Визуализация физиологической активности головного мозга: оптические методы.

Vassiliy Tsytsarev

University of Maryland school of Medicine

E-mail: <u>tsytsarev@umaryland.edu</u>

- Localization of functions is one of the central question in fundamental and clinical neuroscience
- Functional imaging gives us detailed information about the location of brain activity.
- The light absorption, scattering and fluorescence is highly responsive to functional changes in neural tissue.

Functional Magnetic Resonanse Imaging (fMRI)

fMRI: Golden Standard of the Functional Brain Mapping

Brain Optical Imaging: Tasks and Abilities

Antrinsic Optical Imaging: Indirect Representation of the Neural

Activity by the example of Auditory Cortex

Extrinsic Optical Imaging (including Voltage-Sensitive Dye) : <u>Direct</u> <u>Representation</u> of the Neural Activity by the example of Auditory Cortex and Barrel Field

Photoacoustic Imaging: Physical Base and Biological Application

Other methods: Animal Models and Vizualization

Optical Imaging Intrinsic Signal (IOS)

- 1. Based on the monitoring intrinsic activity-related changes in tissue reflectance.
- 2. Offers a distinct advantage over extrinsic signal imaging, which may cause phototoxicity
- 3. Not requiring any contact with the tissue of interest.

Intrinsic Optical Signal: Depending Time Course of Wavelengths

(Grinvald *et al.* 2001. In-vivo Optical imaging of cortical architecture and dynamics)

930 nm 600 nm Visual stimulation (cat VI)

Main sources of Intrinsic optical signal:

1. An increase in the deoxyhemoglobin concentration, resulting from elevated oxygen consumption of the neurons due to their metabolic activity

2. Second component is a <u>delayed</u> one: an activity related increase in blood flow, causing a decrease in the <u>deoxyhemoglobin</u> concentration

3. Light scattering

Intrinsic Optical Imaging

Imaging Setup

Principle of Intrinsic Optical Imaging (IOS)

(Grinvald *et al.* 2001. In-vivo Optical imaging of cortical architecture and dynamics)

Intrinsic Optical Imaging of Auditory Cortex

Dependence of Signal Strength of Pure Tone Binaural Stimulation (2 kHz) from Stimulus Intensity

(<u>Tsytsarev</u> et al, 2004. Sound frequency representation in cat auditory cortex)

Tonotopicity of Auditory Cortex: IOS data

AAF: anterior auditory field AI: primary auditory field AII: secondary auditory field

(<u>Tsytsarev</u> et al, 2004. Sound frequency representation in cat auditory cortex)

SSS: suprasylvian sulcus DP: dorsoposterior auditory field AES: anterior ectosylvian sulcus PES: posterior ectosylvian sulcus

IOS: Functional Brain Mapping Application

Ca-sensitive Fluorescence Dye Application

А

A:retrograde labeling using dextran-conjugated calcium-sensitive dye.

D: expression of a genetically encoded calcium indicator in a particular cell type.

C:multi-cell bolus loading (MCBL) by injection of calcium indicator; results in unspecific cell loading.

E:multi-wavelengths labeling by combining MCBL with specific counterstains. Various fluorescent dyes can help to distinguish different cells

Ca-sensitive imaging: Cellular Resolution

Voltage-Sensitive Dye Imaging (VSDi)

1. Voltage-sensitive dyes are organic molecules which reside in a cell membrane and change their optical properties in response to a change in membrane potential.

IOS: Orientation Columns in the Visual Cortex

An orientation preference map, with color coding for the preferred orientation of a visual stimulus, according to the legend at the right.

Orientation and direction maps from ferret visual cortex obtained by optical imaging of intrinsic signals.

Principles of Voltage-Sensitive Dye Optical Imaging

(Grinvald *et al.* 2001. In-vivo Optical imaging of cortical architecture and dynamics)

Mechanism of the VSD optical features changes

Redistribution (A), reorientation (B) and the direct electrical modulation of the electronic structure of the dye molecule (C).

Main Parts of the VSD Imaging Setup

Excitattion and Emission Light Separation

VSD Imaging of Tonotopicity

(<u>Tsytsarev</u> *et al*, 2009. Optical imaging of interaural time difference representation in rat auditory cortex)

Color-coded tonotopic map of sound frequencies showing the organization of subfields of the auditory cortex

The main goal:

to create a functional map of the directional sensitivity of the barrel field using Voltage-Sensitive Dye Optical Imaging

VSD signal in the Barrel Field

Vibrissae System: Angular Selectivity in the Barrel Field?

Stimuli Arrangement (color coded)

Whisker's Stimulator

1 mm

VSD optical patterns evoked by different stimuli <u>http://oilab.seas.wustl.edu</u> -- 24

Directional Whisker Stimulation

Studying of the Cortical Representation of Whisker Directional Deflection Using Voltage-Sensitive Dye Optical Imaging

VSD Pseudocolor Pattern in the Region of Interest

Magnetized Whisker inside the Stimulator

Barrel Field

Direction of the Deflection

Activity Centers in the Single Coordinates System

Borders of the Activity Patterns after thresholding

Thank you very much for your attention

