.7&‘%/ ﬁ%&i}i&{i“ s il i







Constructing acoustic timefronts using random
matrix theory

Steven Tomsovic

Washington State University, Pullman, WA USA

work supported by: US National Science Foundation,
Office of Naval Research, US NSF Teragrid
publications: J. Acoust. Soc. Am. 134, 3174 (2013);
Europhys. Lett. 97, 34002 (2012).

Collaboration
Katherine C. Hegewisch, Ph. D. thesis

Ocean acoustics: RMT



Today’s Thread of Logic

1) General considerations and experiments
— The ocean
@ wave guide with disorder
— Long range acoustic experiments
@ acoustic timefronts
2) Long range propagation models’
e Wave equation
e One way approximations
e Paraxial optical approximations
e Confinement and internal waves
3) Introducing Random Matrix Theory
e Modes and mixing
e Unitary propagation
e Constructing acoustic time fronts
4) Concluding remarks

1 Reviews: M. G. Brown et al., J. Acoust. Soc. Amer. 113 (5), 2533 (2003); F. J. Beron-Vera et al.,
J. Acoust. Soc. Amer. 114 (3), 1226 (2003); M. G. Brown and S. Tomsovic, in M. Wright and R. Weaver, editors,
New directions in linear acoustics and vibration: quantum chaos, random matrix theory, and complexity, CUP, 2010
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Ocean Wave guide

Features of the Ocean Floor

Ocean depth: 0-10 km (maximum)-
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Ocean Wave guide Acoustic timefronts

Considerations

1) Short range ocean acoustics

@ On continental shelves or inland seas
e Typical ranges of tens of km at most
e Frequencies up to a few kHz (co = 1.5 km/s)
e Surface reflections
e Dissipation quite important, especially bottom interactions
2) Long range ocean acoustics
e Align with abyssal plain
e Up to thousands of kilometers
e Lower frequencies - 25 Hz to 250 Hz
& Wave guide
@ Warm surface waters
@ Constant cold, high pressure waters at depths

@ Surface reflections, dissipation and bottom interactions
largely avoided

Ocean acoustics: RMT



Ocean

Measurements

Depth z (km)

Wave guide Acoustic timefronts
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Ocean Acoustic timefronts

Measured

Predicted, with internal waves

Depth (m)
h

Predicted, without internal waves

2190 2192
Travel Time (s)

F. Worcester et al., J. Acoust. Soc. Amer. 105 , 3185 (1999)
A. Colosi et al., J. Acoust. Soc. Amer. 105 , 3202 (1999)
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Ocean Wave guide Acoustic timefronts

Some quantities of interest

@ Mean ocean temperature

@ Time front bias, wander, and spread - frequency
dependence, range-dependence

@ Intensity statistics
@ Power distribution and infill

@ Questions that have been asked:

are ray methods applicable? if so where?
how do they relate to mode methods of analysis?

Ocean acoustics: RMT



Propagation models Wave equation Approximations

Wave equation

1) A standard approach consists of beginning with the
Helmholtz equation:

0 = Vu(rjw) + w2 (r)u(r;w)
w = angular frequency
c(r) = position-dependent sound speed

2) The time-dependent wave equation solutions
1 0%¢(r;1)

A(r) O
are built as weighted superpositions of eigenstates

o(r;t) = /OO dw p(w)e™ ™ u(r; w)

—0o0

= V2¢(r;1)

3) Boundary conditions:
determined by ocean surface, bottom, and acoustic source

Ocean acoustics: RMT



Propagation models

Wave guide

Wave equation

Approximations
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Propagation models Wave equation Approximations

Buoyancy and temperature: internal waves

@ Vertically displaced water c_{iw}
undergoes restoring force 10"

Oh A v . . ‘ )
@ Strongest force where l"_ﬁ L \“.‘ | ‘:‘f

temperature gradient is 3 W \
strongest

o In mid-latitudes, effect £
concentrated near surface

@ Fluctuation scales range 2
from meters to 100 km
o] 50 100 150

@ Vary on minutes to hours r km)
time scale

@ Responsible for multiple
scattering or wave chaos

Ocean acoustics: RMT




Wave equation Approximations

Propagation models

Internal waves
(jmé(z))

Buoyancy modes:
Jmax
Oci ZZe exp 32 sin
_ . _
CO ¢ jv r B
j=1 kr
0.8 0.001
QO 0
> 0 .Eo
“ .0.001
-0.8 -0.002
0 0.5 1 15 2 25 0 02 04 06 08 1
z (km) z (km)
0.06 0.0006
0.04
o 2 0
0.02
0 -0.0006
0.2 0.4 0.6 0 02 04 06 08 1
z (km)




Propagation models Wave equation Approximations

One way approximations

@ Range can be used as the time-like variable if there is no
backscattering

@ In a semiclassical analysis, this leads to a Hamiltonian with
a square root

@ The quantized version is analogous to a Klein-Gordon
equation

@ Not a sufficient simplification, consider that the internal
waves also can only scatter with small angle changes

Ocean acoustics: RMT



Propagation models Wave equation Approximations

Paraxial approximations - Tappert 1974

A good ansatz for forward-motion and small angle scattering is
etko(w)p

NG
Using Helmholtz and dropping small terms gives the parabolic
equation

i 0 1 02
— (g, pw) = ——s— W
ko Op (2 p5w) 2k% 02

with ¢(z, p) = co + dc(z, p) and de(z, p) << co, the potential is

1 o \* __ 0c(z,p)
V(Zv p) - 5 <1 - <C<Z, p)) ) ~ co
Notes:

@ p — tand ky — h~! gives the Schrédinger equation
@ refraction naturally both range and depth dependent

Ocean acoustics: RMT
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Random matrices Representation Mixing Propagation

Introducing random matrix theory for propagation

& So how does one go about constructing a random matrix
theory for the propagation of ocean acoustic waves?

o Let’s only consider the simplest problem, i.e. that of long
range propagation
low, fixed frequency (Helmholtz to begin) - will use 75 Hz
no losses or dissipation
no surface or bottom interactions or absorption
no horizontal, out-of-vertical plane scattering
e There is a great deal of deterministic propagation that must
be taken into account
e The internal waves create multiple scattering, but have
non-zero correlation lengths and are a weak perturbation
e The time-dependent Schrédinger equation leads to unitary
propagation

V(z, pyw) = U(p; 0)¥(z,0;w)

Ocean acoustics: RMT



Random matrices Representation Mixing Propagation

Random matrices

Imagine an N-dimensional Hermitian matrix, could be a
Hamiltonian, but it has Gaussian random matrix elements,

Hy1 Hipy Hps
H- Hy; Hy Hp;
— | Ha Hz Hyp

where (j # k - diagonal elements get multiplied by a v/2)

1 x?
B=1, Hp = xi say p(x) = Norais <—2>
/B = 2, I‘Ijk = Xjk + lxj(,?

5 :4, I_Ijk = X]k1+l [ (1)01 —i—x( )0'2 —i—x(k)0'3:|
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Random matrices Representation Mixing Propagation

Modes

Mode picture of propagation (Dozier, Tappert, 1978)
— Modes v, energies E,, of unperturbed waveguide Vj

2
e Can also be defined —%%
adiabatically to account for 2k dz

mesoscale structure
e Somewhere around the 60"
mode, they begin to hit the 25
surface - will ignore that
e They give a complete
representation for the full 15

propagation of the waves

+ VO(Z)wm = EnYm

=0

=1
5
10

n
n
n

z (km)

0 0.001 0.002 0.003 0.004 0.005
E,
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Random matrices Representation Mixing Propagation

Mixing

@ Unitary propagator coupling coefficients

Upen(p;0) = / 4z 17, (2)U(p: 0 ()

gives probability amplitude of mode transition n — m
e Unperturbed propagation: U,,(p;0) = A,,, = e~ *Er§,
e Perturbed propagation: amplitude/phase deviations

U = A'2UA~"/? plotted
Phase

Propagation to 1 km Propagation to 50-km

Ocean acoustics: RMT



Random matrices Representation Mixing Propagation

Mixing
@ Unitary propagator coupling coefficients
Una(pi0) = [ & 030U 000 )
gives probability amplitude of mode transition n — m

e Unperturbed propagation: U,,(p;0) = A, = e~ *Er§,,
e Perturbed propagation: amplitude/phase deviations

n
P20 4060
20
40 \
£
60

N\

m,n n
{Um,nl . [Um,nl

1
0.8
06
0.4
0.2
\| X

Propagation to 50 km Propagation to 1000 km
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Random matrices Representation Mixing Propagation

Unitary propagation with random matrices

Using building blocks for p = 50 km  (similar to Perez et al, 2007, for
quasi-1D electronic conductors) and a Cayley transformation (the
matrix A Hermitian) for unitarity

U= A1+ ieA) (I —ieA)A/?

@ Unperturbed result: A, = e~ *oEnrs,

@ Internal wave effects:

o
Amn (k) = A’g(k) Zmn i.e. zmn (k) perfectly correlated
G(0,1)+iG(0,1)
B e A forn #m
’ G(0,1) forn=m

Long range propagation for p = 50 x N km
N
U(p;0) = [ ] Uip = 50)
i=1

Ocean acoustics: RMT



Random matrices Representation Mixing Propagation

Perturbation theory

@ Using range-dependent (time-dependent) perturbation

theory o
ko [P=0km
A=2 / dp V;
2 Jo

where V; is the operator corresponding to dc(r)/c, in the
interaction picture

@ The expectation value of squares of A matrix elements
(variance) can be derived with internal wave formulation of
Brown and Colosi, 1998

@ They depend almost exclusively on the index difference
|n —m|, i.e. A is banded with a width depending on |n — m|

Ocean acoustics: RMT



Random matrices

@ Variance at 75 Hz for 50 km

15 2 25 3 35 4 45 5
In( [n-m|)

0 05 1

Representation

Mixing Propagation

Approximate fit

0%,“ ~ |n—m| %6
— Non-unitary, but
similar ensemble
exhibits localization
and superdiffusion
(Mirlin et al.,1996)

(line=pert. theory, plusses=simulations, dotted line=approx fit)

Ocean acousti



Random matrices Representation Mixing Propagation

Paraxial propagation vs random matrix propagation

@ Samples at 75 Hz

n In [Umnl

(a) wave eqn to 1000 km (b) RMT model to 1000 km




Random matrices Representation Mixing Propagation

Acoustic time fronts

@ A sample timefront (k = w/cy)

1 )
¢(Zap’t) = /e’kc‘)(
\/271'0']%

[¢] (dB) |¢| (dB)

(k_ko)z} dk

l_p/CO)uk(Z, p) exp [— 2013

-20

-25

-30

167.1 167.2 167.3 167.4 167.5 167.6 167.7 167.8

167 167.2 1674 1676  167.8
t(sec)

(a) wave eqn to 250 km (b) RMT model to 250 km
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Random matrices Representation Mixing Propagation

Averaged timefronts

@ Average timefront intensity

1 N
(1) = = > 16tz o)
i=1

<I>(dB) <I>(dB)

0

-10

33 331 332 333 334 335 336 331 332 333 334 335 336
t(sec)

t(sec)

(a) wave eqn to 50 km (b) RMT model for 50 km
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Random matrices Representation Mixing Propagation

Averaged timefronts

@ Average timefront intensity

1 N
(1) = = > 16tz o)
i=1

<I>(dB)

0

867 668 669 671 667 668 669 670 671

t(sec) t(sec)

(a) wave eqn to 1000 km (b) RMT model for 1000 km
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Random matrices Representation Mixing Propagation

The branches are there

Decay in time of (I) along sound axis

r=250 km r=1000 km
5 -6
z=1.0 km ¢rz=1.0 km

10 -10

12

-~ 15 M

A o -16
—_ =

Y =

£ = 20

22

-25 24

-26

-30 -28

166.5 167 167.5 667 668 669 670 671
t (sec) t (sec)

The branches are just enough slightly weaker that in our RMT
they are not seen as clearly on the previous slide
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Summary
Summary

@ The minimum information which must be captured by
random matrix ensembles is: i) unitarity; ii) a mean
traveling phase for each mode; and iii) a variance decay
rate with |n —m| and k

@ ltems left out: i) neighboring matrix element correlations; ii)
building block correlations; iii) k-dependence of A matrix
elements; and iv) other ?77?

@ Nevertheless, the ensemble goes a long way to capturing
the statistical properties of experimental data

@ It would be interesting to: i) investigate the general
properties of power-law banded random unitary matrices;
ii) understand what other information might yield more
faithful RMT propagation (especially k-dependence of z
matrix element correlations); and iii) learn how to apply
RMT to a much broader class of ocean acoustic problems

Ocean acoustics: RMT
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