

Constructing acoustic timefronts using random matrix theory

Steven Tomsovic

Washington State University, Pullman, WA USA

work supported by: US National Science Foundation, Office of Naval Research, US NSF Teragrid publications: *J. Acoust. Soc. Am.* **134**, 3174 (2013); *Europhys. Lett.* **97**, 34002 (2012).

Collaboration

Katherine C. Hegewisch, Ph. D. thesis

Today's Thread of Logic

- 1) General considerations and experiments
 - The ocean
 - wave guide with disorder
 - Long range acoustic experiments
 - acoustic timefronts
- 2) Long range propagation models¹
 - Wave equation
 - One way approximations
 - Paraxial optical approximations
 - Confinement and internal waves
- 3) Introducing Random Matrix Theory
 - Modes and mixing
 - Unitary propagation
 - Constructing acoustic time fronts
- 4) Concluding remarks

¹ Reviews: M. G. Brown et al., *J. Acoust. Soc. Amer.* **113** (5), 2533 (2003); F. J. Beron-Vera et al., *J. Acoust. Soc. Amer.* **114** (3), 1226 (2003); M. G. Brown and S. Tomsovic, in M. Wright and R. Weaver, editors, *New directions in linear acoustics and vibration: quantum chaos, random matrix theory, and complexity, CUP, 2010.*

Features of the Ocean Floor

Ocean depth: 0-10 km (maximum)

Considerations

- 1) Short range ocean acoustics
 - On continental shelves or inland seas
 - Typical ranges of tens of km at most
 - Frequencies up to a few kHz ($c_0 = 1.5 \text{ km/s}$)
 - Surface reflections
 - Dissipation quite important, especially bottom interactions
- 2) Long range ocean acoustics
 - Align with abyssal plain
 - Up to thousands of kilometers
 - Lower frequencies 25 Hz to 250 Hz
 - & Wave guide
 - Warm surface waters
 - Constant cold, high pressure waters at depths
 - Surface reflections, dissipation and bottom interactions largely avoided

Measurements

P. F. Worcester et al., J. Acoust. Soc. Amer. 105, 3185 (1999) J. A. Colosi et al., J. Acoust. Soc. Amer. 105, 3202 (1999)

Some quantities of interest

- Mean ocean temperature
- Time front bias, wander, and spread frequency dependence, range-dependence
- Intensity statistics
- Power distribution and infill
- Questions that have been asked:
 - are ray methods applicable? if so where? how do they relate to mode methods of analysis?

Wave equation

1) A standard approach consists of beginning with the Helmholtz equation:

$$\begin{array}{rcl} 0 & = & \nabla^2 u(\mathbf{r};\omega) + \omega^2 c^{-2}(\mathbf{r}) u(\mathbf{r};\omega) \\ \omega & = & \text{angular frequency} \\ c(\mathbf{r}) & = & \text{position-dependent sound speed} \end{array}$$

2) The time-dependent wave equation solutions

$$\frac{1}{c^2(\mathbf{r})} \frac{\partial^2 \phi(\mathbf{r};t)}{\partial t^2} = \nabla^2 \phi(\mathbf{r};t)$$

are built as weighted superpositions of eigenstates

$$\phi(\mathbf{r};t) = \int_{-\infty}^{\infty} d\omega \ \rho(\omega) e^{-i\omega t} u(\mathbf{r};\omega)$$

3) Boundary conditions: determined by ocean surface, bottom, and acoustic source Ocean Propagation models Random matrices Summary Wave equation Approximations

Wave guide

Propagation models Random matrices Summary Wave equation Approximations

Buoyancy and temperature: internal waves

- Vertically displaced water undergoes restoring force
- Strongest force where temperature gradient is strongest
- In mid-latitudes, effect concentrated near surface
- Fluctuation scales range from meters to 100 km
- Vary on minutes to hours time scale
- Responsible for multiple scattering or wave chaos

Internal waves

Buoyancy modes:

$$\frac{\delta c_{iw}}{c_0} = \sum_{j=1}^{J_{max}} \sum_{k_r} e_{j,k_r} \exp\left(-\frac{3z}{2B}\right) \sin(j\pi \xi(z))$$

Ocean acoustics: RMT

One way approximations

- Range can be used as the time-like variable if there is no backscattering
- In a semiclassical analysis, this leads to a Hamiltonian with a square root
- The quantized version is analogous to a Klein-Gordon equation
- Not a sufficient simplification, consider that the internal waves also can only scatter with small angle changes

Paraxial approximations - Tappert 1974

A good ansatz for forward-motion and small angle scattering is

$$u(\mathbf{r};\omega) = \Psi(z,\rho;\omega) \frac{e^{ik_0(\omega)\rho}}{\sqrt{\rho}}$$

Using Helmholtz and dropping small terms gives the parabolic equation

$$\frac{i}{k_0}\frac{\partial}{\partial \rho}\Psi(z,\rho;\omega) = -\frac{1}{2k_0^2}\frac{\partial^2}{\partial z^2}\Psi(z,\rho;\omega) + V(z,\rho)\Psi(z,\rho;\omega)$$

with $c(z, \rho) = c_0 + \delta c(z, \rho)$ and $\delta c(z, \rho) << c_0$, the potential is

$$V(z, \rho) = \frac{1}{2} \left(1 - \left(\frac{c_0}{c(z, \rho)} \right)^2 \right) \approx \frac{\delta c(z, \rho)}{c_0}$$

Notes:

- $\rho \to t$ and $k_0 \to \hbar^{-1}$ gives the Schrödinger equation
- refraction naturally both range and depth dependent

Introducing random matrix theory for propagation

- & So how does one go about constructing a random matrix theory for the propagation of ocean acoustic waves?
 - Let's only consider the simplest problem, i.e. that of long range propagation

low, fixed frequency (Helmholtz to begin) - will use 75 Hz no losses or dissipation

- no surface or bottom interactions or absorption no horizontal, out-of-vertical plane scattering
- There is a great deal of deterministic propagation that must be taken into account
- The internal waves create multiple scattering, but have non-zero correlation lengths and are a weak perturbation
- The time-dependent Schrödinger equation leads to unitary propagation

$$\Psi(z,\rho;\omega) = U(\rho;0)\Psi(z,0;\omega)$$

Random matrices

Imagine an N-dimensional Hermitian matrix, could be a Hamiltonian, but it has Gaussian random matrix elements.

$$\mathbf{H} = \begin{pmatrix} H_{11} & H_{12} & H_{13} & \dots \\ H_{21} & H_{22} & H_{23} & \\ H_{31} & H_{32} & H_{32} & \\ \vdots & & \ddots & \end{pmatrix}$$

where $(i \neq k$ - diagonal elements get multiplied by a $\sqrt{2}$)

$$\beta = 1, \ H_{jk} = x_{jk} \qquad \text{say } \rho(x) = \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{x^2}{2}\right)$$

$$\beta = 2, \ H_{jk} = x_{jk} + ix_{jk}^{(i)}$$

$$\beta = 4, \ H_{jk} = x_{jk} \mathbf{1} + i \left[x_{jk}^{(1)} \sigma_1 + x_{jk}^{(2)} \sigma_2 + x_{jk}^{(3)} \sigma_3\right]$$

Mode picture of propagation (Dozier, Tappert, 1978)

- Modes ψ_m , energies E_m of unperturbed waveguide V_0

- Can also be defined adiabatically to account for mesoscale structure
- Somewhere around the 60th mode, they begin to hit the surface - will ignore that
- They give a complete representation for the full propagation of the waves

$$-\frac{1}{2k_0^2}\frac{d^2\psi_m}{dz^2} + V_0(z)\psi_m = E_m\psi_m$$

Mixing

Unitary propagator coupling coefficients

$$U_{m,n}(\rho;0) = \int \mathrm{d}z \; \psi_m^*(z) U(\rho;0) \psi_n(z)$$

gives probability amplitude of mode transition $n \to m$

- Unperturbed propagation: $U_{mn}(\rho;0) = \Lambda_{mn} = e^{-ik_0E_n\rho}\delta_{nm}$
- Perturbed propagation: amplitude/phase deviations

Propagation to 1 km

Propagation to 50-km

Mixing

Unitary propagator coupling coefficients

$$U_{m,n}(\rho;0) = \int \mathrm{d}z \; \psi_m^*(z) U(\rho;0) \psi_n(z)$$

gives probability amplitude of mode transition $n \to m$

- Unperturbed propagation: $U_{mn}(
 ho;0)=\Lambda_{mn}=e^{-ik_0E_n
 ho}\delta_{nm}$
- Perturbed propagation: amplitude/phase deviations

Propagation to 50 km

Propagation to 1000 km

Using building blocks for $\rho = 50$ km (similar to Perez et al, 2007, for guasi-1D electronic conductors) and a Cayley transformation (the matrix A Hermitian) for unitarity

$$U = \Lambda^{1/2} (I + i\epsilon A)^{-1} (I - i\epsilon A) \Lambda^{1/2}$$

- Unperturbed result: $\Lambda_{mn} = e^{-ik_0 E_n \rho} \delta_{mn}$
- Internal wave effects:

$$A_{mn}(k) = rac{\sigma_{A_{mn}(k)}}{2} z_{mn}$$
 i.e. $z_{mn}(k)$ perfectly correlated
$$z_{m,n} = \begin{cases} rac{G(0,1) + iG(0,1)}{\sqrt{2}} & \text{for } n \neq m \\ G(0,1) & \text{for } n = m \end{cases}$$

Long range propagation for $\rho = 50 \text{ x } N \text{ km}$

$$U(\rho;0) = \prod_{i=1}^{n} U_i(\rho=50)$$

Perturbation theory

 Using range-dependent (time-dependent) perturbation theory

$$A = \frac{k_0}{2} \int_0^{\rho = 50 \text{ km}} \mathrm{d}\rho \,\, \hat{V}_I$$

where \hat{V}_I is the operator corresponding to $\delta c(\mathbf{r})/c_o$ in the interaction picture

- The expectation value of squares of A matrix elements (variance) can be derived with internal wave formulation of Brown and Colosi, 1998
- They depend almost exclusively on the index difference |n-m|, i.e. A is banded with a width depending on |n-m|

Variance at 75 Hz for 50 km

Approximate fit

$$\sigma_{U_{m,n}}^2 \approx |n-m|^{-2.6}$$

- Non-unitary, but similar ensemble exhibits localization and superdiffusion (Mirlin et al., 1996)

(line=pert. theory, plusses=simulations, dotted line=approx fit)

Ocean Propagation models Random matrices Summary Representation Mixing Propagation

Paraxial propagation vs random matrix propagation

Samples at 75 Hz

(a) wave eqn to 1000 km

(b) RMT model to 1000 km

Acoustic time fronts

• A sample timefront $(k = \omega/c_0)$

$$\phi(z,\rho,t) = \frac{1}{\sqrt{2\pi\sigma_k^2}} \int e^{ikc_0(t-\rho/c_0)} u_k(z,\rho) \exp\left[-\frac{(k-k_0)^2}{2\sigma_k^2}\right] dk$$

(a) wave eqn to 250 km

(b) RMT model to 250 km

(dB)

-15

-20

-25

Averaged timefronts

Average timefront intensity

$$\langle I \rangle = \frac{1}{N} \sum_{i=1}^{N} |\phi(z, \rho, t)|^2$$

(b) RMT model for 50 km

Averaged timefronts

Average timefront intensity

$$\langle I \rangle = \frac{1}{N} \sum_{i=1}^{N} |\phi(z, \rho, t)|^2$$

(b) RMT model for 1000 km

Propagation models Random matrices Summary Representation Mixing Propagation

The branches are there

Decay in time of $\langle I \rangle$ along sound axis

The branches are just enough slightly weaker that in our RMT they are not seen as clearly on the previous slide

- The minimum information which must be captured by random matrix ensembles is: i) unitarity; ii) a mean traveling phase for each mode; and iii) a variance decay rate with |n-m| and k
- Items left out: i) neighboring matrix element correlations; ii) building block correlations; iii) k-dependence of A matrix elements; and iv) other ???
- Nevertheless, the ensemble goes a long way to capturing the statistical properties of experimental data
- It would be interesting to: i) investigate the general properties of power-law banded random unitary matrices; ii) understand what other information might yield more faithful RMT propagation (especially k-dependence of zmatrix element correlations); and iii) learn how to apply RMT to a much broader class of ocean acoustic problems