
RMT Extreme values Random/chaotic states

Extreme value statistics in random matrix theory:
random and quantum chaotic states

Steve Tomsovic

Washington State University, Pullman, WA USA

Collaborators:
A. Lakshminarayan (IITM)
O. Bohigas (deceased)
S. Majumdar (LPTMS)

extreme statistics



RMT Extreme values Random/chaotic states

Outline

A few basic concepts

1) Random matrix theory

spectra
eigenvectors
random matrices

2) Extreme value statistics

identically distributed, independent random variables
correlated variables

Exact results

1) Tracy-Widom distribution
2) Eigenstate intensities

random states
kicked rotor eigenstates
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Why do we care about random matrix theory?

Eugene Wigner brought them into physics while thinking
about slow neutron resonances, experiments motivated by
nuclear reactor design

Bohigas-Giannoni-Schmit conjecture - the properties of
quantized strongly chaotic systems behave statistically in the
same way as ensembles of random matrices

Maybe we care about electron transport in nano-systems...

Or maybe, connections to entanglement and localization...

Or maybe, connections to number theory...

Or maybe, certain analyses of financial markets...

Or maybe, any of a broad range of engineering concerns...

Or ... well, the list seems to just keep growing endlessly...
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ENERGY LEVELS

GOE

POISSON
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What are some basic eigenstate properties?

Berry conjecture - asymptotically eigenstates of chaotic
systems are like random waves
Quantum ergodicity - probability densities associated with
quantum eigenstates tend to uniform in a classical phase
space (Schnirelman, Colin de Verdiére, Zelditch)
Eigenstate scarring - short periodic orbits enhance features of
chaotic quantum eigenstates (Heller)
Coherent branching - scattering eigenstates or waves in weakly
random media exhibit strong features along branches
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Random waves
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Stadium eigenstate
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Random matrices

Imagine an N-dimensional Hermitian matrix, could be a
Hamiltonian, but it has Gaussian random matrix elements,

H =


H11 H12 H13 . . .
H21 H22 H23

H31 H32 H32
...

. . .


where (j 6= k - diagonal elements get multiplied by a

√
2)

β = 1, Hjk = xjk say ρ(x) =
1√
2π

exp

(
−x2

2

)
β = 2, Hjk = xjk + ix

(i)
jk

β = 4, Hjk = xjk1 + i
[
x
(1)
jk σ1 + x

(2)
jk σ2 + x

(3)
jk σ3

]
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Random matrices II

Then, the joint probability density for the ensemble of such
matrices can be written (no correlations)

ρ(H)dH =

(
1√
2π

)βN
2

(
N−1+ 2

β

)
exp

[
−1

4
Tr
(
H2
)]

dH

We care more about the eigenvalues and eigenvectors of H than
the individual matrix elements. We are really interested more in
something like

ρ(H)dH = ρ(λ,U)dλdU

= ρ(λ)dλdU

where
λ = UHU−1
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Random matrices III

Suddenly, there are very strong correlations introduced by the
variable change, notice the Vandermonde determinant,

ρ(λ)dλdU = Cβ
N∏

k>j=1

|λj − λk |β exp

−1

4

N∑
j=1

λ2j

dλdU

There are two very well-known spectral correlations, level
repulsion and spectral rigidity.

β = 0 in the Vandermonde determinant would correspond to
Poisson eigenvalue statistics.

The eigenstates behave statistically like uniformly random
vectors according to the Haar measures for the special
orthogonal SO(N), unitary SU(N), or symplectic Sp(2N,R)
groups.
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Extreme value statistics

In its simplest form, one considers the statistics of the largest
or smallest of a set of random variable values - it puts the
focuss on the tails of probability densities

Mathematicians and engineers have been working on this
since at least the turn of the 20th century

structural design for wind, floods, turbulence, ...
finance issues, many other things ...

Physicists have been rather slow coming to this by
comparison, but now the interest is growing:

disordered media - random lasers, minima in thermodynamic
contexts, quantum information theory
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Uncorrelated random variables

Let {sj}, j = 1, ...,N be independent and identically
distributed.

A joint probability density can be defined and denoted

ρ(~s;N) = ρ(s1, s2, ..., sN ;N) =
N∏
j=1

ρ(sj ;N)

The distribution function of the maximum is given by,

Fmax(t;N) =

∫ t

−∞
d~s ρ(~s;N) =

[∫ t

−∞
dsj ρ(sj ;N)

]N
(any j)

Or for the minimum

Fmin(t;N) = 1−
∫ ∞
t

d~s ρ(~s;N) = 1−
[

1−
∫ t

−∞
dsj ρ(sj ;N)

]N
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Universal distribution functions - Fisher/Tippett 1928

The Weibull/Fréchet distribution function

F (t;N) = 1− exp[−(±t − aN)γN/bN ]

is expected for uncorrelated random variables with compact
support from above or below (or heavy tailed densities).

The Gumbel distribution function

F (t;N) = exp[−e−(t−aN)/bN ]

is expected for uncorrelated random variables with
non-compact support whose tails decay at least exponentially
fast.

For example, consider the uniform density
ρ(t) = 1 (0 ≤ t ≤ 1):

Fmax(t;N) = tN −→ e−N(1−t) Weibull

Fmin(t;N) = 1− (1− t)N −→ 1− e−Nt Fréchet
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Complex and real Gaussian variables

Absolute square of complex Gaussian variable:

ρ(t) = e−t (0 ≤ t ≤ ∞)

and hence

Fmax(t;N) =
(
1− e−t

)N → exp
(
−e−(t−lnN)

)
Gumbel

Fmin(t;N) = 1−
[
1−

(
1− e−t

)]N → 1− e−Nt Fréchet

Square of real Gaussian variable:

ρ(t) =

√
1

2πt
e−t/2 (0 ≤ t ≤ ∞)

and hence

Fmax(t;N) = erfN
(√

t/2
)
→ exp

(
−e−

1
2
(t−ln 2N

πt
)
)

Gumbel

Fmin(t;N) = 1−
[
1− erf

(√
t/2
)]N
→ 1− e

−N
√

2t
π Fréchet
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RMT example with strong correlations - largest eigenvalue

Largest eigenvalue follows the Tracy-Widom distribution
Fβ(s).
Use semicircle radius R and matrix dimensionality to obtain
scaled variable s

s =
R

N1/3
(λmax − R)

R = = 2
√
βN − β + 2 ≈ 2

√
βN

Won’t go through the math, but

q′′(x) = xq(x) + 2q(x)3 Painlevé equation

F2(s) = exp

[
−
∫ ∞
s

dx (x − s) q2(x)

]
F1(s) = exp

[
−1

2

∫ ∞
s

dx q(x)

]
F2(s)1/2

Shows up in many unexpected ways, not just for λmax .
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Plot of Tracy-Widom distribution
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Joint probability densities for intensities

Norm constraint is naturally expressed in amplitude variables:

ρβ(z1, z2, . . . , zN) =
Γ
(
Nβ
2

)
πNβ/2

δ

 N∑
j=1

|zj |2 − 1


β = 1, 2 for real, complex respectively. Real −→ orthogonal
ensembles, complex −→ unitary ensembles. Intensities:

ρβ(~s;N) = πN(β/2−1)Γ

(
Nβ

2

) N∏
j=1

s
β/2−1
j dsj

 δ
 N∑

j=1

sj − 1


Complex is equivalent to “broken stick problem” where N − 1
cuts at uniformly random locations are made.

Real is intimately connected to relationship between
hyperspherical and cartesian coordinates.
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An auxiliary function for “decorrelating” intensities

The distribution function for the maximum is:

F βmax(t;N) = πN(β/2−1)Γ

(
Nβ

2

) N∏
j=1

∫ t

0
s
β/2−1
j dsj

 δ
 N∑

j=1

sj − 1


Define auxiliary function Gβ(t, u;N); results by replacing unity

in norm constraint with u, thus F βmax(t;N) = Gβ(t, u = 1;N).

The Laplace transform of Gβ(t, u;N) renders the integrals
over the N differentials dsj into a product form and gives:∫ ∞
0

e−usGβ(t,N, u)du =

 Γ(N2 )
(
erf(
√
st)√
s

)N
real

Γ(N)
(
1−e−st

s

)N
complex

The N integrals have been performed at the cost of now
needing the inverse Laplace transforms of these expressions.
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Exact results for unitary ensembles

Distribution function for maximum follows by expanding the
Nth power and using the inverse Laplace transform:

L−1s

(
e−smt

sN

)
=

1

Γ(N)
(u −mt)N−1Θ(u −mt)

F β=2
max (t;N) =

N∑
m=0

(
N

m

)
(−1)m(1−mt)N−1Θ(1−mt)

Interestingly reduces to a piecewise smooth expression with
the intervals Ik = [1/(k + 1), 1/k], where k = 1, 2, · · · ,N − 1

Fmax(t ∈ Ik ;N) =
k∑

m=0

(
N

m

)
(−1)m(1−mt)N−1

Maximal distributions of correlated variables possessing unit
norm constraints, satisfy this type of combinatoric form.
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Exact results continued

For the interval I1 = [1/2, 1]:

Fmax(t ∈ I1;N) = 1− N(1− t)N−1 = 1− N

∫ 1

t
P1(s)ds

and quite generally

Fmax(t ∈ Ik ,N) =
k∑

m=0

(
N

m

)
(−1)m

∫
si≥t
Pm(s1, . . . , sm) ds1 · · · dsm

For the minima

Fmin(t,N) = 1− Γ(N)

[
N∏
i=1

∫ 1

t
dsi

]
δ

(
N∑
i=1

si − 1

)

Fmin(t,N) =

{
1− (1− Nt)N−1 0 ≤ t ≤ 1/N
1 1/N ≤ t ≤ 1
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Exact results continued again
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Exact probability density vs asymptotic Gumbel density in scaled
variable x = N(t − ln(N)/N). Inset shows difference between
exact and Gumbel for same values of N, but unscaled.
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Quantum kicked rotor as example of chaotic system
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Probability densities (histograms) of scaled max and min (inset) of
eigenfunctions in rotor position basis (N = 32) in parameter range
13.8 < K < 14.8. Exact density for random states shown as
continuous, dashed lines are respectively Gumbel and Fréchet.
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Concluding eigenstate property remarks

Extreme intensity statistics give alternate approach to
understanding random states or quantum chaotic eigenstates.

It is possible to derive some compact, exact results for unitary
ensembles with any dimensionality and give excellent
approximations for same quantities in orthogonal ensembles.

Max intensities tend to ∞-dimensional limit very slowly and
thus functional forms contain some information about system
size. Means scale as ln aβN/N for unitary and orthogonal
cases.

extreme statistics



RMT Extreme values Random/chaotic states

Min intensity statistics tend much more rapidly toward their
∞-dimensional Fréchet form. Mean minima scale as N−2 and
πN−3 for unitary and orthogonal cases.

These “extreme” measures provide new way to explore
non-ergodicity. Localization and system dynamical features
would generate deviations from the random matrix theory
results.
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Exact results for orthogonal ensembles?

Exact results for interval [1/2, 1] for ortho and unitary cases:

Fmax(t ∈ I1;N) = 1− N(1− t)N−1 unitary

= 1− N

1− 2

π
sin−1

√
t −
√
t

N−2
2∑

m=1

22m

πm
(
2m
m

) (1− t)m−1/2

 even

= 1− N

1−
√
t −
√
t

N−3
2∑

m=1

1

22m−1

(
2m − 1

m

)
(1− t)m

 odd

Reconsider the Laplace transform approach

Fmax(t;N) = Γ

(
N

2

) N∑
m=0

(−1)m
(
N

m

)
L−1s

[
erfcm(

√
st)

sN/2

]
u=1
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A saddle point approximation

After playing around, divided and multiplied by complementary
error function asymptotic form:

L−1s

(
(πst)m/2 emsterfcm(

√
st)
(

1
πt

)m/2 e−smt

s
N+m
2

)
≈
(

N+m
2−2mt

)m/2
× e

m(N+m)t
2−2mt erfcm

(√
(N+m)t
2−2mt

)
1

Γ
(
N+m
2

)(1−mt)
N+m−2

2 Θ(1−mt)

This gives

F β=1
max (t ∈ Ik ;N) =

k∑
m=0

(N
m

)
(−1)m

(
N+m
2

)m
2 Γ
(
N
2

)
(1−mt)

N
2
−1

Γ
(
N+m
2

)
×e

m(N+m
2 )t

1−mt erfcm

√(N+m
2

)
t

1−mt


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-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

saddle point approximation

simulation

N=10

t

F(t;N)

The orthogonal ensembles

Gumbel distribution

saddle point w/o erfc

Comparison of max intensity distribution functions for orthogonal
ensembles. Full saddle point approximation improves considerably
agreement with “exact” result vis-a-vis asymptotic Gumbel form.
Simpler asymptotic form is an improvement only at larger t.
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Distribution functions for maxima and minima intensities

Suppose an ensemble of systems acts in an N-dimensional
vector space,{|j〉}, j = 1, ...,N with eigenvectors of a member
system,{|φn〉}, n = 1, ...,N. The intensities are sj = |〈φn|j〉|2.

A joint intensity probability density can be defined

ρ(~s;N) = ρ(s1, s2, ..., sN ;N)

Let the maximum intensity be s = max [sj ] , j = 1, ...N

The distribution function is given by,

Fmax(t;N) =

∫ t

1
N

dsρmax(s;N) =

∫ t

0
d~sρ(~s;N)

Or for the minimum intensity s = min [sj ] , j = 1, ...N

Fmin(t;N) = 1−
∫ 1

N

t
ds ρmin(s;N) = 1−

∫ 1

t
d~s ρ(~s;N)
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Distribution functions for maxima and minima intensities

Let’s pretend for a slide or two that the {sj}, j = 1, ...,N are
similarly distributed independent random variables.

A joint probability density can be defined and denoted

ρ(~s;N) = ρ(s1, s2, ..., sN ;N) =
N∏
j=1

ρ(sj ;N)

The distribution function of the maximum is given by,

Fmax(t;N) =

∫ t

d~s ρ(~s;N) =

[∫ t

dsj ρ(sj ;N)

]N
(any j)

Or for the minimum

Fmin(t;N) = 1−
∫
t
d~s ρ(~s;N) = 1−

[
1−

∫ t

dsj ρ(sj ;N)

]N
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2 relevant examples: complex and real Gaussian amplitudes

Complex Gaussian amplitude with 1
N -mean intensity density:

ρ(s) = Ne−Ns (0 ≤ s ≤ ∞)

Fmax(t;N) =
(

1− e−Nt
)N

→ exp
(
−e−N(t− 1

N
lnN)

)
Gu

Fmin(t;N) = 1−
[
1−

(
1− e−Nt

)]N
→ 1− e−N

2t Fr

Real Gaussian amplitude leads to 1
N -mean intensity density:

ρ(s) =

√
N

2πs
e−Ns/2 (0 ≤ s ≤ ∞)

Fmax(t;N) = erfN
(√

Nt/2
)

→ exp
(
−e−

N
2
(t− 1

N
ln 2N

πt
)
)

Gu

Fmin(t;N) = 1−
[
1− erf

(√
Nt/2

)]N
→ 1− e−

√
2N3t
π Fr
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