Ordering and instabilities in dense bacterial populations

Lev Tsimring

BioCircuits Institute

University of California, San Diego

Nizhni Novgorod University, June 29, 2011

Collaborators

- 10⁷-10⁹ species
- 90,000 species of bacteria in human gut
- 10x more cells in human body than human cells
- bacterial biomass: 5 · 10¹¹ ton;
 - 10x biomass of all animals and plants
- overall on Earth: ~10³⁰ cells

E.coli biofilms

Biofilms

Developmental cycle of biofilm formation

(Monds and O'Toole, 2009) TRENDS in Microbiology

Important factors:

- motility/chemotaxis
- adhesion
- extracellular matrix (EPS)
- cell-cell communication/cooperation
- gene regulation/adaptation
- mechanical stresses/flows

Modeling of biofilm formation

- ODE/PDE mass transport and biochemical reactions models:
 - reaction/diffusion for biomass and substrates
 - fluid dynamics for the liquid flow
 - structural mechanics for biofilm growth and EPS
 - AQUASIM; Wanner & Reichert, 1996
- Discrete-element models
 - cellular automata (rule-based); Wimpenny & Colasanti, 1997
 - individual cells; BacSim, Kreft et al, 1998
 - biomass "particles"; Picioreanu et al, 2004

Granular rods at different scales

• Industrial applications

•Bacteria and viruses

E.coli

Tobacco mosaic virus

• Colloids and nano-particles

• Biomolecules

microtubules

Ordering of vibrated granular rods

Blair, Neicu, Kudrolli, 2003

Vertical alignment (1-layer smectic)

Narayan, Menon, Ramaswamy, 2006

a typical microfluidic setup

A typical experiment

A typical experiment

Local nematic order is spontaneously formed... Mechanism?

Microfluidic Tesla device

Experiments in an open channel

localized

uniform

Experiments in an open channel

localized

uniform

Experiments in an open channel

localized

uniform

localized Data processing (PIV)

Nematic order parameter

$$Q_{ij} = \langle u_i u_j - d^{-1} \delta_{ij} \rangle$$
$$Q_{ij} = 2Q(n_i n_j - \frac{1}{2} \delta_{ij})$$

Magnitude

$$Q = \left[\langle \cos 2\phi \rangle^2 + \langle \sin 2\phi \rangle^2 \right]^{1/2}$$

- γ_n normal damping
- μ friction
- $k_{n,t}$ spring constants

Contact forces

$$\mathbf{v}^{ij} = \mathbf{v}^{i} - \mathbf{v}^{j} + (R^{i}\omega^{i} + R^{j}\omega^{j})\mathbf{t}^{ij}$$

$$\upsilon_{n} = (\mathbf{v}^{i} - \mathbf{v}^{j})\mathbf{n}^{ij}, \quad \upsilon_{t} = (\mathbf{v}^{i} - \mathbf{v}^{j})\mathbf{t}^{ij} + (R^{i}\omega^{i} + R^{j}\omega^{j})$$

$$\delta_{n} = R^{i} + R^{j} - |\mathbf{r}^{i} - \mathbf{r}^{i}| > 0$$

$$F_{n} = k_{n}\delta_{n} - 2\gamma_{n}m_{e}\upsilon_{n}$$

$$F_{t} = -\operatorname{sign}(\delta_{t})\operatorname{min}(|k_{t}\delta_{t}|, |\mu_{t}F_{n}|), \quad \delta_{t}(t) = \int_{t_{0}}^{t} \upsilon_{t}(\tau)d\tau$$

Newton equations

$$m^{i} \frac{d^{2} \mathbf{r}^{i}}{dt^{2}} = m^{i} \mathbf{g} + \sum_{c} \mathbf{F}^{ic},$$
$$I^{i} \frac{d\omega^{i}}{dt} = R^{i} \sum_{c} F^{ic}_{t},$$

Contact forces • γ_n normal damping $\mathbf{v}^{ij} = \mathbf{v}^i - \mathbf{v}^j + (R^i \omega^i + R^j \omega^j) \mathbf{t}^{ij}$ • µ friction $v_n = (\mathbf{v}^i - \mathbf{v}^j) \mathbf{n}^{ij}, \quad v_i = (\mathbf{v}^i - \mathbf{v}^j) \mathbf{t}^{ij} + (R^i \omega^i + R^j \omega^j)$ • $k_{n,t}$ spring constants $\delta_n = R^i + R^j - |\mathbf{r}^i - \mathbf{r}^i| > 0$ Virtual balls $F_n = k_n \delta_n - 2 \gamma_n m_e v_n$ **F** $F_t = -\operatorname{sign}(\delta_t) \min(|k_t \delta_t|, |\mu_t F_n|), \quad \delta_t(t) = \int_{t_t}^t v_t(\tau) d\tau$ $\widetilde{\mathbf{r}}_{2}$ \mathbf{F}_{2} Newton equations $m^{i}\frac{d^{2}\mathbf{r}^{i}}{dt^{2}}=m^{i}\mathbf{g}+\sum_{c}\mathbf{F}^{ic},$ $I^{i}\frac{d\omega^{i}}{dt} = R^{i}\sum_{\alpha} F_{t}^{ic},$

In addition to this, rods grow and divide:

$$l = l_0 \exp[\alpha t], \text{ if } l > l_m \simeq 2l_0, \text{ divide}$$

 $82d \times 164d \times 1d$ open channel Localized initial conditions Pressure-independent growth

 $82d \times 164d \times 1d$ open channel Localized initial conditions Pressure-independent growth

color: orientation

 $82d \times 164d \times 1d$ open channel Localized initial conditions Pressure-independent growth

color: orientation

Localized initial conditions

17

Uniform initial conditions

Different aspect ratios

Uniform initial conditions

Nematodynamics of growing cells

$$\frac{DQ_{\alpha\beta}}{Dt} = (1 - Q^2) [\kappa_{\alpha\gamma}^{[a]} Q_{\gamma\beta} - Q_{\gamma\beta} \kappa_{\alpha\gamma}^{[a]} + B \kappa_{\alpha\beta}^{[s]}]$$

$$\partial_t \rho + \nabla(\rho \mathbf{v}) = \alpha \rho \qquad \text{(no thermal motion)}$$

$$\frac{D\rho \mathbf{v}}{Dt} = -\nabla p - \mu \rho \mathbf{v}$$

cf. Doi & Edwards, 1993

$$p = \frac{A\rho}{1 - \rho/\rho_c(Q)}$$

Hard-core repulsion (critical density is dependent on packing) $\rho_c(Q) = R_c + (1 - R_c)Q$

Nematodynamics equations (1D problem)

$$\partial_t \rho + \partial_z (\rho v) = \alpha \rho$$

$$\partial_t q + v \partial_z q = B(1 - q^2) \partial_x v$$

$$\partial_t (\rho v) + v \partial_z (\rho v) = -\partial_z p - \mu \rho v$$

$$q \equiv Q \equiv Q_{xx}, v \equiv v_x$$

Spatially-uniform dynamics $\rho = \rho(t); q = q(t); v = v_0(t)x; p = p_0(t)(1 - x^2 / L^2)$

$$\begin{split} \dot{\rho} &= \rho(\alpha - v_0) \\ \dot{q} &= B(1 - q^2)v_0 \\ \dot{v}_0 &= 2\rho^{-1}L^{-2}p_0 - (\alpha + \mu)v_0 \end{split}$$

Normalized variables: $\tilde{t} = \alpha t; \tilde{v} = Bv;$ $\tilde{p}_o = p_0 / L^2$

A typical experiment

A typical experiment

MD simulations

7

size-dependent friction

Newton equations

$$m_i \frac{d\mathbf{v}_i}{dt} = \sum_c \mathbf{F}^{ic} - \mathbf{g}(f_i) \mathbf{v}_i$$
$$I_i \frac{d\omega_i}{dt} = R_i \sum_c \mathbf{F}_t^{ic} - \mathbf{g}(f_i) \omega_i$$

Cell growth and division

Position-dependent asymptotic cell diameter

$$\frac{df_i}{dt} = \gamma[c(z) - f_i]$$

26

MD simulations

1--

size-dependent friction

Newton equations

$$m_i \frac{d\mathbf{v}_i}{dt} = \sum_c \mathbf{F}^{ic} - \mathbf{g}(f_i) \mathbf{v}_i$$
$$I_i \frac{d\omega_i}{dt} = R_i \sum_c \mathbf{F}_t^{ic} - \mathbf{g}(f_i) \omega_i$$

Cell growth and division

 $l = l_0 \exp[\alpha t], \text{ if } l > l_m \simeq 2l_0, \text{ divide}$

Position-dependent asymptotic cell diameter

26

Incompressible fluid dynamics

$$\begin{aligned} \frac{D\vec{v}}{Dt} &= -\vec{\nabla}p - g(f)\vec{v} + \mu\nabla^2\vec{v} \\ \frac{Df}{Dt} &= \gamma \ (c(\vec{r}) - f) \\ \vec{\nabla} \cdot \vec{v} &= \alpha \end{aligned}$$

"Asymptotic" cell size depends on position

1D case; overdamped limit

$$\begin{split} \frac{\partial p}{\partial z} &= -g(f)v + \mu \frac{\partial^2 v}{\partial z^2} \\ \frac{\partial f}{\partial t} + v \frac{\partial f}{\partial z} &= \gamma \left(c(z) - f \right) \\ \frac{\partial v}{\partial z} &= \alpha \end{split}$$

linear velocity profile:

$$v(z,t) = \alpha z + v_0(t)$$

1D case; overdamped limit

$$\begin{aligned} \frac{\partial p}{\partial z} &= -g(f)v + \mu \frac{\partial^2 v}{\partial z^2} \\ \frac{\partial f}{\partial t} + v \frac{\partial f}{\partial z} &= \gamma \left(c(z) - f \right) \\ \frac{\partial v}{\partial z} &= \alpha \end{aligned}$$

linear velocity profile:

$$v(z,t) = \alpha z + v_0(t)$$

Narrow channel: symmetric regime

Narrow channel: symmetric regime

Narrow channel: symmetric regime

Narrow channel: asymmetric regime

Narrow channel: asymmetric regime

Narrow channel: asymmetric regime

Narrow channel: oscillatory regime

Narrow channel: oscillatory regime

Narrow channel: oscillatory regime

Short rods, A=2

Short rods, A=2

Long rods, A=5

Long rods, A=5

Long "open trap"

Short rods, A=2

Long "open trap"

Short rods, A=2

A typical experiment

A typical experiment

Orientational order parameter

Cell buckling mechanism

- cell growth increases longitudinal component of stress tensor
- lateral displacement relieves compression

MD simulations

A=4

A=3

 $F_{el} = \frac{1}{2} \int d\mathbf{r} \left[\lambda_{xx} u_{xx}^2 + \lambda_{yy} u_{yy}^2 + \lambda_{xy} u_{xy}^2 + \lambda_1 u_{xx} u_{yy} + \xi (\partial_x^2 u_y)^2 \right]$

Strain tensor

$$u_{ij} = \frac{1}{2} (\partial_j u_i + \partial_i u_j + \partial_i u_k \partial_j u_k) \qquad u_{xx} = -p_x / \lambda_{xx} + \frac{1}{2} (\partial_x \tilde{u}_y)^2, \quad u_{xy} = \frac{1}{2} \partial_x \tilde{u}_y$$
$$w = \tilde{u}_y$$
$$F_{el} = \frac{1}{2} \int d\mathbf{r} \left[p_x^2 / \lambda_{xx} - p_x (\partial_x w)^2 + \frac{1}{4} \lambda_{xy} (\partial_x w)^2 + \xi (\partial_x^2 w)^2 \right]$$

lateral displacement relieves compression

Continuum modeling (dynamical model)

$$L = \frac{1}{2} \int d\mathbf{r} \, \dot{w}^2 - F_{el} \qquad \text{Lagrangian}$$

 $F_d = \mu \int d\mathbf{r}(\dot{w})^2/2$ Dissipative function (due to friction)

$$\frac{\partial}{\partial t} \left(\frac{\delta L}{\delta \dot{w}} \right) - \frac{\delta L}{\delta w} = -\frac{\delta F_d}{\delta \dot{w}} \qquad \text{Euler-Lagrange equation}$$

$$\mu \partial_t w = (\lambda_{xy}/4 - p_x) \partial_x^2 w - \xi \partial_x^4 w$$

$$s = \mu^{-1}[(p_x - \lambda_{xy}/4)k^2 - \xi k^4]$$
 growth rate

Continuum modeling - growing rods

Dynamic equation

$$\partial_t w + ax \partial_x w = -\left[\frac{a}{2}(L_x^2/4 - x^2) - \lambda_{xy}/4\mu\right]\partial_x^2 w - \frac{\xi}{\mu}\partial_x^4 w$$

Conclusions

- Cell growth and ensuing expansion flow generates ordering in populations
- Size- and position-dependent friction leads to streaming instability
- Anisotropic stresses generated by cell growth lead to buckling.
- Experiments in microfluidic chambers, MD simulations, and continuum theory based on nematodynamics and elasticity theory are in qualitative agreement.
- Growing and dividing cells (*biograins*): interesting application of granular physics

Publications

- D.Volfson, S. Cookson, J. Hasty, L. S. Tsimring, Biomechanical ordering of dense bacterial populations, Proc. Natl. Acad. Sci. USA, 105, no. 40, 15346-15351 (2008)
- W. Mather, O. Mondragón-Palomino, T. Danino, J. Hasty L. S. Tsimring. Streaming instability in growing cell populations, Phys. Rev. Lett., **104**, 208101 (2010)
- D. Boyer, W. Mather, O. Mondragón-Palomino, S. Orozco-Fuentes, T. Danino, J. Hasty, L. S. Tsimring. Buckling instability in ordered bacterial colonies. Phys. Biol., 8, 026008 (2011)

Future work: "real" biofilms

Future work: "real" biofilms

Future work: "real" biofilms

- track cell growth and movement
- measure mechanical properties of EPS (periodic flow)
- vary flow parameters (shear, temperature, chemicals)
- track gene expression *in situ*

(E.coli) biofilms are important!

Spanish MEP Francisco Sosa-Wagner holds a cucumber during a debate in the European Parliament on the recent outbreak of E.coli poisoning in Germany.