Statistics of energy flows, temperature fluctuations, and underlying techniques

> Yuli V. Nazarov Dep. Of Quantum Nanoscience Kavli Inst. For Nanoscience Delft University of Technology

Collaborations: Matti Laakso, Tero Hekilla

Outline

- Motivation(s)
- Review of general techniques
 - Extended Keldysh method
 - Pilgram-Kindermann
 - Examples: fluctuations of flows
 - Conservation laws
 - Coordinate-dependence
- Applications
 - Temperature fluctuations in an island
 - Temperature fluctuations in SET-transistor
 - □ "Gigantic" fluctuations
- Entropy and entanglement flows

Motivations

- Thermal transport: old and Statistics beyond Gaussian undrestood? Statistics of "Wonders" П **Finkelstein** Experiment (Pekola) Skvortsov Small, fast thermometry Π of small objects Averin-Pekola П By unconventional methods
- Classical entropy flows
 Experiments on classical fluctuations (Ciliberto)
 Jarzynski and followers
 Quantum generalization
- □ Flows of unphysical vales
- Quantum information quantities
- Quantum quenches
- Relation of physical and unphysical

Pilgram-Kindermann, 2003: gauge field ξ

New wavefunction: upon time shift $\widehat{\Psi}(t) = \widehat{\Psi}(t - \underline{\xi}(t))$ $\Box \text{ Schrodinger equation:}$ $i \hbar \widehat{\Psi} = (1 - \underline{\xi}(t)) H \widehat{\Psi}$ Make it practical: have it in a part of the whole system $H = H_{AB} + H_{AB} + H_{B}$ $H_{R} \rightarrow (1 - \xi(t)) H_{R}$ Interaction picture: $H_{AB}(t) = \sum_{i} \hat{A}_{i}(t) \hat{B}_{i}(t - \xi(t))$

Pilgram-Kindermann: counting

Make
$$\xi$$
 different on contours

$$H_{\pm} = H_{\pm} H_{\pm}$$

Example I:ext.force and bosons

□ A-ext. Force, B- a linearly responding system $H_{AB} = -f(t)\hat{X}; H_{AB}^{\pm} = -f(t)\hat{X}(t \neq \xi/2)$ $\int f_{AB} = -f(t)\hat{X}(t \neq \xi/2)$ Action in x quadratic: $(\mathbf{t}_{o}(\mathbf{x}_{\omega}^{+}-\mathbf{x}_{\omega})) \chi (\omega)(\mathbf{x}_{\omega}^{+}+\mathbf{x}_{\omega})/2$ Taking the path integral $-\frac{1}{2}|x_{\omega}^{-}-x_{\omega}^{+}|^{2}B(\omega)$ \Box Action in ξ : $S(\xi) = t_o f_o Im(\chi) \omega \left[e^{-i\xi\omega} - 1 \right] h_B + (h_B + 1) \left(e^{i\xi\omega} - 1 \right)$

Example II: quantum point contact: fermions

□ Transmissions T_p $-iS = \frac{1}{2} \sum_{p} Tr \ln \{1 + T_{p}([G_{L}, G_{R}], -2]\}$

Modification: $G_{R}^{+-}(t,t') \Rightarrow G_{R}^{+-}(t,t'-\xi'+\xi)$

□ Answer:

 $-iS = \frac{t_0}{2\pi} \sum_{p} \ln \left\{ 1 + T_p f_L (1 - f_n) e^{-i\frac{\xi}{\xi}(E - M_n)} + T_p f_R (1 - f_L) e^{i\frac{\xi}{\xi}(E - M_n)} \right\}$

Temperature fluctuations:motivation
Physics: about most probable course?
Least probable situation
Conditioned on improbable (hero must win)
Otherwise most natural
Physics
Most probable laws
Least probable laws
Calculation framework
Keldysh formalism
Extensions in the context of full counting statistics

Conservation laws (Pilgram 2004)

Double junction: current and flux statistics

Dynamical variables

Introduce using conservation laws:

$$\begin{split} & \delta(\mathbf{I}_{R} - \mathbf{I}_{L} + \frac{dQ}{dt}) \Rightarrow \int d\chi \, e^{i\chi(\mathbf{I}_{R} - \mathbf{I}_{L} + \dot{Q})} \\ & \delta(\mathbf{I}_{R}^{(E)} - \mathbf{I}_{L}^{(E)} + \frac{dE}{dt}) \Rightarrow \int d\chi \, e^{i\chi(\mathbf{I}_{R} - \mathbf{I}_{L} + \dot{Q})} \end{split}$$

Action: sum of two contacts. Take saddle-point: $S(\xi_{R}, \chi_{R}) = \min_{\chi \in \mathcal{I}} \left[S^{L}(\chi, \xi) + S^{R}(\chi^{R} - \chi, \xi^{R} - \xi) \right]$

Coordinate-dependent formulation

Take a fine mesh, energy-charge conservation at each point

Conservation laws + gradient expansion +"material relations"

$$T = F_1(S_E); V = F_2(S_R)$$

Summary

- Physics: about most probable course?
- Least probable situation
 - Conditioned on improbable (hero must win)
 - Otherwise most natural
- Physics
 - Most probable laws
 - Least probable laws
- Calculation framework
 - Keldysh formalism
 - Extensions in the context of full counting statistics

Formulation of the (exemplary) problem

- Island connected to two leads
- Out of equilibrium: leads are biased
- □ Fast relaxation of electron distribution
 - Full energy = temperature
- In comparison with: heat exchange with the leads
- Gaussian fluctuations: standard calculation
- Beyond Gaussian: Goal
- To compare with statistics of current
 - no infinite time interval
 - distribution of physical quantity

Setup

Keldysh action

Green's function of the island

Extended to include counting fields

 $\hat{G} = \exp\left(\frac{1}{2}(\boldsymbol{\chi(t)} + E\boldsymbol{\xi(t)})\hat{\tau}_3\right)\hat{G}_0(E)\exp\left(-\frac{1}{2}(\boldsymbol{\chi(t)} + E\boldsymbol{\xi(t)})\hat{\tau}_3\right)$

$$\hat{G}_0(E) = \begin{pmatrix} 1 - 2f(E) & 2f(E) \\ 2 - 2f(E) & -1 + 2f(E) \end{pmatrix}$$

 χ counts charge

ξ counts energy transferred

S. Pilgram, Phys. Rev. B 69, 115315 (2004).

Contacts contribute to the action =>

$$S_{c,\text{el}} = \frac{1}{2} \sum_{\alpha} \sum_{n \in \alpha} \operatorname{Tr} \ln \left[1 + T_n^{\alpha} \frac{\{\check{G}_{\alpha}, \check{G}_I\} - 2}{4} \right].$$

Storage terms
Action

$$A = \int dt \{Q\dot{\chi} + E\dot{\xi} + S_c(\xi(t), T(t), \chi(t), \mu(t))\}$$
• example ballistic junctions

$$Q = C\mu/e;$$

$$S_c = \sum_{\alpha} \frac{G_{\alpha}}{2} \Big[\frac{2\mu_{\alpha}\chi + T_{\alpha}\chi^2 + [\pi^2 T_{\alpha}^2/3 + \mu_{\alpha}^2]\xi}{1 - T_{\alpha}\xi} \Big] = E = \frac{\pi^2}{3\delta_I} (k_B T)^2$$

$$\mu, \chi \text{ -fast variables, integrate out}$$

$$A = \int dt \{E\dot{\xi} + S_c(\xi(t), T(t))\}$$

Pseudo-Hamiltonian form

$$A = \int dt \left\{ E \dot{\boldsymbol{\xi}} + S_c(\boldsymbol{\xi}(t), T(t)) \right\}$$

□ extremum:

$$A = \frac{i}{\hbar} \int dt \left\{ p\dot{x} + \frac{p^2}{2m} + U(x) \right\}$$

$$\dot{E} = \frac{\partial S_c}{\partial \xi}; \quad \dot{\xi} = -\frac{\partial S_c}{\partial T}$$

$$S_c = const = 0$$

"energy" conservation along the trajectories
 0 - related to most or least probable physics

Relaxation and anti-relaxation

B: relaxation: motion to the most probable point ξ =0

$$\frac{dT}{dt} = f_B(T), \quad f_B(T \approx T_a) = -\frac{1}{\tau_R}(T - T_a)$$

□ A: antirelaxation: motion away the most probable point timplicit, n.e. 0

$$\frac{dT}{dt} = f_A(T), \quad f_A(T \approx T_a) = \frac{1}{\tau_R}(T - T_a)$$

Microscopic reversibility?

Simplest hypothesis

$$\frac{dT}{dt} = f_B(T) = -f_A(T);?$$

- Same trajectory, different directions of motion
 - near equilibrium
 - Generally for thermal equilibrium?
 - Langevin noise

Results: time-line

ZeroT leads, voltage bias applied

Conclusions

- Statististic of huge temperature fluctuations
- Exemplary system
- Simple anti-relaxation law governs
- That has to be a property of many systems
- Towards the theory of wonders:)

Fully overheated SE transistor

Introduction

- Coulomb blockade = history
- SE tunneling and CO-tunneling
- SE overheating
- Regimes
 - CO, CO+SE, crossover, SE
 - competition
- Anomalous
 - Temperature sensitivity
 - Temperature fluctuations
 - Current noise

Single Electron Transistor

- Coulomb energy => fixes *N* (1988)
- Discrete charges but continuous levels
- Why don't make quantum dots?
- You can measure with...

Introduction: SE heating in SET

- Transport heats the island (fast equilibration)
- No external heat sink- overheating
- Korotkov et al. 1994 *new threshold* (40%)

Regimes

Details of competitions

Anomalous temperature sensitivity

- Some biology
 - To = 300 K working temperature
 - ST working range
- Uses thermally activated rates

$$\exp(-\frac{u}{T_0}) \simeq by a factor of 2$$

 $ST \simeq T_0(\frac{T_0}{u}); ST \simeq 3K$

Anomalous: temperature sensitivity

Self-detection of temperature fluctuations

- No equilibrium => temperature fluctuates
- Current depends on temperature
- => anomalous current noise $\delta I = (\partial I / \partial T) \delta T(t)$
- Fluctuation time-scale big (volume)
- Low-frequency contribution(volumeindependent)

$$S_{I,\text{slow}} = \left(\frac{\partial I/\partial T}{\partial \dot{H}/\partial T}\right)^2 S_{fl}$$

"gigantic" Fano factor

How about statistics?

Yes we can do this

 $\Box \xi$ – dependence of the action

$$\begin{split} \mathcal{S}_{\rm se} &= -\,g_T T e^{-W(T^{-1}+\xi)} \left\{ \begin{bmatrix} 2-e^{(W+V)\xi} \\ -e^{W\xi} \end{bmatrix} (\xi^{-1}-T) V_{\rm th}^{-1} + e^{W\xi} \right\}, \end{split}$$

$$S_{\rm cot} = \dot{H}_{\rm cot} \xi$$

□ Saddle point?

Fokker-Plank equation

\Box Expansion in ξ till second order

θ rescaled temperature

$$\frac{\pi^2 t_C^3}{3\delta_I \alpha g_T^2} \frac{\partial}{\partial \tau} \mathcal{P}(\theta,\tau) = -\frac{\partial}{\partial \theta} \left\{ \left[-(\theta-\nu)e^{\theta} + 1 - \frac{\delta_I}{\pi^2 V_C t_C^5} e^{\theta} \right] \mathcal{P}(\theta,\tau) - \frac{\delta_I}{\pi^2 V_C t_C^5} e^{\theta} \frac{\partial}{\partial \theta} \mathcal{P}(\theta,\tau) \right\}.$$

Distribution function

$$\mathcal{P}_{\rm st}(\theta) \propto \exp\left\{-\frac{\pi^2 V_C t_C^5}{\delta_I} \left(\frac{1}{2}\theta^2 - \nu\theta + e^{-\theta}\right) - \theta\right\}$$

Gigantic fluctuations

- Anomalous senitivity
- Power-law distribution (tunable)

Conclusions, perspectives

- Funny interplay of co+se
- Thermometer?
- Counting statistics
- Towards gigantic fluctuations of temperature

