Физические принципа комбинирование Intrinsic- и Extrinsic- optical imaging:
- однофотонная и мультифотонная микроскопия in vivo
- оптическая когерентная томография
- ангулярно-флюоресцентная ламинарная томография

Vassiliy Tsytsarev

University of Maryland school of Medicine

E-mail: tsytsarev@umaryland.edu

Fluorescence Microscopy In Vivo and In Vitro:

specimen

2-photon Microscopy

2-photon excitation has a number of advantages:

- The longer wavelength excitation penetrates further into the sample
- Sometimes this means of excitation is less damaging
- Photobleaching or uncaging is possible with fine z-axis resolution
- Some fluorophores are only efficiently excited with 2 photon

Fluorescence microscopy: 2-photon versus confocal

2-photon and 1-photon excitation

In Vivo 2-photon imaging

2-photon Imaging: 3D reconstruction

Eisenstein, M; Getting inside their minds; Nature Methods 6, 773 - 781 (2009)

Optical Coherence Tomography

OCT: Eye Imaging

OCT Imaging of the Mice Neocortex

4-AP Model of the Cortical Epileptic Seizures

4-aminopyridine blocks a potassium current and in consequence enhances both EPSPs and IPSPs

4-AP at doses less than 10 µM, blocks potassium currents and enhances the release of synaptic neurotransmitters =→

Intracortical injection of 4-AP causes epileptic activity within few hours

Optical Coherent Tomography of the Epileptic Seizures

How the measurement is taken? Line scan angled FLOT

Comparing aFLOT and FLOT

Different depth

Different depth

- 1. Oblique illumination/detection enhanced depth selectivity.
- 2. Discriminating the depths of fluorescing origins at the acquisition phase . 15

15

edu -- 1:

aFLOT based VSDi for subcortex 3-D noninvasive neuronal function imaging

Schematic of the aFLOT based VSDi system. LD: laser diode; D: diffuser; O: objective lens; P: polarizer; CL: cylindrical lens; F: filter; DM: dichroic mirror.

Data acquisition

Every line illumination position—frame all the trial **VSD** Imaging CCD system camera N trials to be averaged for every position Repeat until finish scanning DM 0 0.15 stimulus onset 0.1 0.05 AF/F (%) -0.05 -0.1-0.15240 frame # 160 180 200 220 **Motor** Stage

Angular Fluorescence Laminar Tomography: Imaging of the Neural Activity

Conventional Voltage sensitive Dye Imaging

3D image reconstruction

Voltage-sensitive Fluorescent Proteins

A	VSD		Lk1	donor	Lk2	acceptor
Ci-VSP		QMKASSRRT 240	CISQNKRR 250		• • • • •	
VSFP2A VSFP2.1			CGR 'ISQNKRRCGR			
VSFP2.3 VSFP2.4			'ISQNKRR 'ISQCGR			· ·
Mermaid			'ISGDP			

Voltage-sensitive versus Ca-sensitive Dye Imaging

http://oilab.seas.wustl.edu -- 20

GRIN optics: imaging of the deep brain structures

(A) C2 whisker for stimulation (labeled in red); (B) Change in fluorescence $(\Delta F/F(\%))$, ordinate) in response to C2 whisker stimulation. Fluorescence signal was recorded in the small blue square marked on the cortical surface in Figure 3C, 60 ms; (C) Voltage-sensitive dye optical images showing single-whisker (C2) stimulation fluorescence changes in thalamus.

Thank you very much for your attention

