
Ordering and instabilities in 
dense bacterial populations 

Lev Tsimring
 BioCircuits Institute

University of California, San Diego

Nizhni Novgorod University, June 29, 2011



2

• Scott Cookson
• Octavio Mondragón-Palomino
• Tal Danino
• Dmitri Volfson 
• William Mather
• Jeff Hasty

• Denis Boyer
• Sirio Orozco-Fuentes

Collaborators

UCSD

UNAM, Mexico



Bacteria are everywhere

3



Bacteria are everywhere

3



Bacteria are everywhere

3



Bacteria are everywhere

3

• 107-109 species
• 90,000 species of bacteria in human gut
• 10x more cells in human body than human cells 
• bacterial biomass: 5⋅1011 ton; 
     10x biomass of all animals and plants 
• overall on Earth: ~1030 cells



E.coli biofilms
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Biofilms
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Developmental cycle of biofilm formation

(Monds and O’Toole, 2009)

Important factors:
• motility/chemotaxis
• adhesion
• extracellular matrix (EPS)

• cell-cell communication/cooperation
• gene regulation/adaptation
• mechanical stresses/flows



Modeling of biofilm formation
• ODE/PDE mass transport and biochemical reactions models: 

–  reaction/diffusion for biomass and substrates
–  fluid dynamics for the liquid flow
–  structural mechanics for biofilm growth and EPS
–  AQUASIM; Wanner & Reichert, 1996

• Discrete-element models
– cellular automata (rule-based); Wimpenny & Colasanti, 1997
– individual cells; BacSim, Kreft et al, 1998
– biomass “particles”; Picioreanu et al, 2004
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• Industrial applications

•Bacteria and viruses

Granular rods at different scales
• Colloids and nano-particles

• Biomolecules

E.coli Tobacco mosaic virus
microtubules
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Ordering of vibrated granular rods
Blair, Neicu, Kudrolli, 2003

Narayan, Menon, Ramaswamy, 2006

smectic tetratic nematic

Vertical alignment
(1-layer smectic)



a typical microfluidic setup
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3µm

1µm



A typical experiment
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A typical experiment
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Local nematic order is spontaneously formed... Mechanism?
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Microfluidic Tesla device
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Experiments in an open channel
localized

uniform
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Experiments in an open channel
localized

uniform
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Data processing (PIV)
localized
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MD simulations

Virtual balls

• γn normal damping
• µ friction
• kn,t spring constants

Contact forces

Newton equations
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MD simulations

Virtual balls

• γn normal damping
• µ friction
• kn,t spring constants

In addition to this, rods grow and divide:

Contact forces

Newton equations
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MD simulations

Localized initial conditions
Pressure-independent growth
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MD simulations

Localized initial conditions

color: orientation

Pressure-independent growth



16

MD simulations

Localized initial conditions

color: orientation

Pressure-independent growth
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MD simulations
Localized initial conditions
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MD simulations
Uniform initial conditions
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MD simulations
Different aspect ratios

Persistent 
disorder
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MD simulations
Uniform initial conditions
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Nematodynamics of growing cells

(no thermal motion)

Hard-core repulsion 
(critical density is dependent on packing)

cf. Doi & Edwards, 1993
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Nematodynamics equations (1D problem)
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Spatially-uniform dynamics

Normalized variables:



A typical experiment
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A typical experiment
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Cell streaming



Cell streaming mechanism
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Cell streaming mechanism
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fast slowmedium

• fast cells remain small and escape
• slow cells grow and slow down even more
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MD simulations

Newton equations

Cell growth and division

Position-dependent asymptotic cell diameter

size-dependent friction
Newton equations
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MD simulations

Newton equations

Cell growth and division

Position-dependent asymptotic cell diameter

size-dependent friction
Newton equations
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Continuum modeling

Incompressible fluid dynamics

“Asymptotic” cell size depends on position
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Continuum modeling
1D case; overdamped limit

linear velocity profile:
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Continuum modeling
1D case; overdamped limit

linear velocity profile:



29

Narrow channel: symmetric regime
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Narrow channel: symmetric regime
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Narrow channel: symmetric regime
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Narrow channel: asymmetric regime
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Narrow channel: asymmetric regime
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Narrow channel: asymmetric regime
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Narrow channel: oscillatory regime
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Narrow channel: oscillatory regime
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Narrow channel: oscillatory regime
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Long “side trap”

Short rods, A=2
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Long “side trap”

Short rods, A=2
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Long “side trap”

Long rods, A=5
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Long “side trap”

Long rods, A=5
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Long “open trap”

Short rods, A=2
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Long “open trap”

Short rods, A=2



A typical experiment
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A typical experiment
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Buckling instability



Orientational order parameter
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Cell buckling mechanism
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tim
e

• cell growth increases longitudinal component 
  of stress tensor
• lateral displacement relieves compression



MD simulations

38

A=3

A=6

A=4
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Continuum modeling
Compressed non-growing rods

Elastic energy

Strain tensor

x

y

lateral displacement relieves compression
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Continuum modeling
(dynamical model)

Lagrangian

Dissipative function (due to friction)

Euler-Lagrange equation

growth rate
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Continuum modeling - growing rods
Linear velocity profile Parabolic pressure profile

Dynamic equation

a*=2500

growth rate eigenmodes
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Conclusions
• Cell growth and ensuing expansion flow generates ordering in 

populations

• Size- and position-dependent friction leads to streaming 
instability

• Anisotropic stresses generated by cell growth lead to 
buckling.

• Experiments in microfluidic chambers, MD simulations, and 
continuum theory based on nematodynamics and elasticity 
theory are in qualitative agreement. 

• Growing and dividing cells (biograins): interesting application of 
granular physics
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Future work: “real” biofilms
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Future work: “real” biofilms
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flow

flow

• track cell growth and movement
• measure mechanical properties of EPS (periodic flow)
• vary flow parameters (shear, temperature, chemicals)
• track gene expression in situ



(E.coli) biofilms are important!
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Spanish MEP Francisco Sosa-Wagner holds a cucumber during a debate in the European Parliament on the 
recent outbreak of E.coli poisoning in Germany.


