DARK ENERGY OR MODIFIED GRAVITY?

Andrei Frolov

Department of Physics Simon Fraser University

Ural Federal University Ekaterinburg, Russia

6 June 2011

A SKY ON A STARRY NIGHT...

NOT SO ACIENT COSMOLOGY: PTOLEMAIC SYSTEM

Schema huius præmissæ diuifionis Sphærarum.

3

WE LIVE IN A GOLDEN AGE OF ASTRONOMY!

Subaru Primary Mirror

Plans for TMT

Dark Energy or Modified Gravity?

M51 GALAXY: A COSMIC WHIRLPOOL

OUR COSMIC NEIGHBOURHOOD

A Flight to Virgo Cluster by R. Brent Tully (IfA/Hawaii)

- Solar System
- Orion Nebula
- Horsehead Nebula
- Rosette Nebula
- Crab Nebula
- Milky Way
- Magellanic Clouds
- Andromeda Galaxy
- Messier 33
- Messier 81/82
- Messier 101
- M51 (Whirlpool)
- Ursa Major Cluster
- Virgo Cluster

UNIVERSE IS BIG... AND IT IS GETTING BIGGER!

A RELATION BETWEEN DISTANCE AND RADIAL VELOCITY AMONG EXTRA-GALACTIC NEBULAE

By Edwin Hubble

MOUNT WILSON OBSERVATORY, CARNEGIE INSTITUTION OF WASHINGTON

Communicated January 17, 1929

Velocity-Distance Relation among Extra-Galactic Nebulae.

Radial velocities, corrected for solar motion, are plotted against distances estimated from involved stars and mean luminosities of nebulae in a cluster. The black discs and full line represent the solution for solar motion using the nebulae individually; the circles and broken line represent the solution combining the nebulae into groups; the cross represents the mean velocity corresponding to the mean distance of 22 nebulae whose distances could not be estimated individually.

Andrei Frolov (SFU)

WHY DOES IT EXPAND? GRAVITY IS TO BLAME!

EINSTEIN'S GENERAL RELATIVITY DESCRIBES HOW UNIVERSE EXPANDS

$$G_{\mu\nu} + \Lambda g_{\mu\nu} = \frac{8\pi G}{c^4} T_{\mu\nu} \Longrightarrow$$

Ural 2011

 $\left(\frac{\dot{a}}{a}\right)^2 = \frac{8\pi G}{3}\rho$

イロト イヨト イヨト イヨト

UNIVERSE EXPANSION IS DRIVEN BY MATTER

EXPANSION OF THE UNIVERSE

MEASURE RATE OF EXPANSION VERY ACCURATELY...

Ural 2011

... AND KNOW WHAT THE UNIVERSE IS MADE OF?

DARK MATTER: IT'S THERE, WE JUST DON'T SEE IT

Andrei Frolov (SFU)

Ural 2011

DARK ENERGY: NO CLUE! JUST PROBLEMS...

Andrei Frolov (SFU)

Ural 2011

What if instead of curvature in Einstein-Hilbert action we had

$$S = \int \left\{ \frac{f(R)}{16\pi G} + \mathcal{L}_{\rm m} \right\} \sqrt{-g} \, d^4 x$$

UV MODIFICATION:

$$f(R) = R + \frac{R^2}{M^2}$$

Starobinsky (1980)

IR modification:

$$f(R) = R - \frac{\mu^4}{R}$$

Capozziello et. al. [astro-ph/0303041] Carroll et. al. [astro-ph/0306438]

For $F(\mathbf{R})$ theory to make sense we need:

- f' > 0 otherwise gravity is a ghost
- f'' > 0 otherwise gravity is a tachyon

Andrei Frolov (SFU)

Ural 2011

< ロ > < 同 > < 回 > < 回 >

What if instead of curvature in Einstein-Hilbert action we had

$$S = \int \left\{ \frac{f(R)}{16\pi G} + \mathcal{L}_{\rm m} \right\} \sqrt{-g} \, d^4 x$$

IR MODIFICATION:

$$f(R) = R - \frac{\mu^4}{R}$$

Capozziello et. al. [astro-ph/0303041] Carroll et. al. [astro-ph/0306438]

For $F(\mathbf{R})$ theory to make sense we need:

- f' > 0 otherwise gravity is a ghost
- f'' > 0 otherwise gravity is a tachyon

Andrei Frolov (SFU)

Dark Energy or Modified Gravity?

Ural 2011

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

What if instead of curvature in Einstein-Hilbert action we had

$$S = \int \left\{ \frac{f(R)}{16\pi G} + \mathcal{L}_{\rm m} \right\} \sqrt{-g} \, d^4 x$$

FOR $F(\mathbf{R})$ THEORY TO MAKE SENSE WE NEED:

- f' > 0 otherwise gravity is a ghost
- f'' > 0 otherwise gravity is a tachyon

Andrei Frolov (SFU)

Dark Energy or Modified Gravity?

Ural 2011

イロト イロト イヨト イヨト

What if instead of curvature in Einstein-Hilbert action we had

$$S = \int \left\{ \frac{f(R)}{16\pi G} + \mathcal{L}_{\rm m} \right\} \sqrt{-g} \, d^4 x$$

IR MODIFICATION: $f(R) = R - \frac{\mu^4}{R}$ Capozziello et. al. [astro-ph/0303041] Carroll et. al. [astro-ph/0306438]

FOR F(R) THEORY TO MAKE SENSE WE NEED:

- f' > 0 otherwise gravity is a ghost
- f'' > 0 otherwise gravity is a tachyon

Andrei Frolov (SFU)

Dark Energy or Modified Gravity?

Ural 2011

WMAP: A SATELLITE MISSION TO MEASURE CMB

				\sim	
Ano	rol	Ero	αv	~	
				<u></u>	

CMB: LOOKING AS FAR BACK AS WE CAN SEE

Andrei Frolov	(SFU)
---------------	-------

UNIVERSE STARTS OUT VERY HOMOGENEOUS!

CMB is homogeneous at 10 part per million level!

Andrei Frolov (SFU)

GRAVITY MAKES LARGE SCALE STRUCTURE GROW!

				\sim	
Ano	rol	Ero	αv	~	
				<u></u>	

N-BODY SIMULATIONS WITH F(R) DARK ENERGY

PRESS-SCHECHTER FORMALISM

Linear density perturbation are a Gaussian Random Field, described by variance $\sigma^2 \equiv \langle \delta^2 \rangle$ and spectrum P(k)(above picture shows scale-invariant fluctuations, actual ones have diffrent spectrum)

Overdense regions with $\delta > \delta_c = \frac{3}{20} (12\pi)^{\frac{2}{3}} \simeq 1.69$ are fully collapsed! Density distribution is very clampy, smooth on scale Rto look for objects of mass $M = \frac{4\pi}{3} R^3 \bar{\rho}$

PRESS-SCHECHTER FORMALISM

Linear density perturbation are a Gaussian Random Field, described by variance $\sigma^2 \equiv \langle \delta^2 \rangle$ and spectrum P(k)(above picture shows scale-invariant fluctuations, actual ones have diffrent spectrum)

Overdense regions with $\delta > \delta_c = \frac{3}{20} (12\pi)^{\frac{2}{3}} \simeq 1.69$ are fully collapsed!

Density distribution is very clampy, smooth on scale *R* to look for objects of mass $M = \frac{4\pi}{3} R^3 \bar{\rho}$

PRESS-SCHECHTER FORMALISM

Linear density perturbation are a Gaussian Random Field, described by variance $\sigma^2 \equiv \langle \delta^2 \rangle$ and spectrum P(k)(above picture shows scale-invariant fluctuations, actual ones have diffrent spectrum)

Overdense regions with $\delta > \delta_c = \frac{3}{20} (12\pi)^{\frac{2}{3}} \simeq 1.69$ are fully collapsed!

Density distribution is very clampy, smooth on scale *R* to look for objects of mass $M = \frac{4\pi}{3} R^3 \bar{\rho}$

WARM-UP: NEWTONIAN COLLAPSE OF A DUST BALL

$$\ddot{r} = -G \frac{M}{r^2}$$

$$E = \frac{\dot{r}^2}{2} - G \frac{M}{r} = \text{const, say} = 0$$

$$\dot{r} = -\left(\frac{r_g}{r}\right)^{\frac{1}{2}}, \quad r_g \equiv 2GM$$

$$\int r^{\frac{1}{2}} dr = -\int r_g^{\frac{1}{2}} dt$$

$$r = \left(\frac{3}{2}r_g^{\frac{1}{2}}(t_* - t)\right)^{\frac{2}{3}}$$

Outer shell of radius *r* collapses under the gravitational pull of mass *M* in the interior

We need to solve a non-linear differential equation:

$$\Box \phi = -\frac{8\pi}{3}G(\rho - 3p) + V'(\phi)$$

How do we understand its solutions?

"EQUILIBRIUM" REGIME:

$$V'(\phi) = \frac{8\pi}{3} G(\rho - 3p)$$

chameleon mechanism

which one is realized depends on environment!

Andrei Frolov (SFU)

We need to solve a non-linear differential equation:

$$\Box \phi = -\frac{8\pi}{3}G(\rho - 3p) + V'(\phi)$$

How do we understand its solutions?

which one is realized depends on environment!

Andrei Frolov (SFU)

Ural 2011

We need to solve a non-linear differential equation:

$$\Box \phi = -\frac{8\pi}{3}G(\rho - 3p) + V'(\phi)$$

How do we understand its solutions?

which one is realized depends on environment!

Andrei Frolov (SFU)

Ural 2011

We need to solve a non-linear differential equation:

$$\Box \phi = -\frac{8\pi}{3}G(\rho - 3p) + V'(\phi)$$

How do we understand its solutions?

which one is realized depends on environment!

Andrei Frolov (SFU)

QUASI-STATIC BALL COLLAPSE IN F(R) GRAVITY

Potential well of a compact object:

$$\Delta \phi = -\frac{8\pi}{3}G\rho + \underbrace{V'(\phi)}_{\text{negligible}}$$

 $\Delta \Phi = 4\pi G \rho$

Excitations of f(R) degree of freedom ϕ and Newtonian potential Φ are related:

$$\phi \approx \phi_* - \frac{2}{3}\Phi$$

Effective Newton's constant changes (non-linearly)!

Andrei Frolov (SFU)

Ural 2011

BACK TO THE HISTORY OF THE UNIVERSE...

Andrei Frolov (SFU)

Dark Energy or Modified Gravity?

Ural 2011

How Do We See Past Opaque Plasma?

Andrei Frolov (SFU)

Ural 2011

BIG BANG NUCLEOSYNTHESIS

$$1 \quad n \longrightarrow {}^{1}H + e^{-} + \overline{v}$$

$$2 \quad {}^{1}H + n \longrightarrow {}^{2}H + \gamma$$

$$3 \quad {}^{2}H + {}^{1}H \longrightarrow {}^{3}He + \gamma$$

$$4 \quad {}^{2}H + {}^{2}H \longrightarrow {}^{3}He + n$$

$$5 \quad {}^{2}H + {}^{2}H \longrightarrow {}^{3}He + n$$

$$5 \quad {}^{2}H + {}^{2}H \longrightarrow {}^{4}He + n$$

$$7 \quad {}^{3}H + {}^{4}He \longrightarrow {}^{7}Li + \gamma$$

$$8 \quad {}^{3}He + n \longrightarrow {}^{3}H + {}^{1}H$$

$$9 \quad {}^{3}He + {}^{2}H \longrightarrow {}^{4}He + {}^{1}H$$

$$10 \quad {}^{3}He + {}^{4}He \longrightarrow {}^{7}Be + \gamma$$

$$11 \quad {}^{7}Li + {}^{1}H \longrightarrow {}^{4}He + {}^{4}He$$

$$12 \quad {}^{7}Be + n \longrightarrow {}^{7}Li + {}^{1}H$$

P

BIG BANG NUCLEOSYNTHESIS

INFLATION: AN ANSWER TO COSMIC CONSPIRACY?

inflation wipes the slate clean and re-seeds the structure

... but inflation has to end eventually!

INFLATION: AN ANSWER TO COSMIC CONSPIRACY?

inflation wipes the slate clean and re-seeds the structure

... but inflation has to end eventually!

CMB RIPPLES CARRY LOTS OF INFORMATION!

< D > < A > < B >

STILL UNANSWERED: HOW DOES INFLATION END?

Andrei Frolov (SFU)

STILL UNANSWERED: HOW DOES INFLATION END?

Andrei Frolov (SFU)

INSTEAD OF A CONCLUSION

