r-fold points, not only global ones (work in progress)
2. Codimension 1?
3. The Planar Case and Hanani-Tutte. Is there an analogue of the Hanani-Tutte Theorem for r-fold points? For $d=2$, does $K_{\Delta}^{r} \rightarrow_{\mathfrak{S}_{r}} S^{2(r-1)-1}$ imply that there is an almost r-embedding $K \rightarrow \mathbb{R}^{2}$? By Özaydin, this would yield counterexamples to the topological Tverberg conjecture for $d=2$.
4. Complexity of Almost- r-Embeddings. For $r=2$ and $m \geq 3$, there are m-complexes with $\mathfrak{o}\left(K_{\Delta}^{2}\right)=0$ and n simplices, s.t. any PL embedding into $\mathbb{R}^{2 m}$ requires subdivision with at least C^{n} simplices [Freedman-Krushkal]. Similar bounds for almost- r-embeddings $K \rightarrow \mathbb{R}^{d}$, $\operatorname{dim} K=m=(r-1) k, d=m k, k \geq 3$?

Thank you for your attention!

