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Central dogma

Gene mRNA Protein

Transcriptional Regulation
            Activator –  increases rate of production
            Repressor – decreases rate of production

Activator

Repressor

All cells have the same genes…
…So why cell differ from each other?



Gene regulation circuits

Systems biology:
• Figure out all the genes (genomics)
• Figure out which genes and proteins interact (network reconstruction)
• Figure out the dynamics given the network

E.Coli regulatory network



The Genetic Landscape of a Cell
Michael Costanzo,1,2* Anastasia Baryshnikova,1,2* Jeremy Bellay,3 Yungil Kim,3 Eric D. Spear,4
Carolyn S. Sevier,4 Huiming Ding,1,2 Judice L.Y. Koh,1,2 Kiana Toufighi,1,2 Sara Mostafavi,1,5
Jeany Prinz,1,2 Robert P. St. Onge,6 Benjamin VanderSluis,3 Taras Makhnevych,7
Franco J. Vizeacoumar,1,2 Solmaz Alizadeh,1,2 Sondra Bahr,1,2 Renee L. Brost,1,2 Yiqun Chen,1,2
Murat Cokol,8 Raamesh Deshpande,3 Zhijian Li,1,2 Zhen-Yuan Lin,9 Wendy Liang,1,2
Michaela Marback,1,2 Jadine Paw,1,2 Bryan-Joseph San Luis,1,2 Ermira Shuteriqi,1,2
Amy Hin Yan Tong,1,2 Nydia van Dyk,1,2 Iain M. Wallace,1,2,10 Joseph A. Whitney,1,5
Matthew T. Weirauch,11 Guoqing Zhong,1,2 Hongwei Zhu,1,2 Walid A. Houry,7 Michael Brudno,1,5
Sasan Ragibizadeh,12 Balázs Papp,13 Csaba Pál,13 Frederick P. Roth,8 Guri Giaever,2,10
Corey Nislow,1,2 Olga G. Troyanskaya,14 Howard Bussey,15 Gary D. Bader,1,2
Anne-Claude Gingras,9 Quaid D. Morris,1,2,5 Philip M. Kim,1,2 Chris A. Kaiser,4 Chad L. Myers,3†
Brenda J. Andrews,1,2† Charles Boone1,2†
A genome-scale genetic interaction map was constructed by examining 5.4 million gene-gene pairs
for synthetic genetic interactions, generating quantitative genetic interaction profiles for ~75% of
all genes in the budding yeast, Saccharomyces cerevisiae. A network based on genetic interaction
profiles reveals a functional map of the cell in which genes of similar biological processes cluster
together in coherent subsets, and highly correlated profiles delineate specific pathways to define
gene function. The global network identifies functional cross-connections between all bioprocesses,
mapping a cellular wiring diagram of pleiotropy. Genetic interaction degree correlated with a
number of different gene attributes, which may be informative about genetic network hubs in other
organisms. We also demonstrate that extensive and unbiased mapping of the genetic landscape
provides a key for interpretation of chemical-genetic interactions and drug target identification.

The relation between an organism's geno-
type and its phenotype are governed by
myriad genetic interactions (1). Although

a complex genetic landscape has long been an-
ticipated (2), exploration of genetic interac-
tions on a genome-wide level has been limited.

Systematic deletion analysis in the budding
yeast, Saccharomyces cerevisiae, demonstrates
that the majority of its ~6000 genes are indi-
vidually dispensable, with only a relatively
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Fig. 1. A correlation-based network
connecting genes with similar genetic
interaction profiles. Genetic profile sim-
ilarities weremeasured for all gene pairs
by computing Pearson correlation co-
efficients (PCCs) from the complete ge-
netic interaction matrix. Gene pairs
whose profile similarity exceeded a
PCC > 0.2 threshold were connected
in the network and laid out using an
edge-weighted, spring-embedded, net-
work layout algorithm (7, 8). Genes
sharing similar patterns of genetic
interactions are proximal to each
other; less-similar genes are posi-
tioned farther apart. Colored regions
indicate sets of genes enriched for GO
biological processes summarized by the
indicated terms.
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Dynamical and stochastic effects 
in gene expression

• Genetic circuits are never at a fixed point:
–External signaling
–Intrinsic noise
–Extrinsic noise
–Cell cycle; volume growth; division
–Oscillations: circadian rhythms; ultradian rhythms, 

etc.



Ultradian clock in yeast
Klevecz et al, 2004

5,329 expressed genes
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Average peak-to-trough ratio ~2

Respiratory cycle



Circadian clock in Neurospora crassa

WC-1

WC-2
WCC FRQ

Stu Brody

Sriram, Gopinathan, 2004
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217 Model circadian networks such as the one found in Drosophila
218 have generated a good understanding of the core clock proteins
219 and their roles in maintaining the daily rhythm (Fig. 1). These stud-
220 ies have revealed important insights into the molecular biology and
221 mechanisms that underlay circadian oscillator function, not just in
222 themodel systems but in all organisms. However, the complexity of
223 the networks and their intertwinement with other cellular pro-
224 cesses has made it difficult to develop maps of all network compo-
225 nents and to deduce how component interact to contribute to the
226 overall function of the time-keeping mechanism. The core module
227 of coupled feedback is wrapped in a complex network involving
228 many layers of regulation. However, knockout studies of circadian
229 systems as well as computational analysis have suggested that a
230 simplified two-component module is theoretically capable of sus-
231 taining periodic behavior on its own [37,40,51–53]. By decoupling
232 a relatively simple module from its complex biological setting, we
233 may be able to systematically explore a design principle that has
234 evolved to regulate periodic cellular behavior and use this simpli-
235 fied system to determine how additional components add complex-
236 ity, regularity, and robustness to a clock’s function.

237 3. Basic science through engineering: synthetic oscillators

238 The possibility of a minimal core network driving robust cellu-
239 lar behavior has inspired the development of an alternative ap-
240 proach to the study of gene-regulatory networks: create the
241 network, beginning with a one or two-component system and then
242 rebuild the network from the bottom up. In this way, we can grad-
243 ually assemble increasingly complex systems that mimic the na-
244 tive network, while maintaining at each stage the ability to
245 model and test the network in a tractable experimental system.
246 There have been several successful attempts at developing a
247 synthetic oscillatory network controlled at the gene regulation le-

248vel [5,54–56]. These networks involved only two- or three-compo-
249nents, and mathematical modeling was instrumental in the process
250of designing and analyzing the network structure and revealing the
251mechanism behind their ability to exhibit periodic behavior. In
252Escherichia coli, the repressilator [5] consisted of a ring architecture
253of cyclic repression that was capable of generating sustained oscil-
254lations in a subset of the cells that were examined, while a two-
255component feedback-based circuit [54] was shown to generate
256damped oscillations. A synthetic mammalian oscillator based on
257an autoregulated sense–antisense transcription control circuit
258yielded self-sustained and tunable oscillatory gene expression in
259a fraction of the cells observed [55].
260These examples represent progress in implementing an engi-
261neering-based approach to the study of gene networks, in which
262computational modeling is used to guide the design of novel net-
263works and accurately predict their dynamic behavior. However,
264the lack of robustness in each of these networks demonstrates the
265need to focus on a network architecture that more closely mimics
266native networks. In this way, we can hope to elucidate the proper-
267ties that enable organisms tomaintain stable oscillations in the face
268inherently noisy and ever-changing micro-environments.
269Recently, we designed and constructed a novel two-component
270oscillator, based on principles observed to be critical for the core of
271a circadian clock network (Fig. 2) [57]. The design of the oscillator
272was based on our earlier work involving coupled positive and neg-
273ative feedback loops [37]. Computational modeling was used to de-
274velop design criteria for achieving oscillations in this system. These
275criteria included an effective separation of timescales between the
276positive and negative components, strong activation and tight
277repression of the promoter, and fast degradation rates for the pro-
278teins. Importantly, the design also implied that the components
279should be carefully tuned in order to achieve oscillations; i.e. most
280parameter values would not lead to oscillations in this design.

ε

Fig. 1. (From Hardin Genome Biology 2000 1:reviews1023.1 doi:10.1186/gb-2000-1-4-reviews1023). Model of the circadian clock circuits in Drosophila and mouse [29]. In
Drosophila, CLK–CYC heterodimers bind to corresponding promoters and activate transcription of per and tim genes. PER protein is subsequently phosphorylated by DNT and
CK2, which marks them for degradation. TIM binds phosphorylated PER and stabilizes it. The TIM/PER/DBT complexes are phosphorylated with the help of SGG kinase and
bind to CLK/CYC, thereby removing them from per/tim promoters and thus repressing PER and TIM transcription. TIM/PER heterodimers, in turn, bind to the promoter of clk
gene and upregulate its transcription.

N.A. Cookson et al. / FEBS Letters xxx (2009) xxx–xxx 3

FEBS 33618 No. of Pages 8, Model 5G
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Please cite this article in press as: Cookson, N.A., et al. The pedestrian watchmaker: Genetic clocks from engineered oscillators. FEBS Lett. (2009),
doi:10.1016/j.febslet.2009.10.089

Circadian networks have similar regulatory mechanisms

http://www.biology-online.org

Interlocked positive and negative feedback loops

http://www.biology-online.org
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Repressilator: the first synthetic gene oscillator 

Elowitz and Leibler, Science 2001



Activated repression: A highly conserved motif in biology 
(circadian networks, NFkB, galactose utilization,…)

Equations for synthetic network 
(derived from biochemical reactions)

FitzHugh-Nagumo-like dynamics:
(Hasty et al, PRL 2002)

y

x



Activator: araC - up-regulates the promoter in the presence of arabinose.

Repressor: lacI - down-regulates the promoter in the absence of IPTG.

Promoter: The hybrid Plac/ara-1 promoter drove each component. (Lutz and 
Bejard, Nucleic Acids Res. 25, 1203-1210 (1997)).

Degradation: The same ssrA tags were added to each gene to increase temporal 
resolution (AANDENYALAA).

lacI

GFParaC

+ arabinose

− IPTG

Synthetic gene oscillator in in E.coli
Stricker et al., Nature,456(7221):516-9 (2008).

• Two experimental “knobs”: Arabinose required for activator binding and
   IPTG prohibits repressor binding



Flow cytometry experiments
time series of fluorescence in initially 
synchronized batch culture of cells

2 mM IPTG

0.2% arabinose

0.3% arabinose

0.7% arabinose

2.0% arabinose

What is it: oscillations stop 
             …or desynchronize?



Single cell experiments

2mM IPTG
0.7% arabinose

Stricker et al., Nature,456(7221):516-9 (2008).

Microfluidic chip



Tunable and robust oscillations

• Large amplitude oscillations (from full expression to zero)
• More than 95% of all cells oscillate throughout the runs

A conceptually similar synthetic oscillator in mammalian cells:
  Tigges et al. A tunable synthetic mammalian oscillator, Nature 457, 309-312 (2009)

Stricker et al., Nature,456(7221):516-9 (2008).



Bacterial oscillator: A detailed model

Regulation Transcription/translation

Enzymatic decay

Stricker et al., Nature,456(7221):516-9 (2008).

23/67



Bacterial oscillator: simulation results
• Frequency of oscillations is 

close to protein degradation 
rate

• Period is proportional to the 
amplitude

• Periods look more like 
individual bursts of proteins

• Oscillations in the full model 
are much more robust than in 
the original 2-eq model



Mechanism of oscillations

activator protein

repressor protein

Activator/repressor mRNA

degrade-and-fire model?

A burst of mRNAs produces activator and then repressor proteins 
which slowly degrade until the promoters are free of repressor 
and the next burst ensues. A small delay allows the circuit to produce 
enough mRNA before repressor shuts down transcription. 



Explicit delay model 

19

delay

delay

replace chains of interactions with a 
single effective delay in feedback

lumps many potentially unknown 
parameters into a few meaningful 
parameters (identify ignorance)

makes mechanism more transparent

amendable to analytic treatment

faster simulations using delay 
approximation



Mather et al, PRL 102, 068105 (2009)

Delayed auto-repression: one gene system

delay

∅

Hopf bifurcations

Degrade-and-fire regime



Mather et al, PRL 102, 068105 (2009)

Delayed auto-repression: degrade-and-fire model

Slow degradation

Fast production

• Two time scales: relaxation oscillations



Zeroth-order degradation 

Degradation

Production

Maximum:

Period:



Two sources of variability (both Poissonian): 
• fluctuations of  xmax

•fluctuations of decay time 

! 

"
# 1+x( t$% ) /C0[ ] $2

& ' & & & & & x

x
(

& ' & "

Zeroth-order degradation: stochastic model

Period variability:

Period variance:

For C0 → 0  these two reactions do not overlap in time

Mather, Bennett, Hasty, Tsimring, PRL 2009



Negative feedback only system
Full model (with constitutive activator): Experiment:

Also oscillates, but not as strong and robust



Synchronization of degrade-and-fire oscillators

Physicist’s cartoon

1

4

2

3

single DF oscillator (discontinuous model)

N=2, η=0.01
ε=0.01

ε=0.05

ε=0.50

with Bastien Fernandez

global repressor

two DF oscillators:

Lemma: for any ϵ > 0 andη a unique
       stable periodic orbit exists.
anti-phase synchronization, no collapse!



Co-repressive coupling of many DF oscillators

many oscillators: N=50, η=0.01

ε=0.01

ε=0.03

ε=0.05

ε=0.50

Exact upper bound for the number of clusters:

with Bastien Fernandez

Phase transition
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Quorum-sensing molecules freely diffuse in and out of cells

AA
A

A

Quorum-sensing synchronization 
of degrade-and-fire oscillators



Quorum-sensing synchronization 
of degrade-and-fire oscillators

Model equations (NF only):

Examples: α=100

ν=1

A(0)=10

A(0)=100

ν=0

α=10

10% variability



Mechanism of synchronization 

burst localization on the falling part of the delayed AHL profile stabilizes phase drift: 
self-entrainment 

A(t) A(t-τ)

phase drift

constant inducer

periodic inducer entrainment



Compare with:

Synchronized quorum of genetic clocks
Core oscillator is similar (activated repression), but different components

LuxI GFP

AHL

LuxR-AHL

aiiA

LuxI - synthase enzyme which chops fatty acid 

molecules in the cell to make AHL (from V. fischeri)

AHL - binds to luxR and the complex activates the 

luxI promoter

AiiA - enzyme which degrades AHL (from B. 

thuringiensis)

Coupling: AHL freely diffuses in and out of cell

T. Danino et al., Nature 2010



Microcolony in a side trap
• Exponentially growing population for at least 4 days
• Flow rate modulates effective degradation of AHL

Low	
  flow	
  rate	
  (~240	
  μm/min)	
  

High	
  flow	
  rate	
  (~280	
  μm/min)	
  

100 μm

Main Channel

Trapping
Chamber

b ca

0 2 4 6 8 10
0

20

40

60

80

G
FP

 (A
U

)

Cell-to-Cell
CouplingAHL

LuxR-AHL

luxI yemGFP

aiiA

417 min 432 min 447 min

507 min 522 min

462 min 477 min

648 min

495 min

537 min 552 min 567 min 627 min

402 min 20 µm

5 µm

Time (hours)

d

Figure 1:  Danino,  et al.

150 190 235 275 320
40

60

80

100

Pe
rio

d 
(m

in
s)

Velocity (!m/sec)
15 30 45 60

40

55

70

85

100

Pe
rio

d 
(m

in
s)

Amplitude (AU)

0 2.5 5 7.5 10
0

25

50

75

100

Time (hours)

G
FP

 (A
U

)

0 1.5 3 4.5 6
0

25

50

75

100

Time (hours)

G
FP

 (A
U

)

a b

c d

Figure 2:  Danino,  et al.

150 190 235 275 320
40

60

80

100

Pe
rio

d 
(m

in
s)

Velocity (!m/sec)
15 30 45 60

40

55

70

85

100

Pe
rio

d 
(m

in
s)

Amplitude (AU)

0 2.5 5 7.5 10
0

25

50

75

100

Time (hours)

G
FP

 (A
U

)

0 1.5 3 4.5 6
0

25

50

75

100

Time (hours)

G
FP

 (A
U

)

a b

c d

Figure 2:  Danino,  et al.

 100 μm



Traveling Waves of AHL
100 μm

1000 μm

Extended 2D monolayer

180 min 228 min

252 min

192 min

303 min273 min

346 min 321 min 418 min

d

100 min

118 min

170 min

202 min

230 min

106 min

66 min

b

a c

Figure 3:  Danino,  et al.
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Growing 3D colony

100 um

Waves propagate at 8-12 µm/min

180 min 228 min

252 min

192 min

303 min273 min

346 min 321 min 418 min

d

100 min

118 min

170 min
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Figure 3:  Danino,  et al.
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Detailed delayed feedback model

• A=aiiA, I=LuxI,Hi=internal AHL, He=external AHL

• luxR is at a constant level

• Production of aiiA/luxI is delayed 

• Diffusion is slow compared to external flow rate 

Modeling

There has been much work on modeling asynchronous, oscillating cells coming into synchrony
in the context of synthetic biology (McMillen et al. (2002); Garcia-Ojalvo et al. (2004)), though
less attention has been focused on networks that do not oscillate individually but oscillate collec-
tively (Ma and Yoshikawa (2009)). Here we constructed a deterministic model of quorum-sensing
gene clock. From the biochemical reactions depicted in Fig. 1a, we derived the following set of
delay-differential equation model for intracellular concentrations of LuxI (I), AiiA (A), internal
AHL (Hi), and external AHL (He),

∂A
∂t

= CA[1 − (d/d0)4] P(α, τ) − γA A
1 + f (A + I)

(1)

∂I
∂t

= CI [1 − (d/d0)4] P(α, τ) − γI I
1 + f (A + I)

(2)

∂Hi
∂t

=
bI

1 + kI
− γH AHi

1 + gA
+ D(He − Hi) (3)

∂He

∂t
= − d

1 − d
D(He − Hi) − µHe + D1

∂2He

∂x2 (4)

We did not include an equation for LuxR assuming that it is constitutively produced at a constant
level. Previous work found that LuxR is under control of the LuxR-AHL complex to produce a
higher concentration of LuxR but we did not find this necessary to capture the essential behavior
of the synchronized oscillator Williams et al. (2008).

In the first two equations, the Hill function

P(α, τ) =
δ + αH2

τ

1 + k1H2
τ

describes the delayed production of corresponding proteins, it depends on the past concentration
of the internal AHL, Hτ(t) = Hi(t − τ). These delayed reactions mimic the complex cascades of
processes (transcription, translation, maturation, etc.) leading to formation of functional proteins.
The pre-factor [1 − (d/d0)4] describes slowing down of protein synthesis at high cell density d
due to lower nutrient supply and high waste concentration. Terms proportional to γx describe
enzymatic degradation of proteins and AHL by proteases inside of the cell due to their degra-
dation tags. We model these processes using Michaelis-Menten kinetics. Terms proportional to
D describe diffusion of AHL through cell membrane, and the term proportional to µ models
dilution of external AHL by external fluid flow. The cell density (d) determines the amount of
external AHL and thus affects the AHL decay rate. The factor d/(1 − d) follows from the total
mass conservation of AHL inside and outside the cells. Since the flow speed (∼ 100µm/sec) is
much higher than the typical wave propagation speed (∼ 10µm/sec), we neglected the anisotropy
imposed by the fluid flow. The last term in equation for He describes the diffusion of external
AHL.

We used the following experimentally relevant scaled parameters in most of our simula-
tions: CA = 1, CI = 4, δ = 10−3, α = 2500, τ = 10, k = 1, k1 = 0.1, b = 0.06, γA = 15, γI =
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Space-time model simulations
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Conclusions

• Genetic circuits are prone to oscillations  
• Biologically relevant oscillatory motif: Delayed auto-repression.  Two-gene 

oscillator (activated auto-repression) designed and implemented in E.coli
• Robust (small)-delay-induced oscillations: degrade-and-fire mechanism
• Oscillators in different cells can be entrained and synchronized by external 

chemical signal (inducer)
• Synchronized oscillations in a dense multi-cell populations: similar design, 

different components
• Co-repressive mechanism explains synchronization in multi-trap experiments
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