Plasma Physics for Microelectronics Technology

Department of Optics and Spectroscopy, St. Petersburg State University 22.04.2013

Dirk Uhrlandt, Leibniz-Institute for Plasma Science and Technology e.V. Greifswald

FROM THE IDEA TO THE PROTOTYPE

- 1. Plasma technology in Greifswald / Germany
- 2. Support of industrial applications: example EUV lithography
- 3. Excursus in plasma physics
- 4. Plasma generation in chambers

Introduction

Plasma:

gas with properties:

- electrical conducting
- radiating
- reactive

Species:

beside molecules and atoms

- free electrons, ions
- excited atoms and ions
- dissociation products, radicals

Plasma physics in Greifswald

Hanse Town Greifswald

Leibniz-Institute for Plasma Science and Technology e.V.

Leibniz Institute for Plasma Science and Technology e.V. (INP Greifswald)

- 1.1.1992 foundation of the INP
- Biggest non-university research institution for low temperature plasmas in Europe
- Annual budget 2012: 15.8 Mill. € (6.4 Mill. € third-party funds),
- Currently 179 employees (111 scientists and engineers)
- Application-oriented basic research "From the idea to the prototype"
 - Plasmas for materials and energy
 - Plasmas for environment and health

Research area Materials and Energy

Surfaces / Coatings

- PE-CVD processes for functional coatings
- Coatings with atmospheric pressure plasma jets

Catalytic materials

- Catalytic materials for hydrogen technology and photo-voltaic (fuel cells, water dissociation)
- Plasma processes for metal-polymer composites

Welding / Switching

 Diagnostics and simulation of arcs and thermal plasmas in production and electrical engineering

Plasma monitoring

- Diagnostics of transient molecular species with laser absorption spectroscopy (TDLAS, QCLAS)
- Study of plasma chemical processes

7

Bioactive materials

- PE-CVD processes at atmospheric pressure
- Cell adhesive coatings
- surfaces for medical devices

Polution degradation

- Study of dielectric barrier discharges (filaments, micro discharges)
- Treatment of exhaust gases, aerosols, odours, VOC

Plasma medicine / Decontamination

- Study of plasma-cell interaction, use of atmospheric pressure plasmas
- Decontamination of packaging, food, medical devices

Bioelectrics

- Study of multi-phase discharges (corona in water)
- Disinfection of water
- Treatment of drug remnants

2. Support of industrial applications of low-temperature plasmas

- an example from microelectronics technology

Current challenge for next generation micro processors production:

Patterning features less than 22 nm by lithography

Lateral resolution:

EUV lithography for next generation microprocessors

- EUV: 13.5 nm equals photon energy 90 eV
- patterning features less than 22 nm

Challenges:

- generation of EUV radiation
- focussing of EUV radiation by mirrors
 lifetime of mirrors, degradation of reflectivity
- masks for EUV lithography
 lifetime / degradation of photoresists
- contamination (chambers, mirrors, masks)

EUV generation

EUV emission

- emission by de-excitation of multicharged ions
- typically in a hot dense plasma (20 eV, Z=10 for Xe)

Requirements

- radiation power ~1000 W
- source size 1 mm
- spatial and temporal stability 0.1 %
- lifetime 3000 hours

EUV generation

Generation of a hot dense plasma

- 1. laser generated plasma (e.g. Nd:YAG-laser pulse cathode anode 100 mJ, 1...15 ns, EUV on Xe target) radiation 2. z-pinch 3. hollow-cathode pinch hot, dense Use of Pinch effect plasma B^2 $\frac{D}{r} = (Z+1)n_ikT$ $2\mu_0$ Source: U. Stamm et. al, J. Phys. D: Appl. Phys 37 (2004) 3244 magnetic field $B = \frac{\mu_0 I}{2}$ parameters: $2\pi r$ 2 ... 30 J per pulse ion density n_i view kHz repetition mean ionisation degree Z20 ... 50 kA 1 mm plasma size,
 - 40 W radiation intensity
 - 0.5 % conversion (in 2π)

EUV lithography

Processes and devices

- protection against energetic particles from dense plasma (debris)
- no transparent materials for EUV →mirrors instead of lenses, masks as mirrors
- safety against all particles and organic contaminations

multilayer mirror

- 50 to 100 Mo/Si layers as diffusion barrier
- capping layer
- 2 nm planarity required
- 72% reflectivity
 (86% losses for 6 mirrors)
- coating by PVD, CVD, ALD (most of them plasma assisted)

multilayer mask (also mirror)

- structured absorption layer made of Cr or TaN
- critical defects << 30 nm

photo resist

- organic polymer increase of solubility due to radiation
- challenge: length of polymer chains defines edges

EUV lithography

Plasma phenomena

- Absorption of EUV radiation in chamber volumes (photoionization in low pressure)
- Electron yield by EUV adsorption at solid surfaces
- Plasma generation in chamber volumes
- Ion bombarding of solid surfaces (mirrors, masks)
- Cracking of contaminations at the surfaces (EUV, electrons, ions)

Who can plasma physics support?

- Plasma generation and sustainment in the volume
- Plasma impact on surfaces
- Behaviour of contaminations in the plasma
- Reduction of contaminations by the plasma

Plasma in the EUV chamber

Chamber

- typically large dimension (view m)
- low pressure (view Pa)

Problem of any contaminations on the surfaces (mirrors, mask, resist)

self-cleaning of the chamber

- use of hydrogen filling
- small overpressure

Source: see e.g. US Patent 20110216298

Plasma generation in the chamber

 electron yield by photo-ionisation of the filling gas (e.g. containing hydrogen)

- 2. electron yield by EUV impact on surfaces
 - EUV photon generates up to 4 electrons in the solid
 - view % of them leave the solid
 - electron energy nearly 85 eV (EUV work function)

Plasma sustainment in the chamber

- ionisation of filling gas by electron impact
- space-charge confinement

Importance of the plasma in the chamber

- generation of fast ions potential degradation of surfaces (8)
- generation of H atoms use for self-cleaning of the chamber ③
- Estimation of plasma state and ion fluxes on the surfaces required

3. Excursus in plasma physics

Introduction

Processes in a plasma

- conduction and Ohmic heating,
- flow, heat conduction and convection,
- radiation and plasma-chemical reactions,
- energy- and material transfer to walls

Microscopic processes in a plasma

- acceleration of charge carriers in electric fields (electrons)
- collision processes:
 - momentum and energy transfer to neutrals
 - electronic excitation, ionisation, dissociation
- species with local density, mean drift velocity and mean kinetic energy (specific temperatures)

Kinetic theory

Binary collisions

elementary treatment: particle α and particle β

Binary collisions

elementary treatment: particle α and particle β

probability of a collision of particle α with one particle β in time step Δt :

density of species β x volume covered by particle α

 $W_{\alpha\beta} = N_{\beta} \pi (r_{\alpha} + r_{\beta})^2 |\mathbf{v} - \mathbf{V}| \Delta t$

collision cross section Q $_{\alpha \beta} x$ distance covered by particle α

collision frequency: $\upsilon = N_{\beta} Q_{\alpha \beta} |v-V|$ mean free path $\lambda = 1/N_{\beta} Q_{\alpha \beta}$

Energy and momentum conservation *Example: collision of an electron* (m_e, v_e) *and an atom* $(m_a >> m_e, v_a << v_e)$

• elastic collision

$$\frac{m_e \vec{v}_e + m_a \vec{v}_a = m_e \vec{v}_e' + m_a \vec{v}_a'}{\frac{m_e}{2} v_e^2 + \frac{m_a}{2} v_a^2} = \frac{m_e}{2} v_e'^2 + \frac{m_a}{2} v_a'^2}$$

exciting collision

$$\frac{m_e \vec{v}_e + m_a \vec{v}_a = m_e \vec{v}_e' + m_a \vec{v}_a'}{\frac{m_e}{2} v_e^2 + \frac{m_a}{2} v_a^2 = \frac{m_e}{2} v_e'^2 + \frac{m_a}{2} v_a'^2 + u_a^{ex}}$$

ionizing collision

$$m_{e}\vec{v}_{e} + m_{a}\vec{v}_{a} = m_{e}(\vec{v}_{e}' + \vec{v}_{e}'') + m_{a}\vec{v}_{a}'$$

$$\frac{m_{e}}{2}v_{e}^{2} + \frac{m_{a}}{2}v_{a}^{2} = \frac{m_{e}}{2}(v_{e}'^{2} + v_{e}''^{2}) + \frac{m_{a}}{2}v_{a}'^{2} + u_{a}^{io}$$

Plasma in front of isolated walls

- pairwise generation of electrons and positive ions
- almost no volume recombination at low pressure
- effective recombination at the wall surface
- movement of electrons and ions towards the walls

Space charge potential

Plasma in front of isolated walls

- accumulation of positive charge in the volume ٠
- negative charge at the wall •

Poisson equation

$$\Delta V = -\frac{e_0}{\varepsilon_0} (N_i - n_e)$$

drift in the electric field

$$b_{e} = \frac{e_{0}}{m_{e}} \frac{\lambda_{e}}{v_{e}} = \frac{1}{NQ_{e}} \sqrt{\frac{1}{3kT_{e}m_{e}}}$$

$$b_{i} = \frac{-e_{0}}{M_{i}} \frac{\lambda_{i}}{v_{i}} = \frac{1}{NQ_{i}} \sqrt{\frac{1}{3kT_{i}M_{i}}} << -b_{e}$$

$$j_{e}^{E} = n_{e}b_{e}E >> j_{i}^{E} = N_{i}b_{i}E$$

$$(+)$$

Plasma in front of isolated walls

steady-state condition:

- equal volume production and loss at the wall
- charge carrier fluxes must be equal

ambipolar diffusion

$$j_e = j_i$$

$$j_e^D + j_e^E = j_i^D + j_i^E$$

ambipolar potential

$$n_{e} \approx \frac{1}{E} \frac{D_{e}}{b_{e}} \frac{dn_{e}}{dx}$$

$$n_{e} \approx n_{e0} \exp\left(-\frac{b_{e}}{D_{e}}V\right)$$

$$j_{e} = j_{i} \approx \frac{b_{i}D_{e}}{b_{e}} \frac{dn_{e}}{dx}$$

Plasma in front of isolated walls

steady-state condition:

- equal volume production and loss at the wall
- charge carrier fluxes must be equal

ambipolar diffusion

$$j_e = j_i$$

$$j_e^D + j_e^E = j_i^D + j_i^E$$

ambipolar potential

$$n_{e} \approx \frac{1}{E} \frac{D_{e}}{b_{e}} \frac{dn_{e}}{dx}$$

$$n_{e} \approx n_{e0} \exp\left(-\frac{b_{e}}{D_{e}}V\right)$$

$$j_{e} = j_{i} \approx \frac{b_{i}D_{e}}{b_{e}} \frac{dn_{e}}{dx}$$

4. Conclusions for the plasma generation in chambers for EUV lithography

How can the plasma generation be estimated?

Assumptions

- 1. chamber dimension \sim 1 m,
- 2. walls ~ view m^2 mirrors
- 3. filling gas: H₂ at low pressure (~ view Pa, $N \sim 10^{15}$ cm⁻³)
- 4. EUV radiation P_{EUV} : ~ 1 kW (~ 10¹⁶ photons/s)
- 5. view reflections at mirrors with 30% losses each
- 6. electron yield γ per photon at the surface (~ 10¹⁵...10¹⁶ electrons/s, each with ~ 85 eV)
- 7. photo-ionisation due to EUV radiation (cross section)
- 8. plasma generation by electron collisions (cross sections)
- 9. plasma sustainment by space-charge confinement (very similar to low-pressure plasma process reactors)
- 10. impact of hydrogen ions on surfaces after acceleration in the space charge field

Electron collisions with hydrogen molecule

- momentum transfer
- rotational excitation
- vibrational excitation
- electronic excitation
- dissociation
- ionisation

Electron collisions with hydrogen molecule

- momentum transfer
- rotational excitation
- vibrational excitation
- electronic excitation
- dissociation
- ionisation

mean free path $\lambda = 1/NQ \sim 3$ cm

Electron impact ionisation of hydrogen

Plasma chemistry in hydrogen

- molecule dissociation
- molecule ionisation
- molecule ionisation
- attachment
- excitation
- atom ionisation
- atom ionisation

surface impact:

- ion bombardment
- reduction of carbon layers

 $H_{2} + e^{-} \rightarrow 2 H + e^{-}$ $H_{2} + e^{-} \rightarrow H_{2}^{+} + 2 e^{-}$ $H_{2} + e^{-} \rightarrow 2 H^{+} + 3 e^{-}$ $H_{2}^{+} + e^{-} \rightarrow 2 H$ $H + e^{-} \rightarrow H^{*} + e^{-}$ $H + e^{-} \rightarrow H^{*} + e^{-}$

$$H^* + e^- \rightarrow H^+ + 2 e^-$$

$$H_2^+$$
, H^+
x C + y H $\rightarrow C_x H_y$

How can the plasma generation be estimated?

Power budget estimation

- EUV absorption and fast electron yield
- space-charge confinement
- estimation of ion densities according to ionisation thresholds and power budget
- ion fluxes to the walls according to the volume ionisation rate and acceleration in the space charge field

Plasma simulation

- non-local electron kinetic equation (at least 1D)
- collisions, balance equations of excited and ionized states
- space-charge field
- ion fluxes to the walls from balance equations

Thank you for the attention !

Leibniz Institute of Plasma Science and Technology

Adress: Felix-Hausdorff-Str. 2, 17489 Greifswald, Germany Phone: +49 - 3834 - 554 300, Fax: +49 - 3834 - 554 301 E-mail: welcome@inp-greifswald.de, Web: www.inp-greifswald.de

