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Today’s introduction

I. Where is quantum chaos found?

II. What is quantum chaos?

III. Methods of analysis

a) Semiclassical methods
b) Random matrix theory
c) Effective field theories

IV. What can we do with all this?
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Sampling of where quantum chaos is found

Low-energy proton and slow neutron resonances

Quantum dots

Disordered electronic conductors

Decoherence and fidelity studies

The Dirac spectrum in non-Abelian gauge field backgrounds

Quantum computation

Riemann zeta function and the generalization, L-functions

atomic and molecular spectra

microwave-driven atoms

optical resonators

ultra-cold atoms in optical lattices

Acoustics in crystals

Long range ocean acoustics
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A few illustrations

Quantum dot vs nucleus

Christian Schönenberger group

Narimanov et al.

Parity violation in the
compound nucleus
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TRIPLE collaboration

Quantum point contact

Robert Westervelt group
Long range ocean acoustics

Acoustic engineering test
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What is quantum chaos?1

“Quantum chaos is a branch of physics which studies how
chaotic classical systems can be shown to be limits of
quantum-mechanical systems.” Martin C. Gutzwiller

Quantum chaos is “the quantum mechanics of chaotic
systems.” Hans Jürgen Stöckmann
“...an emerging science that is leading to the discovery of
unfamiliar regimes of behavior in microscopic systems,”
M. V. Berry

Common views: quantum chaos ⇒ random matrix theory
or: quantum chaos ⇒ periodic orbit theory

Quantum chaos is partly a new statistical mechanics, one not
based on a thermodynamic limit, and partly an asymptotic
analysis applied to non-integrable wave-mechanical systems.

1Wikipedia article is in dire need of some serious improvement
quantum chaos



Quantum chaos
Basic elements

Spectra and Eigenstates
Semiclassical Methods
Random Matrix Theory
Effective field theories

ENERGY LEVELS

GOE

POISSON

quantum chaos



Quantum chaos
Basic elements

Spectra and Eigenstates
Semiclassical Methods
Random Matrix Theory
Effective field theories

Stadium eigenstate
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What are some basic eigenstate properties?

Berry conjecture - asymptotically eigenstates of chaotic
systems are like random waves
Quantum ergodicity - probability densities associated with
quantum eigenstates tend to uniform in a classical phase
space (Schnirelman, Colin de Verdiére, Zelditch)
Eigenstate scarring - short periodic orbits enhance features of
chaotic quantum eigenstates (Heller)
Coherent branching - scattering eigenstates or waves in weakly
random media exhibit strong features along branches

quantum chaos



Quantum chaos
Basic elements

Spectra and Eigenstates
Semiclassical Methods
Random Matrix Theory
Effective field theories

Random waves
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Hamilton’s phase space formulation of classical mechanics

q̇ =
∂H(q,p; t)

∂p
, ṗ = −∂H(q,p; t)

∂q

Poincaré (1899) proves existence of doubly asymptotic orbits -
heteroclinic transport and chaos
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Schrödinger equation

The general Schrödinger equation is the basic starting point

i~
∂Ψ(x; t)

∂t
= H(x̂, p̂; t)Ψ(x; t)

Green functions often provide useful, powerful techniques

i~
∂K (x, x′; t)

∂t
= H(x̂, p̂; t)K (x, x′; t)

The Green function is given by the Feynman path integral

K (x, x′; t) =

∫
exp

[
i

~

∫ t

0
L(ẋ, x; t)dt

]
Dx(t)
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van Vleck - Gutzwiller propagator: fundamental link

The bridge between the quantum and classical worlds is

Ksc(x, x′; t) =

(
1

2πi~

) d
2 ∑

j

∣∣∣∣Det

(
∂2Sj(x, x′; t)

∂x∂x′

)∣∣∣∣ 12 e iSj (x,x
′;t)

~ −
iπνj
2

where j sums every classical orbit connecting x′ to x in time t.

Wavefunction propagation in terms of classical orbits comes by

Ψ(x; t) =

∫ ∞
−∞

dx′Ksc(x, x′; t)Ψ(x′) Sj(x, x′; t) =

∫ t

0
dt ′L(ẋ, x; t)

Ksc(x, x′; t) is the Feynman path integral by stationary phase
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Ksc(z, z′; t) - heteroclinic orbit summations

Heteroclinic orbit summations capture all chaotic transport

Γzz′(t) =
∑
γ

(ρz, ρz′(t))γ ∼
∑
γ

∫
dqdpρz(q,p) [Tγρz′ ] (q,p; t)

Tγ is a classical local linear transformation

Dirac derived the unitary transformation corresponding to a
linear transformation

The coherent state Green function has a heteroclinic orbit
summation

Ksc(z, z′; t) ≈
∑
γ

〈z|z′(t)〉γ

This also follows from a more rigorous generalized Gaussian
wave packet dynamics

quantum chaos



Quantum chaos
Basic elements

Spectra and Eigenstates
Semiclassical Methods
Random Matrix Theory
Effective field theories

Trace formulae

Densities of states can be expressed as periodic orbit sums

Gutzwiller derived the sum for fully chaotic systems

ρ(E ) ∼ ρW (E ) +
1

π~
∑
PO

T

r |Det (M − 1)|1/2
cos

(
S

~
− σπ

2

)
Berry-Tabor furnished the integrable system expression

ρ(E ) ∼ ρW (E )+
∑
M

TM

π~3/2M3/2
2

∣∣g ′′
E

∣∣1/2 cos

(
S0

M

~
− ηMπ

2
− π

4

)
Formulae properly interpolating the two expressions also exist
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Eigenstate scarring - Heller 1984

Periodic orbits and a linearized wave
packet dynamics implies recurrences of
states localized in these orbits’
neighborhoods

Their spreading is governed by the
Lyapunov exponent and the period of
the orbit:

A lower bound for excess intensity in
the neighborhood of the periodic orbit
is given by

Isc
I0

>
2π

τλ
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Random matrices

Imagine an N-dimensional Hermitian matrix, could be a
Hamiltonian, but it has Gaussian random matrix elements,

H =


H11 H12 H13 . . .
H21 H22 H23

H31 H32 H32
...

. . .


where (j 6= k - diagonal elements get multiplied by a

√
2)

β = 1, Hjk = xjk say ρ(x) =
1√
2π

exp

(
−x2

2

)
β = 2, Hjk = xjk + ix

(i)
jk

β = 4, Hjk = xjk1 + i
[
x
(1)
jk σ1 + x

(2)
jk σ2 + x

(3)
jk σ3

]
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Random matrices II

Then, the joint probability density for the ensemble of such
matrices can be written (no correlations)

ρ(H)dH =

(
1√
2π

)βN
2

(
N−1+ 2

β

)
exp

[
−1

4
Tr
(
H2
)]

dH

We care more about the eigenvalues and eigenvectors of H than
the individual matrix elements. We are really interested more in
something like

ρ(H)dH = ρ(λ,U)dλdU

= ρ(λ)dλdU

where
λ = UHU−1
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Random matrices III

Suddenly, there are very strong correlations introduced by the
variable change, notice the Vandermonde determinant,

ρ(λ)dλdU = Cβ
N∏

k>j=1

|λj − λk |β exp

−1

4

N∑
j=1

λ2j

dλdU

There are two very well-known spectral correlations, level
repulsion and spectral rigidity.
β = 0 in the Vandermonde determinant would correspond to
Poisson eigenvalue statistics.
The eigenstates behave statistically like uniformly random
vectors according to the Haar measures for the special
orthogonal SO(N), unitary SU(N), or symplectic Sp(2N,R)
groups.
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Disordered systems - nonlinear σ models

An effective field theory for disordered systems with diffusive
dynamics - Wegner 1979, Efetov 1982

Z(ω) =

∫
DQ exp (F [Q;ω])

F [Q;ω] =
1

Ld

∫
dd rTr

[
1

8
D(∇Q)2 − iωα

4
ΛQ
]

Has to contain the physics of

Anderson localization
conduction in the metallic regime
the metal-insulator transition and the mobility edge
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Summary and Outlook

There are justifications for taking a broader perspective of
what quantum chaos is than has often occurred

Quantum chaos provides a new perspective, which allows for
new discoveries

Quantum chaos appears in an immensely broad set of contexts

The language of quantum chaos is very physical - like optics
for Maxwell’s equations

There is still a great deal unknown about the interrelationships
of the statistical and asymptotic analysis methods, and this
statistical mechanics still has a long way to go
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