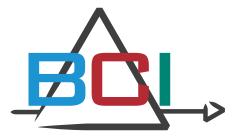
Stochastic dynamics of small gene regulation networks

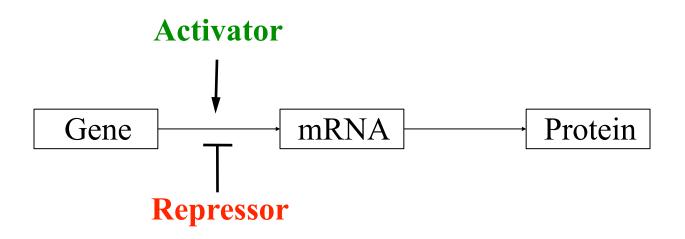
Lev Tsimring

BioCircuits Institute University of California, San Diego



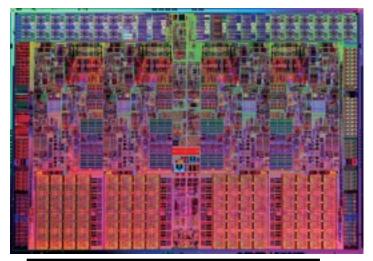
Nizhni Novgorod, June, 2011

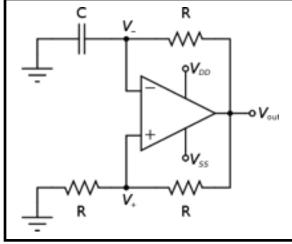
Central dogma

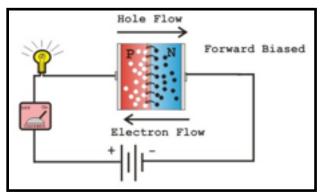


All cells have the same genes... ...So why cell differ from each other?

Transcriptional Regulation Activator – increases rate of production Repressor – decreases rate of production

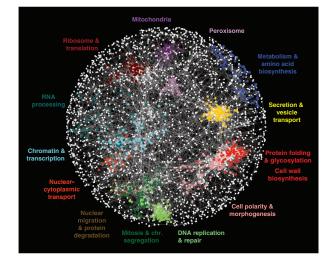


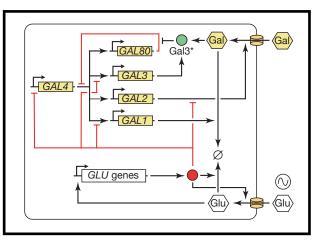




Systems Biology

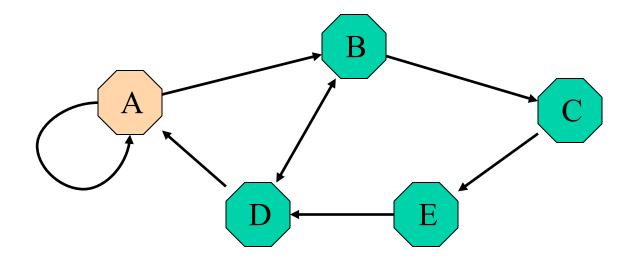
scale



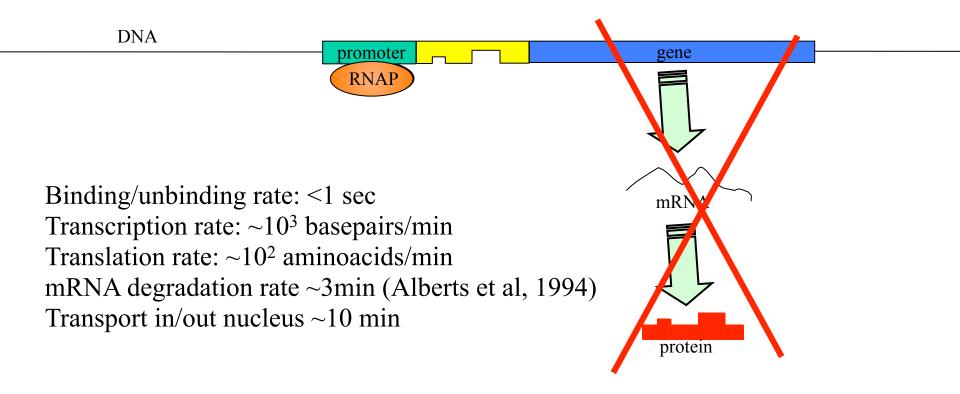


Gene regulation networks

- Proteins affect rates of production of other proteins (or themselves)
- This leads to formation of *networks* of interacting genes/proteins
- Large stochastic fluctuations
- Sub-networks are *non-Markovian*, even if the whole system is
- Different reaction channels operate at vastly different time scales and number densities



Auto-repressor: A cartoon



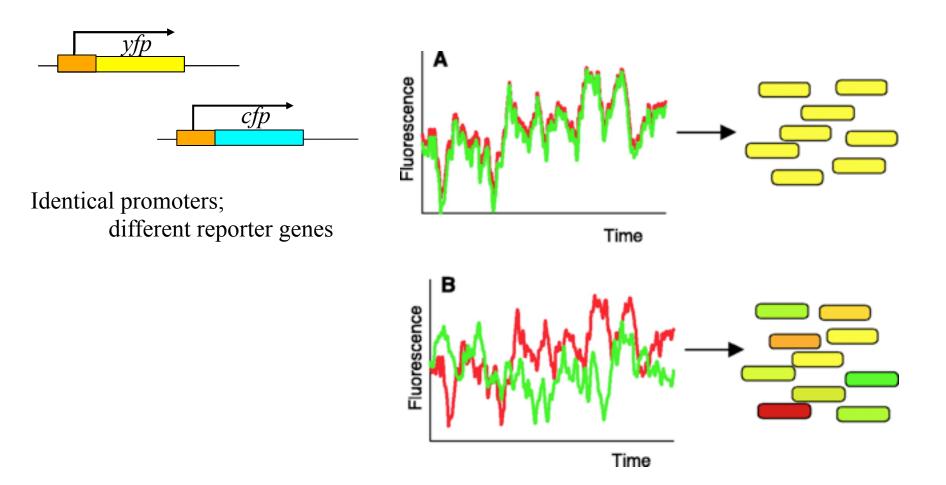
Vastly different time scales: need for reduced descriptions

Transients in gene regulation

- Genetic circuits are never at a fixed point:
 - Intrinsic noise
 - Extrinsic noise
 - External signaling
 - Oscillations:

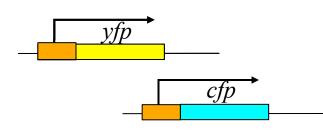
circadian rhythms; ultradian rhythms; cell cycle

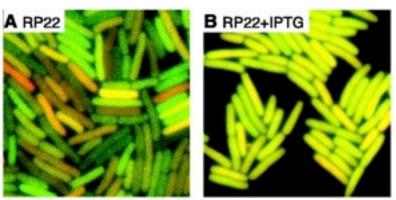
Intrinsic vs. Extrinsic noise?



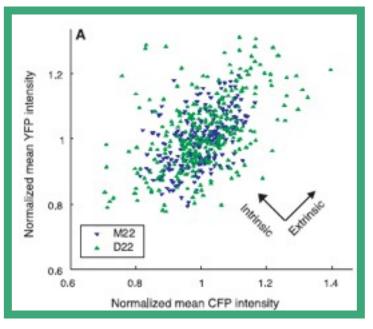
Elowitz et al, 2002

Intrinsic vs. Extrinsic noise?



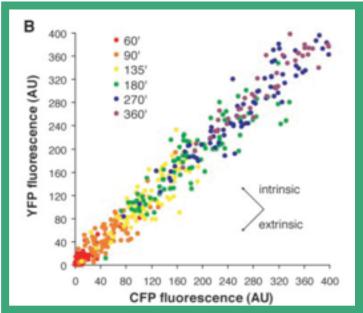


Bacteria



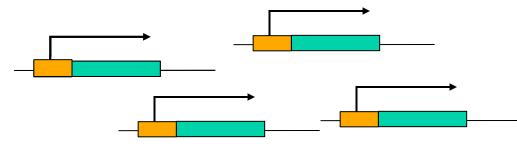
Elowitz et al, 2002

Yeast



Raser & O'Shea, 2004 Intrinsic noise is smaller in Yeast

Intrinsic vs. Extrinsic noise



Multiple identical promoters; same reporter gene

Gene expression:

$$G_{M} = \sum_{i=1}^{M} \langle g_{i} \rangle; \quad V_{M} = \sum_{i=1}^{M} \left[\langle \tilde{g}_{i}^{2} \rangle + \sum_{j \neq i} \langle \tilde{g}_{i} \tilde{g}_{j} \rangle \right]$$

For identical promoter-gene pairs:

$$G_M = Mg; \quad V_M = Mv + M(M-1)c$$

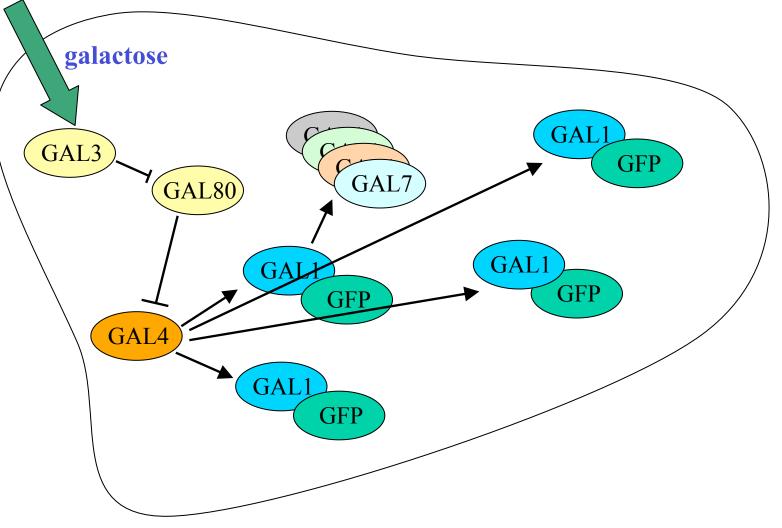
For intrinsic noise (c=0), $V_M = Mv$; $CV \propto M^{-1/2}$

For correlated (extrinsic) noise (*c*=*v*), $V_M = M^2 v$; CV = const(M)

Volfson et al., Nature, 2006

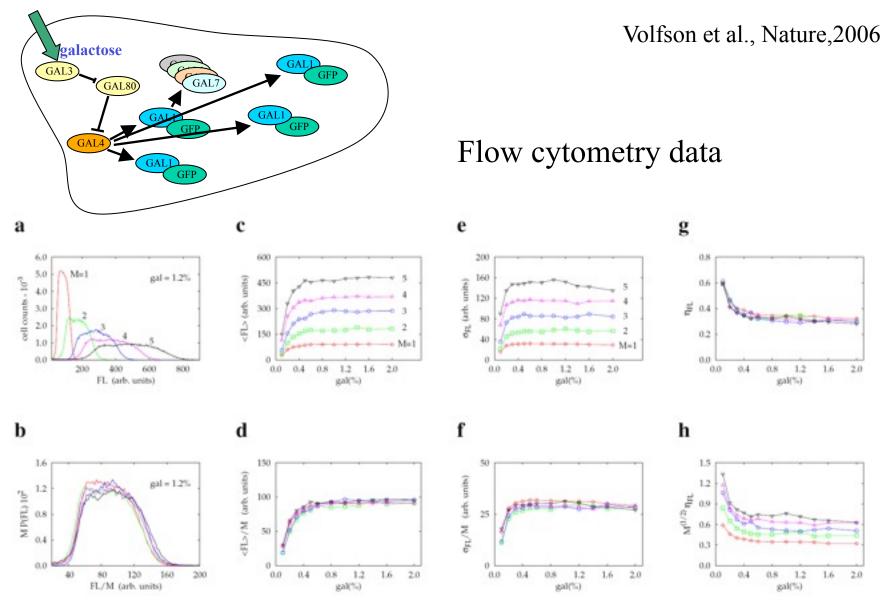
Intrinsic vs. Extrinsic noise

Saccaromyces cerevisiae (yeast); galactose utilization circuit



Volfson et al., Nature, 2006

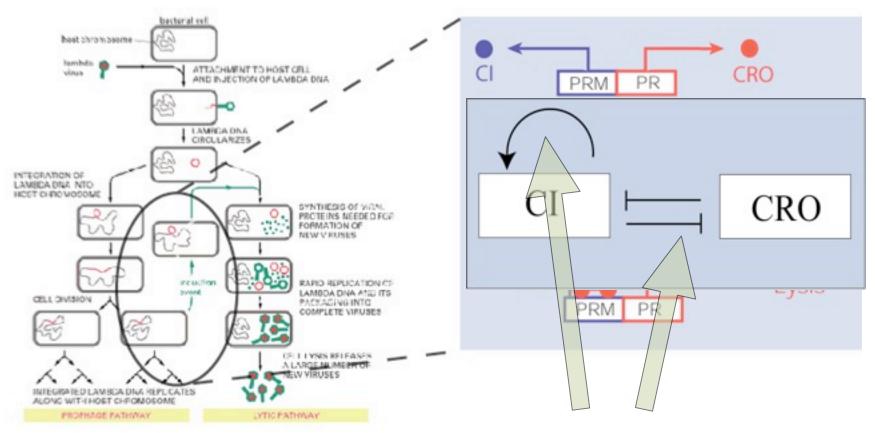
Intrinsic vs. Extrinsic noise



Intrinsic noise is small in Yeast

Bistability: λ -Phage Life Cycle

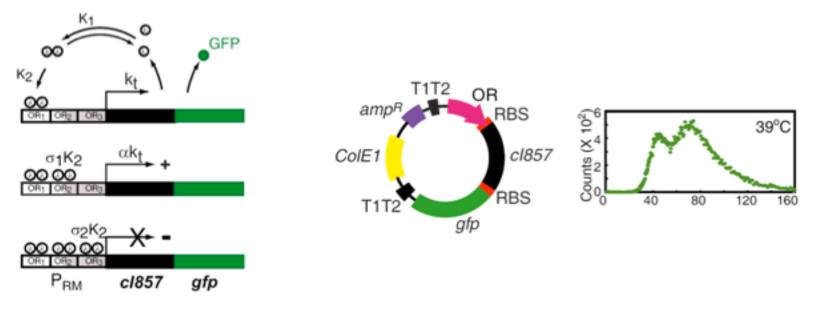
M.Ptashne, 2002

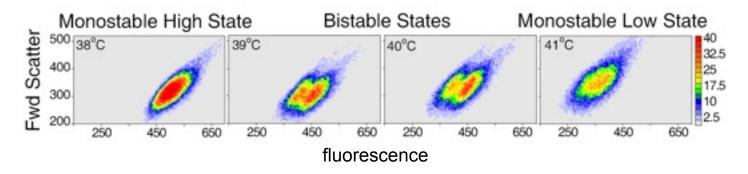


Two positive feedback loops

Genetic noise

Experiments with synthetic bistable autoregulatory circuit in *E. coli* (derived from λ -phage)



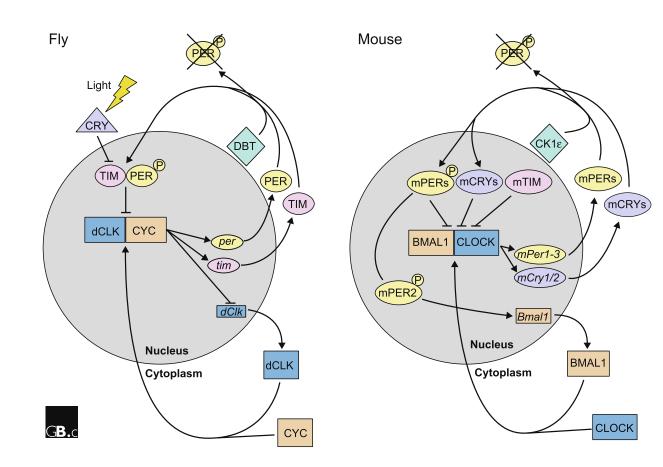


Isaacs et al., 2003

Oscillations: circadian clock

Neurospora crassa

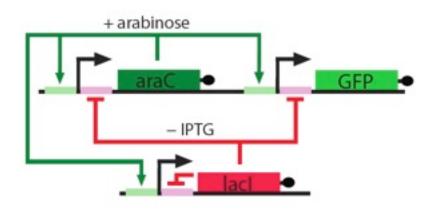
Courtesy of Stu Brody



Synthetic gene oscillator in in E.coli

Stricker et al., Nature, 456(7221):516-9 (2008).

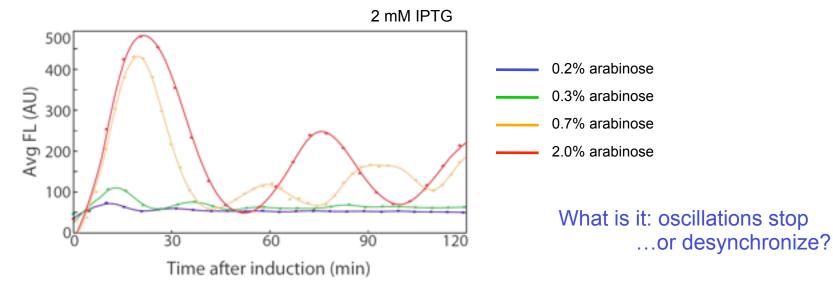
Design: use AraC as activator and LacI as repressor



- Three plasmid with identical promoters: (i) activator, (ii) repressor, (iii) reporter
- All proteins are tagged with ssRA tag for fast enzymatic decay (~15-20min)
- Two experimental "knobs": Arabinose required for activator binding and IPTG prohibits repressor binding

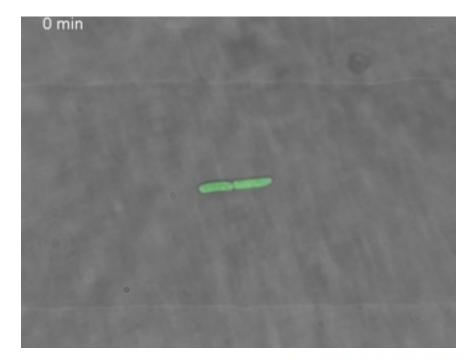
Flow cytometry:

time series of fluorescence in initially synchronized batch culture of cells

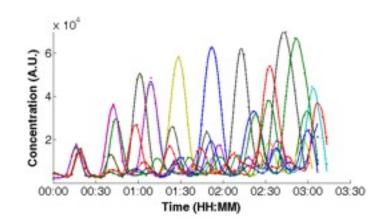


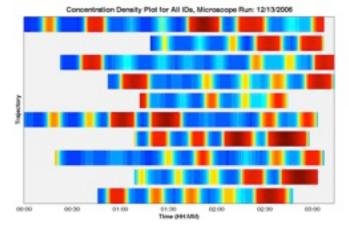
Single cell experiments

Stricker et al., Nature, 456(7221):516-9 (2008).



2mM IPTG 0.7% arabinose



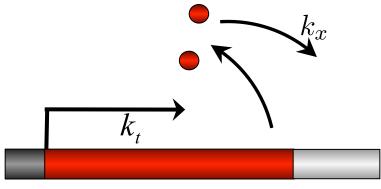


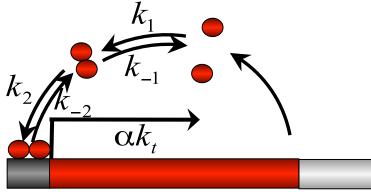
Modeling gene regulation

Techniques for modeling gene networks dynamics

- Boolean dynamics
- Deterministic Equations (Mass Action kinetics)
- Monte-Carlo Simulations; Master Equations
- Stochastic Differential Equations

Modeling gene regulation: Single gene circuit





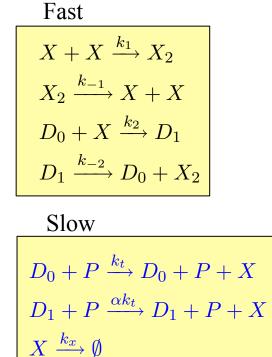
Binding/unbinding rate: $\leq 1 \sec$ Transcription rate: $\sim 10^3$ basepairs/min Translation rate: $\sim 10^2$ aminoacids/min mRNA degradation rate ~ 3 min Transport in/out of nucleus 10min..10hrs Protein degradation 10min..hours Fast

$$X + X \xrightarrow{k_1} X_2$$
$$X_2 \xrightarrow{k_{-1}} X + X$$
$$D_0 + X \xrightarrow{k_2} D_1$$
$$D_1 \xrightarrow{k_{-2}} D_0 + X_2$$

Slow

$$D_0 + P \xrightarrow{k_t} D_0 + P + X$$
$$D_1 + P \xrightarrow{\alpha k_t} D_1 + P + X$$
$$X \xrightarrow{k_x} \emptyset$$

Mass action kinetics



$$\dot{x} = -2k_1x^2 + 2k_{-1}x_2 - k_xx + k_tp_0(d_0 + \alpha d_1)$$

$$\dot{x}_2 = k_1x^2 - k_{-1}x_2 - k_2d_0x_2 + k_{-2}d_1$$

$$\dot{d}_0 = -k_2d_0x_2 + k_{-2}d_1$$

$$\dot{d}_1 = k_2d_0x_2 - k_{-2}d_1$$

Separation of scales:

$$x_{t} = x + 2x_{2} + 2d_{1}$$

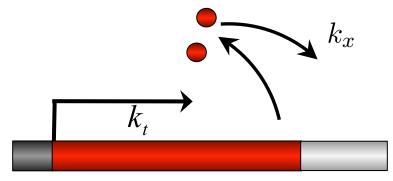
$$d = d_{0} + d_{1}$$

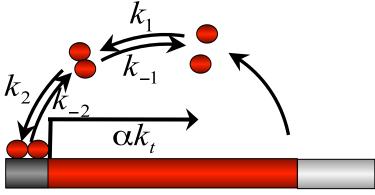
$$x_{2} = K_{1}x^{2} \qquad K_{1} = k_{1}/k_{-1}$$

$$d_{1} = K_{2}d_{0}x_{2} \qquad K_{2} = k_{2}/k_{-2}$$

$$\dot{x}_{t} = \mathcal{P}_{x}\dot{x} = k_{t}p_{0}d\frac{1+\alpha K_{1}K_{2}x^{2}}{1+K_{1}K_{2}x^{2}} - k_{x}x$$
$$\mathcal{P}_{x} = x_{t}'(x) = 1 + 4K_{1}x + \frac{4dK_{1}K_{2}x^{2}}{1+K_{1}K_{2}x^{2}}$$

Including fluctuations: Monte-Carlo Simulations





Time between reactions:

Jump probabilities: $P_1(2X \to X - 2) = k_1 x(x - 1)$ $P_2(X_2 \to 2X) = k_{-1} x_2$ $P_3(D_0 \to D_0 + X) = k_t d_0 x$ $P_4(D_1 \to D_1 + X) = \alpha k_t d_1 x$ $P_5(D_0 \to D_1) = k_2 d_0 x$ $P_6(D_1 \to D_0) = k_{-2} d_1$ $P_7(X \to) = k_x x$

Simulations:

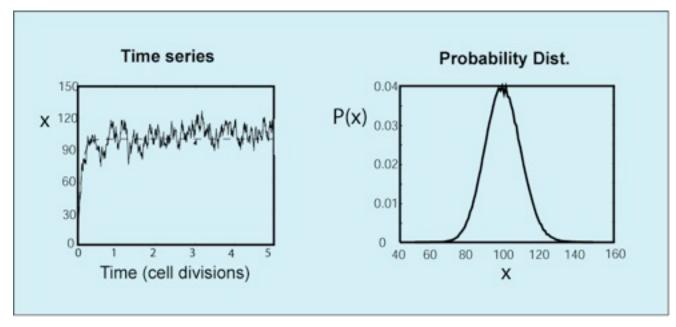
- 1. Use (x, x_2, d) to determine P_i
- 2. Determine τ
- 3. Determine specific reaction and update

20

4. Loop

D. Gillespie, J. Phys. Chem. 81:2340 (1977)

Monte Carlo Data



Complete and exact

Straightforward to simulate

Computationally expensive

Nonintuitive

Since it is exact, it is the gold standard for evaluating the accuracy of other modeling approaches ²¹

Master equation description

n – total # of monomers; *u* – # of unbound dimers; *b* - # of bound dimers Master equation for $p_{n,u,b}$

$$\begin{split} \frac{dp_{n,u,b}}{dt} &= k_x [(n+1-2u-2b)p_{n+1,u,b} - (n-2u-2b)p_{n,u,b}] \\ &+ k_t (d-b+\alpha b) [p_{n-1,u,b} - p_{n,u,b}] \\ &+ k_1 [(n-2u-2b+2)(n-2u-2b+1)p_{n,u-1,b} \\ &- (n-2u-2b)(n-2u-2b-1)p_{n,u,b}] \\ &- k_{-1} [(u+1)p_{n,u+1,b} - dp_{n,u,b}] \\ &+ k_{-2} [(b+1)p_{n,u-1,b+1} - bp_{n,u,b}] - k_2 [u(d-b)p_{n,u,b} - (u+1)(d-b+1)p_{n,u+1,b-1}] \end{split}$$

Projection: $p_{n,u,b} = p_n p_{u,b|n}$

See Kepler & Elston, Biophys. J., 2001

Back to ODE

In the continuum limit (large *n*): Fokker-Planck equation

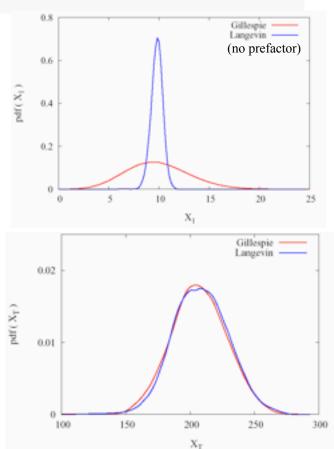
$$\frac{\partial \rho(x_t)}{\partial t} = \frac{\partial}{\partial x_t} \left[\left(k_x x - k_t d \frac{1 + \alpha K_1 K_2 x^2}{1 + K_1 K_2 x^2} \right) \rho \right] + \frac{1}{2} \partial_{x_t}^2 \left[\left(k_x x + k_t d \frac{1 + \alpha K_1 K_2 x^2}{1 + K_1 K_2 x^2} \right) \rho \right]$$

$$x_t = x + 2K_1x^2 + \frac{2dK_1K_2x^2}{1 + K_1K_2x^2}$$

Corresponding Langevin equation

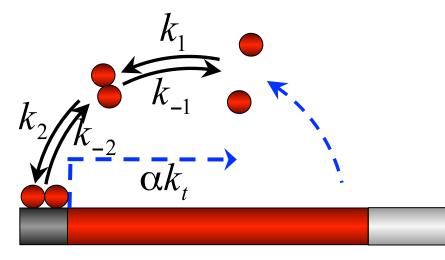
$$\frac{dx_t}{dt} = k_t d \frac{1 + \alpha K_1 K_2 x^2}{1 + K_1 K_2 x^2} - k_x x + \sqrt{D(x_t)} \xi$$
$$D(x) = k_x x + k_t d \frac{1 + \alpha K_1 K_2 x^2}{1 + K_1 K_2 x^2}$$
with $x = x(x_t)$

Fast reaction noise is filtered out



Kepler & Elston, *Biophys J* 81:3116 (2001)

Transcriptional delay



$$\dot{x} = -2k_1x^2 + 2k_{-1}x_2 - k_xx + k_tp_0(d_0(t-T) + \alpha d_1(t-T)))$$
$$\dot{d}_0 = -k_2d_0x_2 + k_{-2}d_1$$
$$\dot{d}_1 = k_2d_0x_2 - k_{-2}d_1$$
$$\dot{x}_2 = k_1x^2 - k_{-1}x_2 - k_2d_0x_2 + k_{-2}d_1$$

[cf. Santillán & Mackey, 2001]

After projection

$$\mathcal{P}_{x}\dot{x} = k_{t}p_{0}d\frac{1+\alpha K_{1}K_{2}x^{2}(t-T)}{1+K_{1}K_{2}x^{2}(t-T)} - k_{x}x$$

$$X + X \xrightarrow{k_1} X_2$$
$$X_2 \xrightarrow{k_{-1}} X + X$$
$$D_0 + X \xrightarrow{k_2} D_1$$
$$D_1 \xrightarrow{k_{-2}} D_0 + X_2$$

Slow $X \xrightarrow{k_x} \emptyset$

Delayed

Fast

$$D_0 + P \xrightarrow{k_t} D_0 + P + X$$
$$D_1 + P \xrightarrow{\alpha k_t} D_1 + P + X$$

Genetic oscillations: Hopf bifurcation

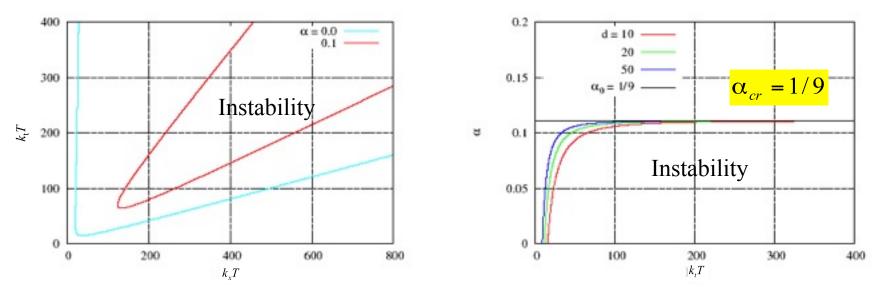
Fixed point:

$$0 = -k_x \bar{x} + k_t dH(\bar{x}) \qquad H(\bar{x}) = \frac{2K_1 K_2 (\alpha - 1)}{(1 + K_1 K_2 \bar{x}^2)^2}$$

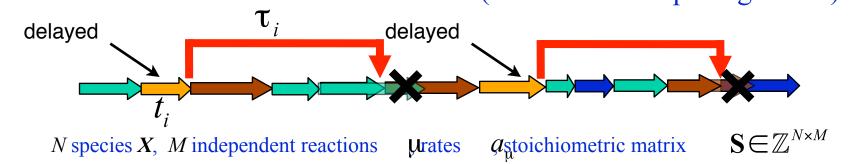
Complex eigenvalues

$$\mathcal{P}_{x}(\bar{x})\lambda = -k_{x} + k_{t}dG(\bar{x})e^{-\lambda T}$$
 $G(\bar{x}) = \frac{dH(\bar{x})}{d\bar{x}}$

$$d = 10, K_1 = K_2 = 1$$



Stochastic simulations of delayed reactions (modified Gillespie algorithm)



Markovian statistics of reaction times:

• exponential "next reaction" time distribution

$$P(t) \propto \exp\left[-t\sum_{\mu}a_{\mu}\right]$$

• which reaction to choose?

$$P(\mu = \mu') = a_{\mu'} / \sum_{\mu} a_{\mu}$$

• immediate execution

$$X \longrightarrow X + S_{\mu}$$

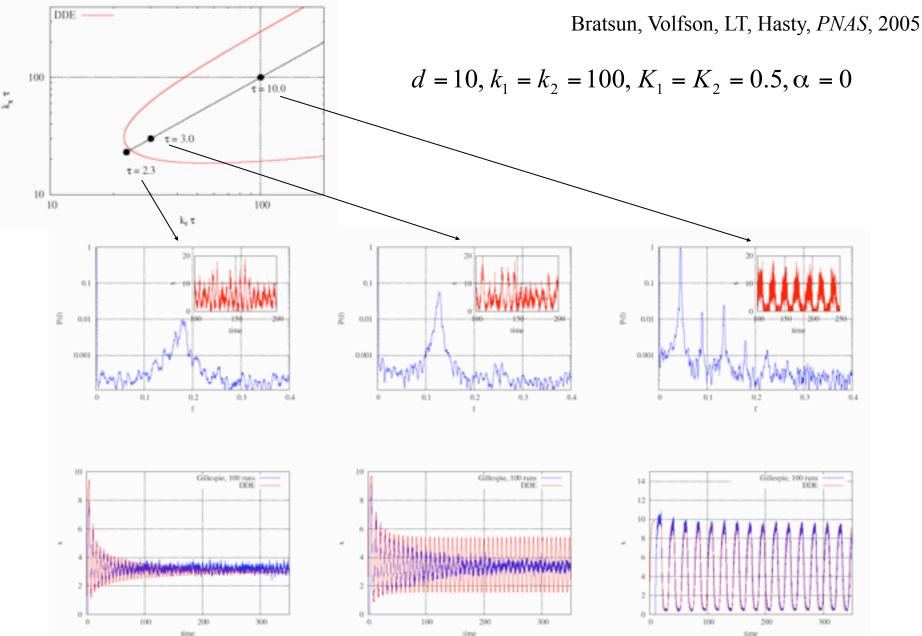
Delayed reactions [e.g. transcription, translation]:

- Delayed execution
- Execution time τ : fixed or stochastic, e.g. with Gaussian time distribution

$$P_{\mu}(\tau) \propto \exp\left[-(\tau - \tau_0)^2 / \sigma_{\mu}^2\right]$$

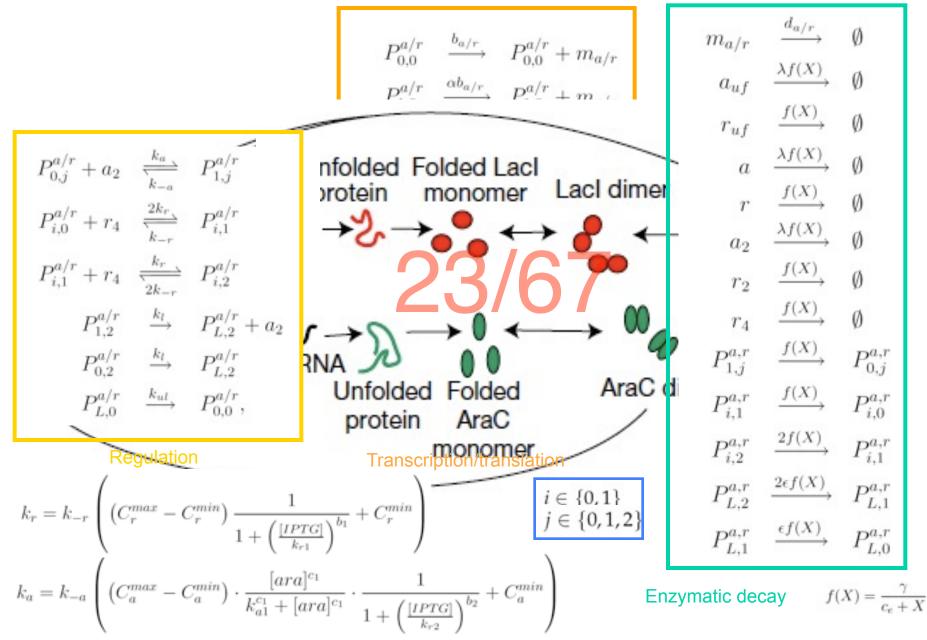
Bratsun, Volfson, LT, Hasty, *PNAS*, 2005

Stochastic simulations



Synthetic bacterial oscillator: A detailed model

Stricker et al., Nature, 456(7221):516-9 (2008).



Explicit delay model

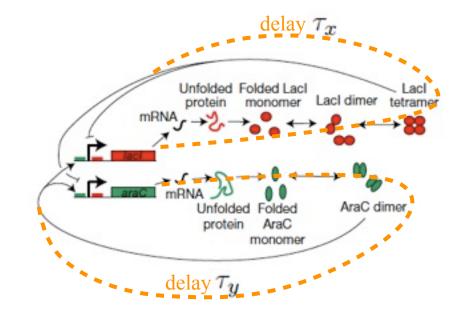
replace chains of interactions with a single effective delay in feedback

lumps many potentially unknown parameters into a few meaningful parameters (identify ignorance)

makes mechanism more transparent

amendable to analytic treatment

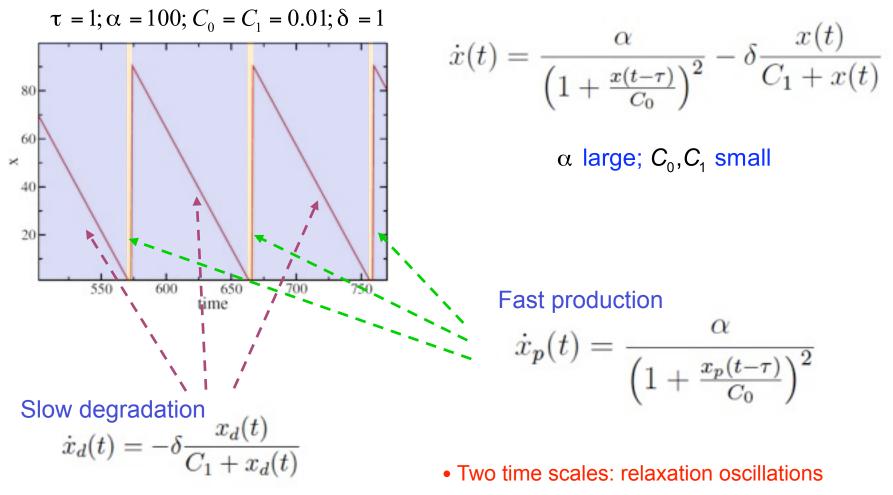
faster simulations using delay approximation



$$\begin{aligned} \frac{dx}{dt} &= \frac{\alpha(1+fy_{\tau_y}^2/C_{0y}^2)}{(1+x_{\tau_x}^2/C_{0x}^2)(1+y_{\tau_y}^2/C_y^2)} - \frac{\delta_x x}{C_{1x} + x} \\ \frac{dy}{dt} &= \frac{\alpha(1+fy_{\tau_y}^2/C_{0y}^2)}{(1+x_{\tau_x}^2/C_{0x}^2)(1+y_{\tau_y}^2/C_y^2)} - \frac{\delta_y y}{C_{1y} + y} \end{aligned}$$

Delayed auto-repression: degrade-and-fire model

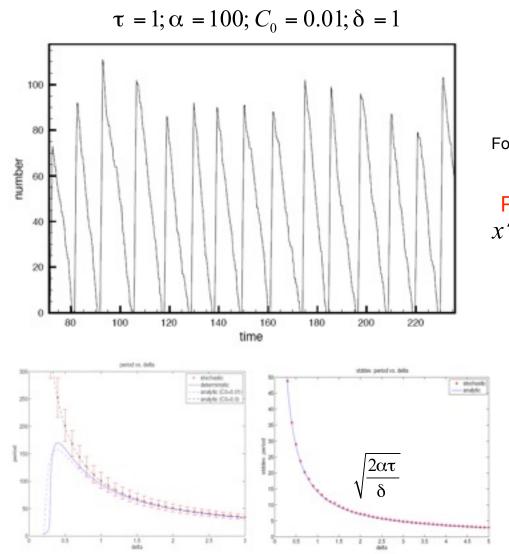
Mather et al, PRL 102, 068105 (2009)



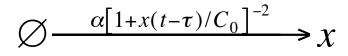
Period:

$$T \approx \alpha t_c / \delta + \tau + t_c \approx \alpha \tau / \delta$$

Zeroth-order degradation: stochastic model



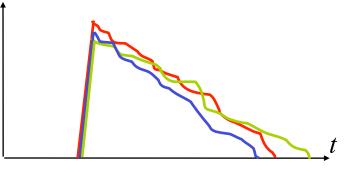
Mather, Bennett, Hasty, Tsimring, PRL 2009



 $x \xrightarrow{\delta} \emptyset$

For $C_0 \rightarrow 0$ these two reactions do not overlap in time

Period variability:



Two sources of variability (both Poissonian): • fluctuations of x_{max}

$$v_x = \langle x_{\max} \rangle = \alpha \tau$$

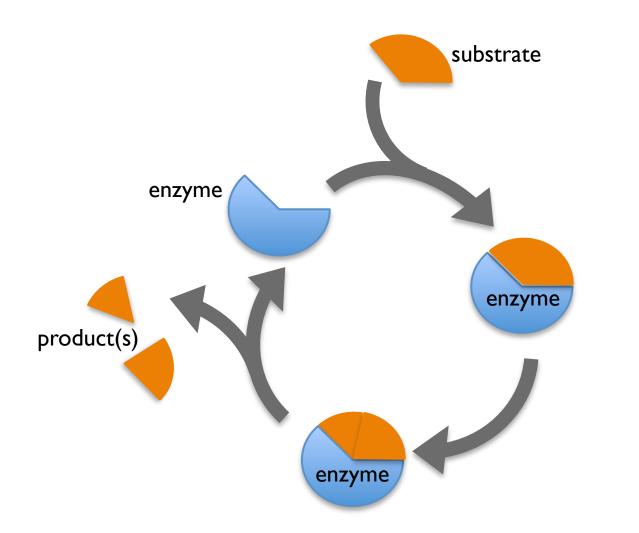
•fluctuations of decay time

$$v_d = \langle T_d \rangle = \langle x_{\max} \rangle / \delta = \alpha \tau / \delta$$

Period variance:

$$v = v_d + v_x / \delta = 2\alpha \tau / \delta$$

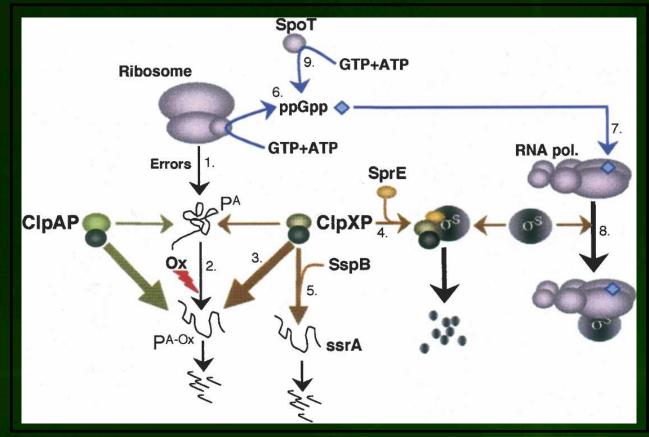
Enzymatic processing



 $E + S \xrightarrow{k_1} [ES]$ $[ES] \xrightarrow{k_{-1}} E + S$ $[ES] \xrightarrow{k_2} E + P$

Examples: metabolism, transcription, translation, degradation, signaling...

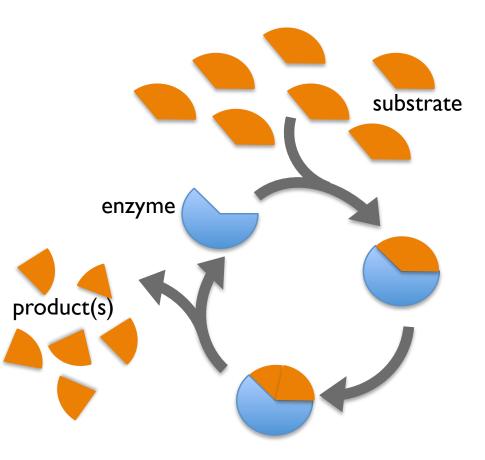
Enzymatic Queueing: ClpXP degradation machine



ClpXP senses proteins that are tagged for fast degradation and destroys them

normally unstable proteins are stabilized and become active when ClpXP is overloaded

Enzymatic queueing



Lots of substrate: queues!

How do fluctuations affect queueing?

Two Cases

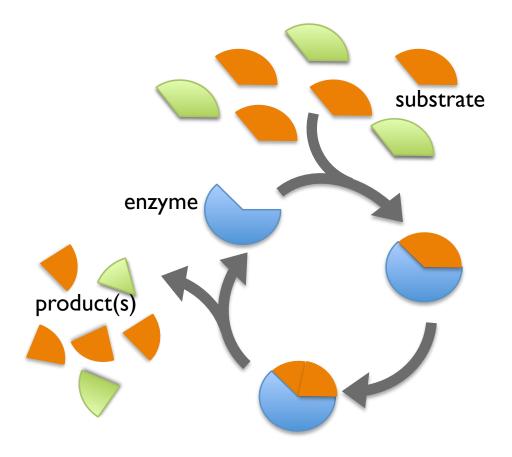
Underloaded

- service rate > incoming traffic rate
- little competition between customers
- queue lengths are short

Overloaded

- service rate < incoming traffic rate
- competition between customers
- queue lengths are long

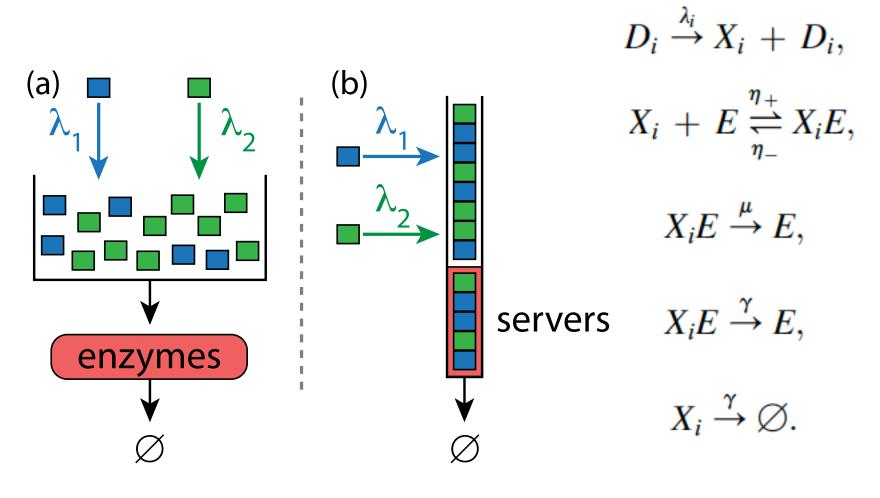
Enzymatic queueing: multiple substrates



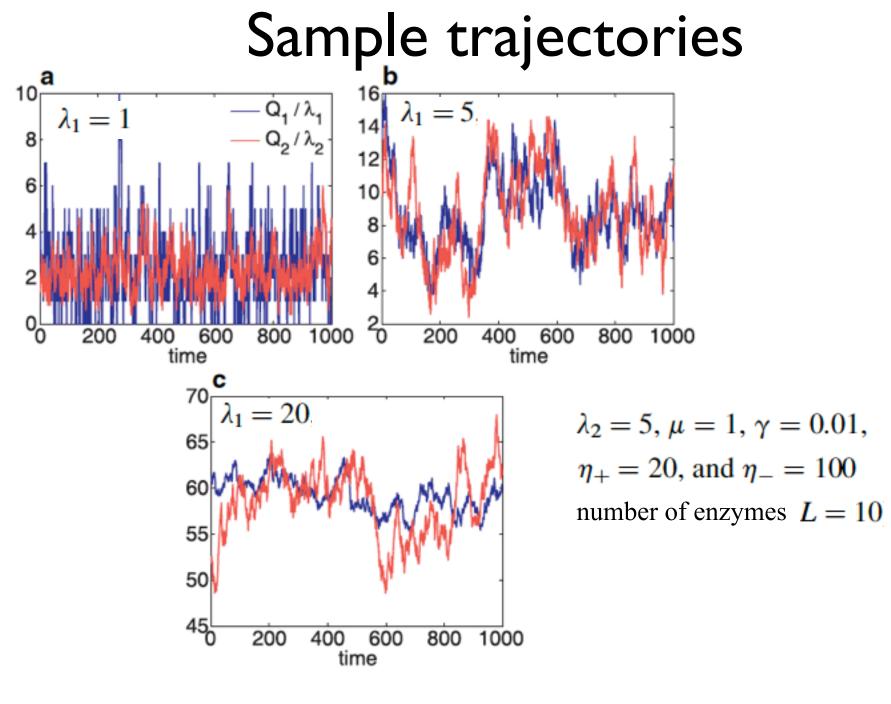
$$E + S_i \xrightarrow{k_1} [ES_i]$$
$$[ES_i] \xrightarrow{k_{-1}} E + S_i$$
$$[ES_i] \xrightarrow{k_2} E + P_i$$

Stochastic kinetics: fluctuating substrate fluctuating products ...correlations?

Queueing Model



 $Q_i(t)$ # of molecules of type *i* $N(t) = \sum_{i=1}^m Q_i(t)$ $K = \eta_-/\eta_+$



Main result

Conditioned on the total number of protein molecules N in the system being n, the steady-state distribution for Q is a multinomial distribution with parameters $(n; p_1,...,p_m)$, where $p_i = \lambda_i / \Lambda$, i = 1,...,m, and $\Lambda = \sum_{i=1}^m \lambda_i$

$$P(Q = (q_1, ..., q_m)) = P(N = n) \frac{n!}{q_1! ... q_m!} \prod_{i=1}^m p_i^{q_i}$$

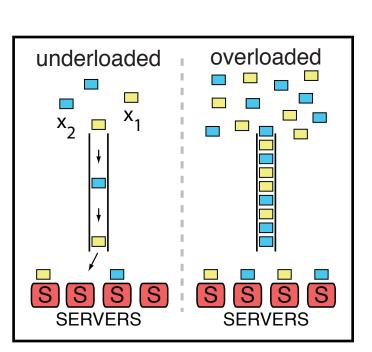
$$P(N = n) = c \frac{\Lambda^n}{\prod_{\ell=1}^n \phi(\ell)}, \ n = 0, 1, 2, \dots, \qquad \phi(n) = \min(n, L)\mu + n\gamma$$
$$n = \sum_{\ell=1}^m a_{\ell}, \ N = \sum_{\ell=1$$

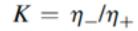
 $n = \sum_{i=1}^{m} q_i$, $N = \sum_{i=1}^{m} Q_i$. $\nu(N) = Var(N)/E[N]$ is the Fano factor for N

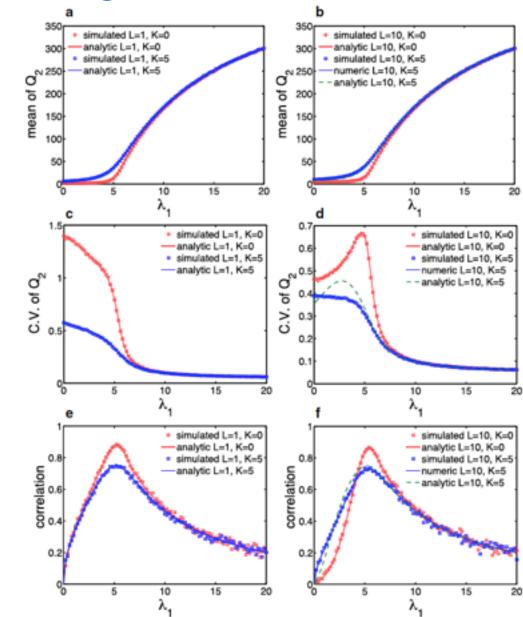
Correlation:

$$r_{ij} = \frac{\nu(N) - 1}{\left(\nu(N) - 1 + \frac{1}{p_i}\right)^{1/2} \left(\nu(N) - 1 + \frac{1}{p_j}\right)^{1/2}}$$

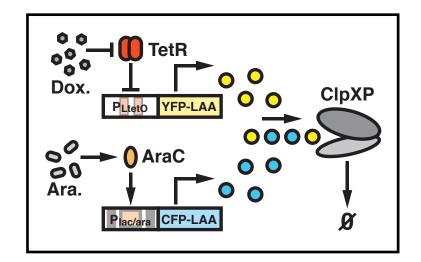
Queueing Model





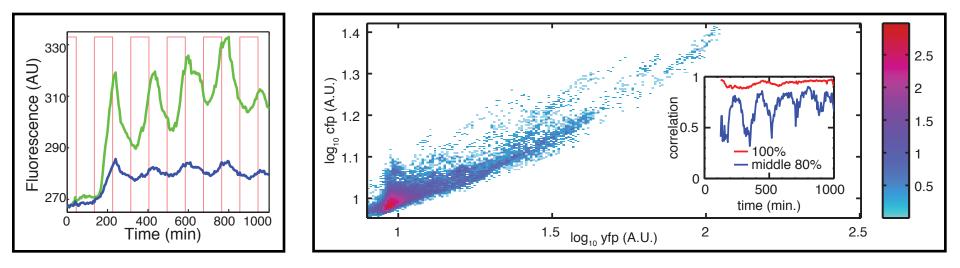


Queueing in experiment: ClpXP degradation



on a microfluidic device, we drove direct induction (green) by a time-dependent chemical signal

time-dependent signal is carried through



periodic noise resonance associated with crossing through balance

Conclusions

- Genetic regulation is strongly affected by fluctuations, both intrinsic and extrinsic
- In many cases, extrinsic factors dominate
- Theoretical description of extrinsic variability is developed and compared with experimental data from multiple promoter-gene pairs.
- Deterministic and stochastic description of regulatory delays developed, delays of transcription/translation of auto-repressor may lead to increased fluctuations levels and oscillations even when deterministic model shows no Hopf bifurcation
- Modified Gillespie algorithm is developed for simulating timedelayed reactions
- D. Volfson, J. Marciniak, N. Ostroff, L. Tsimring, J. Hasty, origins of extrinsic variability in eukaryotic gene expression, Nature, 439, 861-864 (16 Feb 2006).
- D.A. Bratsun, D.N. Volfson, L.S. Tsimring, and J. Hasty, Delay-induced stochastic oscillations in gene regulation. Proc. Natl. Acad. Sci., **102**, no.41, 14593-12598 (2005)
- J. Stricker, S. Cookson, M. Bennett, W. Mather, L. S. Tsimring, J. Hasty. A robust and tunable synthetic gene oscillator. Nature, **456**(7221): 516-9 (2008).
- W. Mather, M. R. Bennett, J. Hasty, L. S. Tsimring, Delay-induced degrade-and-fire oscillations in small genetic circuits. Phys. Rev. Lett., **102**, 068105 (2009)
- W. Mather, N. A. Cookson, J. M. Hasty, L. S. Tsimring , and R. J. Williams. Correlation resonance generated by coupled enzymatic processing. Biophys. J., 2010, **99**, 3172-3181