Degrade-and-fire oscillations in synthetic gene networks

Lev Tsimring

BioCircuits Institute, University of California, San Diego

IPFRAN, June 28, 2011

Central dogma

All cells have the same genes... ...So why cell differ from each other?

Transcriptional Regulation Activator – increases rate of production Repressor – decreases rate of production

- Figure out all the genes (genomics)
- Figure out which genes and proteins interact (network reconstruction)
- Figure out the dynamics given the network

Systems Biology

scale

Gene regulation circuits

Dynamical and stochastic effects in gene expression

- Genetic circuits are never at a fixed point:
 - -External signaling
 - -Intrinsic noise
 - -Extrinsic noise
 - -Cell cycle; volume growth; division
 - Oscillations: circadian rhythms; ultradian rhythms, etc.

Ultradian clock in yeast

Klevecz et al, 2004

Circadian clock in Neurospora crassa

 $\dot{f} = \frac{k_f w^2 (t - \tau)}{1 + K_w w^2 (t - \tau)} - \gamma_f f - \kappa f w$ $\dot{w} = \frac{k_f f^2 (t - \tau)}{1 + K_f f^2 (t - \tau)} - \gamma_w w - \kappa f w$

Sriram, Gopinathan, 2004

Stu Brody

Circadian networks have similar regulatory mechanisms

http://www.biology-online.org

Interlocked positive and negative feedback loops

Repressilator: the first synthetic gene oscillator

$$\dot{m}_i = -m_i + \frac{\alpha}{1+p_i^n} + \alpha_0$$

$$\dot{p}_i = -\beta(p_i - m_i)$$

Elowitz and Leibler, Science 2001

Activated repression: A highly conserved motif in biology

(circadian networks, NFkB, galactose utilization,...)

Equations for synthetic network (derived from biochemical reactions)

$$\frac{dx}{dt} = \frac{1+x^2+\alpha\sigma x^4}{(1+x^2+\sigma x^4)(1+y^4)} - \gamma_x x,$$

$$\tau_y \frac{dy}{dt} = \frac{1+x^2+\alpha\sigma x^4}{(1+x^2+\sigma x^4)(1+y^4)} - \gamma_y y.$$

(Hasty et al, PRL 2002)

FitzHugh-Nagumo-like dynamics:

Synthetic gene oscillator in in E.coli

Stricker et al., Nature, 456(7221):516-9 (2008).

<u>Activator</u>: araC - up-regulates the promoter in the presence of arabinose.

<u>Repressor</u>: lacl - down-regulates the promoter in the absence of IPTG.

Promoter: The hybrid Plac/ara-1 promoter drove each component. (Lutz and Bejard, Nucleic Acids Res. **25**, 1203-1210 (1997)).

<u>Degradation</u>: The same ssrA tags were added to each gene to increase temporal resolution (AANDENYALAA).

• Two experimental "knobs": Arabinose required for activator binding and IPTG prohibits repressor binding

Flow cytometry experiments

What is it: oscillations stop ... or desynchronize?

Single cell experiments

Stricker et al., Nature, 456(7221):516-9 (2008).

Concentration Density Plot for All IDs, Microscope Run: 12/13/2006

Tunable and robust oscillations

Stricker et al., Nature, 456(7221):516-9 (2008).

• Large amplitude oscillations (from full expression to zero)

More than 95% of all cells oscillate throughout the runs

A conceptually similar synthetic oscillator in mammalian cells: Tigges *et al*. A tunable synthetic mammalian oscillator, Nature 457, 309-312 (2009)

Bacterial oscillator: A detailed model

Stricker et al., Nature, 456(7221):516-9 (2008).

Bacterial oscillator: simulation results

Mechanism of oscillations

A burst of mRNAs produces activator and then repressor proteins which slowly degrade until the promoters are free of repressor and the next burst ensues. A small *delay* allows the circuit to produce enough mRNA before repressor shuts down transcription.

degrade-and-fire model?

Explicit delay model

replace chains of interactions with a single effective delay in feedback

lumps many potentially unknown parameters into a few meaningful parameters (identify ignorance)

makes mechanism more transparent

amendable to analytic treatment

faster simulations using delay approximation

$$\frac{dx}{dt} = \frac{\alpha(1 + fy_{\tau_y}^2/C_{0y}^2)}{(1 + x_{\tau_x}^2/C_{0x}^2)(1 + y_{\tau_y}^2/C_y^2)} - \frac{\delta_x x}{C_{1x} + x}
\frac{dy}{dt} = \frac{\alpha(1 + fy_{\tau_y}^2/C_{0y}^2)}{(1 + x_{\tau_x}^2/C_{0x}^2)(1 + y_{\tau_y}^2/C_y^2)} - \frac{\delta_y y}{C_{1y} + y}$$

Delayed auto-repression: one gene system

Mather et al, PRL 102, 068105 (2009)

$$\dot{x}(t) = \frac{\alpha}{\left(1 + \frac{x(t-\tau)}{C_0}\right)^2} - \delta \frac{x(t)}{C_1 + x(t)}$$

Delayed auto-repression: degrade-and-fire model

Mather et al, PRL 102, 068105 (2009)

Zeroth-order degradation

Zeroth-order degradation: stochastic model

 $\tau = 1; \alpha = 100; C_0 = 0.01; \delta = 1$

Mather, Bennett, Hasty, Tsimring, PRL 2009

 $x \xrightarrow{\delta} \emptyset$

For $C_0 \rightarrow 0$ these two reactions do not overlap in time

Period variability:

X

Two sources of variability (both Poissonian): • fluctuations of x_{max}

$$v_x = \langle x_{\max} \rangle = \alpha \tau$$

•fluctuations of decay time

$$v_d = \langle T_d \rangle = \langle x_{\max} \rangle / \delta = \alpha \tau / \delta$$

Period variance:

$$v = v_d + v_x / \delta = 2\alpha \tau / \delta$$

Negative feedback only system

Also oscillates, but not as strong and robust

Synchronization of degrade-and-fire oscillators

with Bastien Fernandez

Co-repressive coupling of many DF oscillators

many oscillators:

- $\dot{x}_i = -\gamma_i \Theta(x_i), i = 1, ..., N$
- mean field $X = N^{-1} \sum_i x_i$
- when $\xi_i \equiv \epsilon X + (1 \epsilon)x_i = \eta$, x_i reset to 1

Exact upper bound for the number of clusters:

with Bastien Fernandez

Quorum-sensing synchronization of degrade-and-fire oscillators

Quorum-sensing molecules freely diffuse in and out of cells

Quorum-sensing synchronization of degrade-and-fire oscillators

Model equations (NF only):

$$\frac{dx_i}{dt} = \frac{\alpha_i + \nu A_{\tau_2}}{(1 + x_{i,\tau_1}/C_0)^2} - \frac{\gamma_i x_i}{K_i + x_i}, \ i = 1, ..., N$$
$$\frac{dA}{dt} = \frac{1}{N} \sum_i x_i - \beta A$$

Examples:

 $au_1 = 1; au_2 = 2; eta = 0.3;$ $\gamma_i = 50; C_0 = 2; K_i = 1$ 10% variability

Mechanism of synchronization

burst localization on the falling part of the *delayed* AHL profile stabilizes phase drift: self-entrainment

Synchronized quorum of genetic clocks

Core oscillator is similar (activated repression), but different components

LuxI - synthase enzyme which chops fatty acid molecules in the cell to make AHL (from *V. fischeri*) AHL - binds to luxR and the complex activates the *luxI* promoter

AiiA - enzyme which degrades AHL (from B.

thuringiensis)

Coupling: AHL freely diffuses in and out of cell

Compare with:

T. Danino et al., Nature 2010

Microcolony in a side trap

- Exponentially growing population for at least 4 days
- Flow rate modulates effective degradation of AHL

Low flow rate (~240 μ m/min)

High flow rate (~280 μ m/min)

Traveling Waves of AHL

Extended 2D monolayer

Growing 3D colony

Waves propagate at 8-12 μ m/min

100 um

Detailed delayed feedback model

Space-time model simulations

Experiments

Simulations

Conclusions

- Genetic circuits are prone to *oscillations*
- Biologically relevant oscillatory motif: Delayed auto-repression. Two-gene oscillator (activated auto-repression) designed and implemented in *E.coli*
- Robust (small)-delay-induced oscillations: degrade-and-fire mechanism
- Oscillators in different cells can be entrained and synchronized by external chemical signal (inducer)
- Synchronized oscillations in a dense multi-cell populations: similar design, different components
- Co-repressive mechanism explains synchronization in multi-trap experiments

- D.A. Bratsun, D.N. Volfson, L.S. Tsimring, J. Hasty. Delay-induced oscillations in gene regulation. PNAS, 102 (41), 14593-8(2005).
- J. Stricker, S. Cookson, M. Bennett, W. Mather, L. S. Tsimring, J. Hasty. A robust and tunable synthetic gene oscillator. Nature, **456**(7221):516-9 (2008).
- W. Mather, M. R. Bennett, J. Hasty, L. S. Tsimring, Delay-induced degrade-and-fire oscillations in small genetic circuits. Phys. Rev. Lett., **102**, 068105 (2009).
- T. Danino, O. Mondrgon-Palomino, L. S. Tsimring, J. Hasty, A synchronized quorum of genetic clocks, Nature, 463, doi10/1038/nature08753 (2010).

Acknowledgments

Experiments

Jeff Hasty

Jesse Stricker Scott Cookson Tal Danino Octavio Mondragon-Palomino Arthur Prindle Ivan Razinkov Phillip Samayoa

Modeling

Dmitri Bratsun Dmitri Volfson Matt Bennett William Mather Phillip Samayoa

Bastien Fernandez (Marseille)

Funding

NIH NIGMS San Diego Center for Systems Biology

Postdoc position available!