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Central dogma

Gene mRNA Protein

Transcriptional Regulation
            Activator –  increases rate of production
            Repressor – decreases rate of production

Activator

Repressor

All cells have the same genes…
…So why cell differ from each other?



The Genetic Landscape of a Cell
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A genome-scale genetic interaction map was constructed by examining 5.4 million gene-gene pairs
for synthetic genetic interactions, generating quantitative genetic interaction profiles for ~75% of
all genes in the budding yeast, Saccharomyces cerevisiae. A network based on genetic interaction
profiles reveals a functional map of the cell in which genes of similar biological processes cluster
together in coherent subsets, and highly correlated profiles delineate specific pathways to define
gene function. The global network identifies functional cross-connections between all bioprocesses,
mapping a cellular wiring diagram of pleiotropy. Genetic interaction degree correlated with a
number of different gene attributes, which may be informative about genetic network hubs in other
organisms. We also demonstrate that extensive and unbiased mapping of the genetic landscape
provides a key for interpretation of chemical-genetic interactions and drug target identification.

The relation between an organism's geno-
type and its phenotype are governed by
myriad genetic interactions (1). Although

a complex genetic landscape has long been an-
ticipated (2), exploration of genetic interac-
tions on a genome-wide level has been limited.

Systematic deletion analysis in the budding
yeast, Saccharomyces cerevisiae, demonstrates
that the majority of its ~6000 genes are indi-
vidually dispensable, with only a relatively
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Fig. 1. A correlation-based network
connecting genes with similar genetic
interaction profiles. Genetic profile sim-
ilarities weremeasured for all gene pairs
by computing Pearson correlation co-
efficients (PCCs) from the complete ge-
netic interaction matrix. Gene pairs
whose profile similarity exceeded a
PCC > 0.2 threshold were connected
in the network and laid out using an
edge-weighted, spring-embedded, net-
work layout algorithm (7, 8). Genes
sharing similar patterns of genetic
interactions are proximal to each
other; less-similar genes are posi-
tioned farther apart. Colored regions
indicate sets of genes enriched for GO
biological processes summarized by the
indicated terms.
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Gene regulation networks
• Proteins affect rates of production of other proteins (or 

themselves)
• This leads to formation of networks of interacting genes/proteins
• Large stochastic fluctuations
• Sub-networks are non-Markovian, even if the whole system is 
• Different reaction channels operate at vastly different time scales 

and number densities
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RNAP

Auto-repressor: A cartoon

promoter gene
RNAP

DNA

Binding/unbinding rate: <1 sec
Transcription rate: ~103 basepairs/min
Translation rate: ~102 aminoacids/min
mRNA degradation rate ~3min (Alberts et al, 1994)
Transport in/out nucleus ~10 min

protein

mRNA

Vastly different time scales: need for reduced descriptions



Transients in gene regulation

• Genetic circuits are never at a fixed point:
• Intrinsic noise
• Extrinsic noise
• External signaling
• Oscillations: 

           circadian rhythms; ultradian rhythms; cell cycle



Intrinsic vs. Extrinsic noise?

Identical promoters; 
             different reporter genes

yfp

cfp

Elowitz et al, 2002



Intrinsic vs. Extrinsic noise?

Bacteria

Elowitz et al, 2002

Yeast

Raser & O’Shea, 2004
Intrinsic noise is smaller in Yeast

yfp

cfp



Intrinsic vs. Extrinsic noise
Multiple identical promoters;
same reporter gene

For intrinsic noise (c=0), 

For correlated (extrinsic) noise (c=v), 

Gene expression:

For identical promoter-gene pairs:

Volfson et al., Nature, 2006



Intrinsic vs. Extrinsic noise
Saccaromyces cerevisiae (yeast); galactose utilization circuit

GAL4

GAL80

GAL1

GAL1
GAL1

GAL1
GAL7

galactose

GFP

GAL1
GFP

GFP
GAL1

GAL1
GFPGAL3

Volfson et al., Nature,2006



Intrinsic vs. Extrinsic noise

Flow cytometry data

Intrinsic noise is small in Yeast

Volfson et al., Nature,2006
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Bistability: λ-Phage Life Cycle

M.Ptashne, 2002

Two positive feedback loops



Genetic noise
Experiments with synthetic bistable autoregulatory circuit in E. coli  (derived from λ-phage)

fluorescence

Isaacs et al., 2003



Oscillations: circadian clock
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217 Model circadian networks such as the one found in Drosophila
218 have generated a good understanding of the core clock proteins
219 and their roles in maintaining the daily rhythm (Fig. 1). These stud-
220 ies have revealed important insights into the molecular biology and
221 mechanisms that underlay circadian oscillator function, not just in
222 themodel systems but in all organisms. However, the complexity of
223 the networks and their intertwinement with other cellular pro-
224 cesses has made it difficult to develop maps of all network compo-
225 nents and to deduce how component interact to contribute to the
226 overall function of the time-keeping mechanism. The core module
227 of coupled feedback is wrapped in a complex network involving
228 many layers of regulation. However, knockout studies of circadian
229 systems as well as computational analysis have suggested that a
230 simplified two-component module is theoretically capable of sus-
231 taining periodic behavior on its own [37,40,51–53]. By decoupling
232 a relatively simple module from its complex biological setting, we
233 may be able to systematically explore a design principle that has
234 evolved to regulate periodic cellular behavior and use this simpli-
235 fied system to determine how additional components add complex-
236 ity, regularity, and robustness to a clock’s function.

237 3. Basic science through engineering: synthetic oscillators

238 The possibility of a minimal core network driving robust cellu-
239 lar behavior has inspired the development of an alternative ap-
240 proach to the study of gene-regulatory networks: create the
241 network, beginning with a one or two-component system and then
242 rebuild the network from the bottom up. In this way, we can grad-
243 ually assemble increasingly complex systems that mimic the na-
244 tive network, while maintaining at each stage the ability to
245 model and test the network in a tractable experimental system.
246 There have been several successful attempts at developing a
247 synthetic oscillatory network controlled at the gene regulation le-

248vel [5,54–56]. These networks involved only two- or three-compo-
249nents, and mathematical modeling was instrumental in the process
250of designing and analyzing the network structure and revealing the
251mechanism behind their ability to exhibit periodic behavior. In
252Escherichia coli, the repressilator [5] consisted of a ring architecture
253of cyclic repression that was capable of generating sustained oscil-
254lations in a subset of the cells that were examined, while a two-
255component feedback-based circuit [54] was shown to generate
256damped oscillations. A synthetic mammalian oscillator based on
257an autoregulated sense–antisense transcription control circuit
258yielded self-sustained and tunable oscillatory gene expression in
259a fraction of the cells observed [55].
260These examples represent progress in implementing an engi-
261neering-based approach to the study of gene networks, in which
262computational modeling is used to guide the design of novel net-
263works and accurately predict their dynamic behavior. However,
264the lack of robustness in each of these networks demonstrates the
265need to focus on a network architecture that more closely mimics
266native networks. In this way, we can hope to elucidate the proper-
267ties that enable organisms tomaintain stable oscillations in the face
268inherently noisy and ever-changing micro-environments.
269Recently, we designed and constructed a novel two-component
270oscillator, based on principles observed to be critical for the core of
271a circadian clock network (Fig. 2) [57]. The design of the oscillator
272was based on our earlier work involving coupled positive and neg-
273ative feedback loops [37]. Computational modeling was used to de-
274velop design criteria for achieving oscillations in this system. These
275criteria included an effective separation of timescales between the
276positive and negative components, strong activation and tight
277repression of the promoter, and fast degradation rates for the pro-
278teins. Importantly, the design also implied that the components
279should be carefully tuned in order to achieve oscillations; i.e. most
280parameter values would not lead to oscillations in this design.

ε

Fig. 1. (From Hardin Genome Biology 2000 1:reviews1023.1 doi:10.1186/gb-2000-1-4-reviews1023). Model of the circadian clock circuits in Drosophila and mouse [29]. In
Drosophila, CLK–CYC heterodimers bind to corresponding promoters and activate transcription of per and tim genes. PER protein is subsequently phosphorylated by DNT and
CK2, which marks them for degradation. TIM binds phosphorylated PER and stabilizes it. The TIM/PER/DBT complexes are phosphorylated with the help of SGG kinase and
bind to CLK/CYC, thereby removing them from per/tim promoters and thus repressing PER and TIM transcription. TIM/PER heterodimers, in turn, bind to the promoter of clk
gene and upregulate its transcription.

N.A. Cookson et al. / FEBS Letters xxx (2009) xxx–xxx 3

FEBS 33618 No. of Pages 8, Model 5G

10 November 2009
ARTICLE IN PRESS

Please cite this article in press as: Cookson, N.A., et al. The pedestrian watchmaker: Genetic clocks from engineered oscillators. FEBS Lett. (2009),
doi:10.1016/j.febslet.2009.10.089
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Synthetic gene oscillator in in E.coli

Design: use AraC as activator  and LacI as repressor

• Two experimental “knobs”: Arabinose
   required for activator binding and
   IPTG prohibits repressor binding

Flow cytometry: 
             time series of fluorescence in initially synchronized batch culture of cells

2 mM IPTG

0.2% arabinose

0.3% arabinose

0.7% arabinose

2.0% arabinose

What is it: oscillations stop 
             …or desynchronize?

• Three plasmid with identical promoters: 
   (i) activator, (ii) repressor, (iii) reporter

• All proteins are tagged with ssRA tag 
   for fast enzymatic decay (~15-20min)

Stricker et al., Nature,456(7221):516-9 (2008).



Single cell experiments

2mM IPTG
0.7% arabinose

Stricker et al., Nature,456(7221):516-9 (2008).



Modeling gene regulation

Techniques for modeling gene networks dynamics

• Boolean dynamics

• Deterministic Equations (Mass Action kinetics)

• Monte-Carlo Simulations; Master Equations

• Stochastic Differential Equations

  



Modeling gene regulation: Single gene circuit

Binding/unbinding rate: ≤1 sec
Transcription rate: ~103 basepairs/min
Translation rate: ~102 aminoacids/min
mRNA degradation rate ~3min
Transport in/out of nucleus 10min..10hrs
Protein degradation 10min..hours

Fast

Slow

Reaction
1 x + x

κ+−−→ y

2 y
κ−−−→ x + x

3 y + d0
k+−−→ dr

4 dr
k−−−→ y + d0

5 d0
α−→ d0 + m

6 dr
β−→ dr + m

7 m
σ−→ m + x

8 x
γp−→ ∅

9 m
γm−−→ ∅

Table 1: Reactions in the genetic positive feedback network.

Notes for synchronized DF oscillations via AHL coupling

Synchronization of DF oscillators with a common AHL activating field is described.

X + X
k1−→ X2 (1)

X2
k−1−−→ X + X (2)

D0 + X
k2−→ D1 (3)

D1
k−2−−→ D0 + X2 (4)

(5)

D0 + P
kt−→ D0 + P + X (6)

D1 + P
αkt−−→ D1 + P + X (7)

(8)

dx

dt
=

α(1 + fy4
τy

/C4
0y)

(1 + x2
τx

/C2
0x)(1 + y4

τy
/C4

y )
− δxx

C1x + x
(9)

dy

dt
=

α(1 + fy4
τy

/C4
0y)

(1 + x2
τx

/C2
0x)(1 + y4

τy
/C4

y )
− δyy

C1y + y
(10)

dx

dt
=

α(1 + f(t)y4
τy

/C4
0y)

(1 + x2
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/C2
0x)(1 + y4

τy
/C4

y )
− δxx

C1x + x
(11)

dy

dt
=

α(1 + f(t)y4
τy

/C4
0y)

(1 + x2
τx

/C2
0x)(1 + y4

τy
/C4

y )
− δyy

C1y + y
(12)

f(t) = f0 + f1 sin[2πt/Tf ]
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5 d0
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6 dr
β−→ dr + m

7 m
σ−→ m + x

8 x
γp−→ ∅

9 m
γm−−→ ∅

Table 1: Reactions in the genetic positive feedback network.

Notes for synchronized DF oscillations via AHL coupling

Synchronization of DF oscillators with a common AHL activating field is described.

X + X
k1−→ X2 (1)

X2
k−1−−→ X + X (2)

D0 + X
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D1
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X
kx−→ ∅ (8)
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dx
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/C2
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τy
/C4

y )
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C1x + x
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dt
=
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Notes for synchronized DF oscillations via AHL coupling

Synchronization of DF oscillators with a common AHL activating field is described.

X + X
k1−→ X2 (1)

X2
k−1−−→ X + X (2)

D0 + X
k2−→ D1 (3)

D1
k−2−−→ D0 + X2 (4)

(5)

D0 + P
kt−→ D0 + P + X (6)

D1 + P
αkt−−→ D1 + P + X (7)

X
kx−→ ∅ (8)

(9)

xt = x + 2x2 + 2d1 (10)

d = d0 + d1 (11)

x2 = K1x
2

(12)

d1 = K2d0x2 (13)

K1 = k1/k−1 (14)

K2 = k2/k−2 (15)

(16)

P1(2X → X − 2) = k1x(x− 1) (17)

P2(X2 → 2X) = k1x(x− 1) (18)

P3(D0 → D0 + X) = ktd0x (19)

P4(D4 → D1 + X) = αktd1x (20)

P5(D0 → D1) = k2d0x (21)

P6(D1 → D0) = k−2d1 (22)

P7(X →) = kxx (23)

dx

dt
=

α(1 + fy4
τy

/C4
0y)

(1 + x2
τx

/C2
0x)(1 + y4

τy
/C4

y )
− δxx

C1x + x
(24)

dy

dt
=

α(1 + fy4
τy

/C4
0y)

(1 + x2
τx

/C2
0x)(1 + y4

τy
/C4

y )
− δyy

C1y + y
(25)

dx

dt
=

α(1 + f(t)y4
τy

/C4
0y)

(1 + x2
τx

/C2
0x)(1 + y4

τy
/C4

y )
− δxx

C1x + x
(26)

dy

dt
=

α(1 + f(t)y4
τy

/C4
0y)

(1 + x2
τx

/C2
0x)(1 + y4

τy
/C4

y )
− δyy

C1y + y
(27)

1



Mass action kinetics
Fast

Slow

Reaction
1 x + x

κ+−−→ y

2 y
κ−−−→ x + x

3 y + d0
k+−−→ dr

4 dr
k−−−→ y + d0

5 d0
α−→ d0 + m

6 dr
β−→ dr + m

7 m
σ−→ m + x

8 x
γp−→ ∅

9 m
γm−−→ ∅

Table 1: Reactions in the genetic positive feedback network.

Notes for synchronized DF oscillations via AHL coupling

Synchronization of DF oscillators with a common AHL activating field is described.
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α−→ d0 + m

6 dr
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7 m
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9 m
γm−−→ ∅

Table 1: Reactions in the genetic positive feedback network.

Notes for synchronized DF oscillations via AHL coupling

Synchronization of DF oscillators with a common AHL activating field is described.
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X
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(9)

dx

dt
=

α(1 + fy4
τy

/C4
0y)

(1 + x2
τx

/C2
0x)(1 + y4

τy
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y )
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(10)

dy

dt
=

α(1 + fy4
τy

/C4
0y)

(1 + x2
τx

/C2
0x)(1 + y4

τy
/C4

y )
− δyy

C1y + y
(11)

dx

dt
=

α(1 + f(t)y4
τy

/C4
0y)

(1 + x2
τx

/C2
0x)(1 + y4

τy
/C4

y )
− δxx

C1x + x
(12)

dy

dt
=

α(1 + f(t)y4
τy

/C4
0y)

(1 + x2
τx

/C2
0x)(1 + y4

τy
/C4

y )
− δyy

C1y + y
(13)

f(t) = f0 + f1 sin[2πt/Tf ]

1

Separation of scales:

Notes for synchronized DF oscillations via AHL coupling

Synchronization of DF oscillators with a common AHL activating field is described.

X + X
k1−→ X2 (1)

X2
k−1−−→ X + X (2)

D0 + X
k2−→ D1 (3)

D1
k−2−−→ D0 + X2 (4)

(5)

D0 + P
kt−→ D0 + P + X (6)

D1 + P
αkt−−→ D1 + P + X (7)

X
kx−→ ∅ (8)

(9)

xt = x + 2x2 + 2d1 (10)

d = d0 + d1 (11)

x2 = K1x
2

(12)

d1 = K2d0x2 (13)

K1 = k1/k−1 (14)

K2 = k2/k−2 (15)

(16)

dx

dt
=

α(1 + fy4
τy

/C4
0y)

(1 + x2
τx

/C2
0x)(1 + y4

τy
/C4

y )
− δxx

C1x + x
(17)

dy

dt
=

α(1 + fy4
τy

/C4
0y)

(1 + x2
τx

/C2
0x)(1 + y4

τy
/C4

y )
− δyy

C1y + y
(18)

dx

dt
=

α(1 + f(t)y4
τy

/C4
0y)

(1 + x2
τx

/C2
0x)(1 + y4

τy
/C4

y )
− δxx

C1x + x
(19)

dy

dt
=

α(1 + f(t)y4
τy

/C4
0y)

(1 + x2
τx

/C2
0x)(1 + y4

τy
/C4

y )
− δyy

C1y + y
(20)

f(t) = f0 + f1 sin[2πt/Tf ]

We assume a system of coupled oscillators with repressor concentration xi and AHL concentration A. These

obey the dynamics:

dxi

dt
=

αi + νAτ2

(1 + xi,τ1/C0)
2
− γixi

Ki + xi
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Including fluctuations: Monte-Carlo Simulations

D. Gillespie, J. Phys. Chem. 81:2340 (1977)

Jump probabilities:

Time between reactions:

Simulations:

Notes for synchronized DF oscillations via AHL coupling

Synchronization of DF oscillators with a common AHL activating field is described.
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X2
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k2−→ D1 (3)

D1
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(5)

D0 + P
kt−→ D0 + P + X (6)
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X
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d = d0 + d1 (11)

x2 = K1x
2

(12)

d1 = K2d0x2 (13)

K1 = k1/k−1 (14)
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Monte Carlo Data

Complete and exact

Straightforward to simulate

Computationally expensive

Nonintuitive
Since it is exact, it is the gold standard for evaluating the accuracy of 

other modeling approaches



Master equation description

Master equation for

Projection:

n – total # of monomers; u – # of unbound dimers; b - # of bound dimers

See Kepler & Elston, Biophys. J., 2001



Back to ODE
In the continuum limit (large n): Fokker-Planck equation

Corresponding Langevin equation

with 

(no prefactor)

Fast reaction noise is filtered out 
Kepler & Elston, Biophys J 81:3116 (2001)  



Transcriptional delay

Slow

Delayed
After projection

[cf. Santillán & Mackey, 2001]

Fast

Reaction
1 x + x

κ+−−→ y

2 y
κ−−−→ x + x

3 y + d0
k+−−→ dr

4 dr
k−−−→ y + d0

5 d0
α−→ d0 + m

6 dr
β−→ dr + m

7 m
σ−→ m + x

8 x
γp−→ ∅

9 m
γm−−→ ∅

Table 1: Reactions in the genetic positive feedback network.

Notes for synchronized DF oscillations via AHL coupling

Synchronization of DF oscillators with a common AHL activating field is described.
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Genetic oscillations: Hopf bifurcation
Fixed point:

Complex eigenvalues

Instability

k tT

Instability



Stochastic simulations of delayed reactions

Markovian statistics of reaction times:
•  exponential “next reaction” time distribution

Delayed reactions [e.g. transcription, translation]: 
•     Delayed execution
•     Execution time τ : fixed or stochastic, 
          e.g. with Gaussian time distribution

•  which reaction to choose?

(modified Gillespie algorithm)

 N species X,  M independent reactions      , rates      , stoichiometric matrix

•  immediate execution

Bratsun, Volfson, LT, Hasty, PNAS, 2005

delayed delayed



Stochastic simulations
Bratsun, Volfson, LT, Hasty, PNAS, 2005



Synthetic bacterial oscillator: A detailed model

Regulation Transcription/translation

Enzymatic decay

Stricker et al., Nature,456(7221):516-9 (2008).
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Explicit delay model 

29

delay

delay

replace chains of interactions with a 
single effective delay in feedback

lumps many potentially unknown 
parameters into a few meaningful 
parameters (identify ignorance)

makes mechanism more transparent

amendable to analytic treatment

faster simulations using delay 
approximation



Mather et al, PRL 102, 068105 (2009)

Delayed auto-repression: degrade-and-fire model

Slow degradation

Fast production

• Two time scales: relaxation oscillations

Period:



Two sources of variability (both Poissonian): 
• fluctuations of  xmax

•fluctuations of decay time 

! 

"
# 1+x( t$% ) /C0[ ] $2

& ' & & & & & x

x
(

& ' & "

Zeroth-order degradation: stochastic model

Period variability:

Period variance:

For C0 → 0  these two reactions do not overlap in time

Mather, Bennett, Hasty, Tsimring, PRL 2009



Enzymatic processing

enzyme

enzyme

enzyme

substrate

product(s)

Notes for synchronized DF oscillations via AHL coupling

Synchronization of DF oscillators with a common AHL activating field is described.
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k1−→ [ES] (1)
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X2
k−1−−→ X + X (5)

D0 + X
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kt−→ D0 + P + X (9)
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X
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d1 = K2d0x2 (16)
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P2(X2 → 2X) = k−1x2 (21)

P3(D0 → D0 + X) = ktd0x (22)
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Examples: metabolism, transcription, translation, degradation, signaling...



Enzymatic Queueing: 
ClpXP degradation machine

ence of SprE to destabilize !S, suggesting that the canoni-
cal SprE/ClpXP pathway achieves the degradation of the
! factor under these conditions. In addition, the fact that
clpX and also clpA deletions suppressed the instability of
!S in glucose-starved rpsL141 mutants suggests that the
ClpAP and ClpXP to some extent are occupied with the
same aberrant substrates in carbon-starved cells (Fig. 7).
It has been proposed that SprE is limiting in vivo and
that a marginal increase in the cellular concentration of
!S—for example, by elevated translation—will titrate
out SprE and cause a drastic stabilization of !S (Pruteanu
and Hengge-Aronis 2002). We suggest that sequestration
of ClpP upon starvation-induced mistranslation might
be an additional physiologically relevant event that ti-
trates the SprE recognition factor during carbon starva-
tion. In this scenario, !S is stabilized by two sequential
titration events, titration of ClpP followed by SprE.

Nitrogen starvation has been shown to cause a similar
increased mistranslation and elevated levels of protein
carbonyls as carbon starvation (Ballesteros et al. 2001),
but !S does not reach the same high concentration dur-
ing nitrogen as carbon starvation (Mandel and Silhavy
2005). Possibly, mistranslation/protein oxidation and
ClpP titration may account for most of the stabilization
of !S upon nitrogen starvation, whereas another mecha-
nism works in parallel to ClpP titration during carbon
starvation, giving rise to even higher levels of the ! fac-
tor. This notion is consistent with the fact that there is
residual induction of the rpoS regulon and accumulation
of the ! factor in the rpsL141 mutant upon carbon star-
vation (Fig. 1D,E). In contrast to carbon and nitrogen
starvation, translational errors and protein oxidation do
not increase significantly during phosphate starvation
(Ballesteros et al. 2001). Thus, the stabilization of !S

upon phosphate depletion is expected to be accom-
plished by a mechanism other than titration of ClpP by
aberrant proteins. Interestingly, it has recently been
shown that !S accumulation during phosphate starva-

tion involves a novel protein, IraP, which interferes with
SprE-dependent degradation of !S during phosphate, but
not carbon, starvation (Bougdour et al. 2006). In addition,
increased translation of the rpoS transcript appears to be
more important for !S accumulation during phosphate
starvation than carbon starvation (Mandel and Silhavy
2005).

Experiments with strains lacking the alarmone ppGpp
suggest that there are more components than SprE of
importance in regulating !S stability. Overproduction of
!S is difficult to achieve in exponentially growing cells
(rich media—low levels of ppGpp) and in "relA "spoT
mutants (deficient in ppGpp), and we have noticed that
!S is unstable under such conditions despite the fact that
overproduction ought to titrate the SprE factor. In addi-
tion, cells lacking ppGpp display increased mistransla-
tion and levels of carbonylated proteins (M. Ballesteros,
L. Magnusson, and T. Nyström, in prep.), yet !S is not
stabilized in this genetic background. This instability of
!S may be due to the fact that ppGpp is required for !S to
compete successfully for RNA polymerase (E) binding
(Jishage et al. 2002). Thus, binding of !S to E, which
would protect the ! factor from degradation, is another
important aspect of regulating !S stability and activity,
and the involvement of ppGpp in this context provides
an important hierarchy of physiological regulation. The
requirement of !S for ppGpp suggests that the !S regulon
can only be efficiently induced under suboptimal growth
conditions, which elevate the production of this nucleo-
tide. In fact, we do not know of any condition that trig-
gers expression of !S regulon genes without a concomi-
tant increase in ppGpp levels. The requirement for pp-
Gpp may thus be an important checkpoint control such
that elevated levels of !S will not automatically trigger
the regulon if the cell senses that its physiological status
(low ppGpp) does not call for the functions encoded by
the !S regulon. This may be the case during, for example,
a shift from anaerobic to aerobic conditions. As seen in

Figure 7. Schematic representation of the model for !S

stabilization upon starvation. (1) Translational errors
increase as an immediate response to, for example,
amino acid and carbon starvation resulting in the pro-
duction of erroneous and misfolded proteins !S. (2) The
aberrant proteins are susceptible to oxidative modifica-
tions, which cause further structural deviations of the
proteins. (3) The aberrant, especially oxidatively modi-
fied, species of the mistranslated proteins are substrates
for the ClpAP and ClpXP proteases, which as a conse-
quence of the reduced fidelity of the translational appa-
ratus becomes increasingly occupied in the manage-
ment of aberrant polypeptides. (4) Thus, less ClpXP is
available for SprE-dependent degradation of !S, and
even a marginal elevation of !S levels caused by this
ClpXP sequestration might titrate out SprE and further
stabilize !S upon these conditions. The limiting factor
of the proteolytic system may be ClpP, since ClpP over-
production greatly diminished !S accumulation. (5) El-

evated levels of SsrA-tagged peptides generated on stalled ribosomes may also sequester ClpXP and stabilize !S. Another consequence
of starving ribosomes is the RelA-dependent production of ppGpp (6), which binds to RNA polymerase (7) and enhances the ability of
!S to compete for core binding (8). During other starvation and stress conditions, !S competition is favored by ppGpp produced from SpoT.

Mistranslation induces RpoS accumulation

GENES & DEVELOPMENT 869

 Cold Spring Harbor Laboratory Press on May 16, 2011 - Published by genesdev.cshlp.orgDownloaded from 

ClpXP  senses proteins that are tagged for fast degradation and destroys them

normally unstable proteins are stabilized and become active when ClpXP is 
overloaded



Enzymatic queueing

enzyme

substrate

product(s)

Lots of substrate: queues!

How do fluctuations affect queueing?



Two Cases

Underloaded

• service rate > incoming traffic rate

• little competition between customers

• queue lengths are short

Overloaded

• service rate < incoming traffic rate

• competition between customers

• queue lengths are long



enzyme

substrate

product(s)

Enzymatic queueing: multiple substrates

Stochastic kinetics:
   fluctuating substrate 
   fluctuating products
      ...correlations?

Notes for synchronized DF oscillations via AHL coupling

Synchronization of DF oscillators with a common AHL activating field is described.

E + S
k1−→ [ES] (1)

[ES]
k−1−−→ E + S (2)

[ES]
k2−→ E + P (3)

E + Si
k1−→ [ESi] (4)

[ESi]
k−1−−→ E + Si (5)

[ESi]
k2−→ E + Pi (6)

X + X
k1−→ X2 (7)

X2
k−1−−→ X + X (8)

D0 + X
k2−→ D1 (9)

D1
k−2−−→ D0 + X2 (10)

(11)

D0 + P
kt−→ D0 + P + X (12)

D1 + P
αkt−−→ D1 + P + X (13)

X
kx−→ ∅ (14)

(15)

xt = x + 2x2 + 2d1 (16)

d = d0 + d1 (17)

x2 = K1x
2

(18)

d1 = K2d0x2 (19)

K1 = k1/k−1 (20)

K2 = k2/k−2 (21)

(22)

P1(2X → X − 2) = k1x(x− 1) (23)

P2(X2 → 2X) = k−1x2 (24)

P3(D0 → D0 + X) = ktd0x (25)

P4(D1 → D1 + X) = αktd1x (26)

P5(D0 → D1) = k2d0x (27)

P6(D1 → D0) = k−2d1 (28)

P7(X →) = kxx (29)

1



Queueing Model

# of molecules of type i

enzymes

1 2 1

2

servers

(a) (b)



Sample trajectories

number of enzymes



Main result

Correlation:
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Queueing Model



Queueing in experiment: ClpXP degradation
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Conclusions
• Genetic regulation is strongly affected by fluctuations, both 

intrinsic and extrinsic
• In many cases, extrinsic factors dominate
• Theoretical description of extrinsic variability is developed and 

compared with experimental data from multiple promoter-gene 
pairs.

• Deterministic and stochastic description of regulatory delays 
developed, delays of transcription/translation of auto-repressor 
may lead to increased fluctuations levels and oscillations even 
when deterministic model shows no Hopf bifurcation

• Modified Gillespie algorithm is developed for simulating time-
delayed reactions
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