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Introduction

Spintronics : Generation and manipulation of nonequilibrium
spin densities by exclusively electrical means in nonmagne tic
semiconductors.

Spin-orbit interaction (SOI) gives rise to an effective magnetic
field → magnetoelectric effect that profits from spin-charge
coupling.

Bulk and structural inversion asymmetry result in Dressel-
haus and Rashba SOI, which depend on the in-plane k vector
→ inhomogeneous broadening.

Most important are electric-field mediated spin excitations in
semiconductors.
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Quantum-kinetic equation (Hamiltonian)

Two-dimensional electron gas, SOI and in-plane electric field E

H0 =
∑

k,s

a†
ks [εk − εF ] aks −

∑

k,s,s′

(~~ωk · ~σss′) a†
ksaks′

−ie ~E
∑

k,s

∇κa†
k− κ

2
sak+κ

2
s

∣∣∣
κ=0

+ u
∑

k,k′

∑

s

a†
ksak′s

~σ vector of Pauli matrices, εF Fermi energy, εk = ~
2k2/2m∗, general class of

linear SOI: ωi(k) = αijkj , for instance Rashba-Dresselhaus model:
α11 = −α22 = β, α12 = −α21 = α.

Spin-density matrix:

fs
s′(k, k′ | t) = 〈a†

ksak′s′〉t

with the physical components f = Trf̂ (charge density) and ~f = Tr(~σf̂)

(spin density).
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Quantum-kinetic equation (general form)

New vectors: k → k + κ/2, k′ → k − κ/2, (κ → inhomogeneity)

Equation for the charge density :

∂

∂t
f(k, κ|t) − i~

m∗
(k · κ)f − i

~
~ωκ · ~f +

e

~
E · ∇kf

=
∑

s,s1,s2

∑

k′

{
f s1

s2
(k′, κ | t)W s1s

s2s (k′, k, κ) − f s1

s2
(k, κ | t)W s1s

s2s (k, k′, κ)

}

Equation for the spin density :

∂

∂t
~f(k, κ|t) − i~

m∗
(k · κ)~f − 2

~
~ωk × ~f − i

~
~ωκf +

e

~
(E · ∇k)~f

=
∑

k′,si

{
f s1

s2
(k′, κ | t)W s1s3

s2s4
(k′, k, κ) − f s1

s2
(k, κ | t)W s1s3

s2s4
(k, k′, κ)

}
~σs3s4
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Kinetic equation (elastic scattering)

u
∑

k,k′

∑

s

a†
ksak′s,

1

τ
=

2πu2

~

∑

k′

δ(ε(k) − ε(k′))

Approximations made in the calculation: No κ dependence in scattering, weak
SOI (~2K2/m∗εk ≪ 1, K = m∗α/~

2), no virtual transitions.

The final coupled set of quantum-kinetic equations for the spin-density
matrix:

∂

∂t
f(k, κ|t) − i~

m∗
~k · ~κf − i

~
~ωκ · ~f +

e

~

~E · ∇kf =
1

τ
(f − f)

∂

∂t
~f(k, κ|t) − i~

m∗
(~k · ~κ)f − 2

~
~ωk × ~f − i

~
~ωκf +

e

~
(~E · ∇k)~f

=
1

τ
(~f − ~f) +

~ωk

τ

∂

∂ε(k)
f − 1

τ

∂

∂ε(k)
~ωkf

F = f denotes an integration over the polar angle of the vector k.
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Quantum-kinetic equation (solution)

Four methods are applied:

momentum method → spin-remagnetization modes

perturbation theory → AHE, spin-Hall current

drift-diffusion approach (strong SOI)

drift-diffusion approach (weak SOI)
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Spin-remagnetization modes

κ = 0 so that there is no coupling between spin and charge components.

s ~f − 2~ωk × ~f +
e

~

(
~E · ∇k

)
~f =

1

τ
(~F − ~f) + ~f (0)

Momentum method: The decoupling klkmfn = (k2/2)δl,mFn is exact at
E = 0. We adopt this approximation also for weak fields.

Fz(s) =
(Ûµ~E × ~f (0))z

s [(s + 2/τs)2 + (eHeff/mc)2] + g2 [s + 2/τs + (µE)2/D]

with the abbreviations:

Û =
2m∗

~2
[sα̂ + gσ̂yα̂σ̂y] , g = 4D

m2

~4
|α̂|, Heff =

2m∗2c

e~2
α̂µE

2

τs

=
4Dm2

~4

(
α2

11 + α2
12 + α2

21 + α2
22

)
, D diffusion coefficient, µ mobility.
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Spin-remagnetization modes

There are three spin-remagnetization modes (the zeros of the
denominator). For instance for the Rashba model (β = 0, Ey = 0):

Fz(t) =
ǫ

√
1 − ǫ2

e−3t/2τs sinh

(√
1 − ǫ2

t

2τs

)
f (0)

x , ǫ =
µEx

DK

Damped out-of-plane spin rotation for DK/µ < Ex (K = m∗α/~
2) with the

complex eigenfrequency:

ω = 2DK2
(√

ǫ2 − 1 + 3i
)

, 1/τs = 4DK2

Further excitation: persistent spin helix (as explained later).

Corresponding pseudospin excitations in graphene.
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Perturbation approach (in E and κ)

Expansion with respect to E and κ by exploiting the formal exact solution

~f(k|s) =
σ~r − 2 ~ωk × ~r + 4 ~ωk(~ωk · ~r)/σ

σ2 + 4ω2
k

with the abbreviations σ = s + 1/τ , ~r = ~R + ~f/τ and

R =
i~

m
(κ · k) ~f − i~ωκf − e ~E

~
∇k

~f +
1

τ

∂

∂εk
f~~ωk − ~~ωk

τ

∂

∂εk
f

To lowest order in E and κ:

f00 =
n(εk)

s
= f00, ~f00 = −~~ωk

n′

s
, ~f00 = 0, with n′ =

dn(εk)

dεk

Furthermore: The expression for ~f0E is obtained from ~fκ0 by the replacement
κ → −ieE~ex∂ε
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Anomalous Hall effect (basic theory)

Nonanalytic behavior of the AHE in the limit ω → 0, τ → ∞ for the
Rashba-Dresselhaus model.

~~ωk = (−αky + βkx, αkx − βky, M)

(homogeneous out-of-plane magnetization M )

The charge current is given by the time derivative of the dipole moment:

jα(t) =
de < ~rα >

dt
=

e

~

∑

k

∂εk

∂kα

f(k | t) − e

~

∑

k

∂~~ωk

∂kα

· ~f(k | t)

σxy = σ′
xy + σ′′

xy results from an expansion with respect to the electric field.
(pure Hall conductivity when σ′

xy = 0)
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Anomalous Hall effect (exact result)

σxy(ω) = −e2

~2

ωτ

ω + i/τ
(α2 − β2)

∑

k

n′(εk)
P0(k | ω)

P+(k | s)P−(k | ω) + P0(k | ω)2

P±(k | ω) = 1 −
1

2στ

(
1 +

√
1 ± γ

1 ∓ γ

) [
1 −

δ

1 +
√

1 − γ2

]
+

2

σ

M

~
P0(k | ω)

P0(k | ω) =
2

τ

M

~

1

(σ2 + 4ω2
k)
√

1 − γ2
, γ =

2αβ

α2 + β2
δ, δ =

4(ω2
k − (M/~)2)

σ2 + 4ω2
k

no AHE for the special Rashba-Dresselhaus model α = β

no ω = 0 AHE for disordered samples

nonanalytic behavior in the limit ω → 0 and τ → ∞
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Anomalous Hall effect (numerical results)
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ac conductivity, Rashba model, resonances due to SOI. Parameters:

ωτ = 0.5 (1), 1 (2), 1.5 (3), and 2 (4). σ0 is given by e2mα2τ/(π~
4).

In addition: β = 0, α = 10−9 eVcm, τ = 1 ps, and n = 1010 cm−2
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Spin-Hall current

Two different definitions for the spin current (which does not enter

Maxwells equations):

1 "conventional ": ĵs(s) ∼
∑

k

∇kεk ⊗ ~f(k, κ | s) |κ=0

2 "more physical ": ĵs(s) ∼
∑

k

∇κ ⊗ ~f(k, κ | s) |κ=0

According to 2 : the spin current is given by the time derivative of the

spin displacement. (physical motivation: J. Shi et al. Phys. Rev. Lett.

96, 076604 (2006)).
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"conventional" spin-Hall current

We treat the Rashba model and obtain a nonvanishing stationary

spin-Hall current that is independent of the electric field!

jx
y (s) =

~K

2ms

∑

k

εkn′(εk)

which gives jx
y(ω) = −KεF/(2π~) at zero temperature. The

field-induced spin-Hall current results from

~f0E(k|s) =
~ωE

σs

{
(εkn′)′ − 2στω2

kn′

σ2sτ + 2ω2
k(2sτ + 1)

}
, ~ωE =

e~

m∗
(K × ~E)

In clean samples jz
y(ω = 0) = −eE/8π~ (universal dependence);

in disordered samples no spin-Hall current jz
y.
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"physical" spin-Hall current

1 there is also a contribution independent of the electric field:

jx
y(s) = −~K

m

∑

k

n(εk)
ω2

kτ

σ2sτ + 2ω2
k(2sτ + 1)

But it results from the initial spin accumulation according to

sfα(ε|s)n/2 = eEβjα
β (ε|s)n′. It disappears in the steady state.

2 General transport in an infinite system: First the volume and

afterwards the time goes to infinity (first κ → 0 and than ω → 0). This

procedure leads to the exact result (for a clean system):

jz
y(ω → 0) = − eE

8π~
ln

ω

2ωkF
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Summary

We treated the influence of an in-plane electric field on a 2DEG with SOI and
short-range elastic scattering. Quantum-kinetic equations were rigorously
derived for the spin-density matrix. Analytic solutions we re obtained by
exploiting the momentum method and perturbation theory.
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short-range elastic scattering. Quantum-kinetic equations were rigorously
derived for the spin-density matrix. Analytic solutions we re obtained by
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Three spin-remagnetization modes were identified that are due to the
electric field. These (resonant) rotations of the spin densi ty have a simple
origin.
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electric field. These (resonant) rotations of the spin densi ty have a simple
origin.

The AHE for a system with Rashba-Dresselhaus SOI was treated. The
intrinsic AHE caused by the electric field is exactly cancell ed by collisions
(Smit (1955)). An ac electric field induces an AHE with a linea r slope in M also
for disordered samples.
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Summary

We treated the influence of an in-plane electric field on a 2DEG with SOI and
short-range elastic scattering. Quantum-kinetic equations were rigorously
derived for the spin-density matrix. Analytic solutions we re obtained by
exploiting the momentum method and perturbation theory.

Three spin-remagnetization modes were identified that are due to the
electric field. These (resonant) rotations of the spin densi ty have a simple
origin.

The AHE for a system with Rashba-Dresselhaus SOI was treated. The
intrinsic AHE caused by the electric field is exactly cancell ed by collisions
(Smit (1955)). An ac electric field induces an AHE with a linea r slope in M also
for disordered samples.

The "conventional" definition of the spin-Hall current has serious defects.
The proper approach starts from the time derivative of the sp in displacement.
(In general, both definitions differ even for the charge tran sport!)
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Introduction

Starting from the kinetic equations for the spin-density ma trix,
coupled spin-charge drift-diffusion equations are derive d by
two methods:

1 rigorous expansion with respect to κ

(arbitrary strength of SOI)

2 approach for the drift-diffusion evolution period
(weak SOI)

Applications refer to the spin accumulation in a strongly
confined two-dimensional hole gas and on spin-remagneti-
zation waves on a cylindrical surface

Paul-Drude-Institute for Solid State Electronics – p. 3/24



Drift-diffusion approach 1 (starting point)

Again, we start from the quantum-kinetic equations for the spin
and charge degrees of freedom:

∂

∂t
f(k, κ|t) − i~

m∗
(~k · ~κ)f − i

~
~ωκ · ~f +

e

~

~E · ∇kf =
1

τ
(f − f)

∂

∂t
~f(k, κ|t) − i~

m∗
(~k · ~κ)~f − 2

~
~ωk × ~f − i

~
~ωκf +

e

~
(~E · ∇k)~f

=
1

τ
(~f − ~f) +

~ωk

τ

∂

∂ε(k)
f − 1

τ

∂

∂ε(k)
~ωkf

For the sake of simplicity, let us treat the Rashba model.
These equations are nothing but a set of coupled linear
equations, which have the following explicit form:
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Drift-diffusion approach 1 (method)

σf + iΩ(qxfy − qyfx) = R

σfx + 2Ω cos(ϕ)fz − iΩqyf = Rx + Ω sin(ϕ)
~

τ

∂f

∂εk

σfy + 2Ω sin(ϕ)fz + iΩqxf = Ry − Ω cos(ϕ)
~

τ

∂f

∂εk

σfz − 2Ω [cos(ϕ)fx + sin(ϕ)fy ] = Rz

with: Ω = ωkτ , qx,y = κx,y/k, σ = σ0 − iΩk(qx cos ϕ + qy sin ϕ)/K,

R = f + τf0, Rx = fx + τf0x − ~

τ

∂

∂εk
Ωf sin(ϕ)

Rz = f z + τf0z , Ry = fy + τf0y +
~

τ

∂

∂εk
Ωf cos(ϕ)

The exact solution is expanded up to second order in qx,y.
Integration over the angle ϕ; σ0 = sτ + 1

For t ≫ τ (sτ ≪ 1): f(εk, q|s) = n(εF )F (q|s)
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Drift-diffusion approach 1 (solution)

The final equations are given for f , fr = i(~κ × ~f)z, fd = i~κ~f , fz

[
s + D0(s)κ

2]
f + V (s)f r = f0

[
s +

1

τs⊥(s)
+ Dr(s)κ

2

]
f r − Vr(s)κ

2f = fr0

[
s +

1

τsz(s)
+ Dz(s)κ

2

]
f z − Vz(s)fd = fz0

[
s +

1

τs⊥(s)
+ Dd(s)κ2

]
fd − Vd(s)κ2f z = fd0

with τs⊥(s) = τs
σ2

0 + 2Ω2

σ0
, τsz(s) = τs

σ0

2
,

1

τs
= 4DK2 = 2

Ω2

τ
and

D0(s) =
D

σ2
0

, D = v2τ/2, Dz(s) =
σ2

0 − 12Ω2

(σ2
0 + 4Ω2)2

D, . . .

In the strong-coupling limit a non-Markovian behavior occurs.
But what is most astonishing?
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Drift-diffusion approach 1 (discussion)

For strong coupling (Ω > 1/
√

12) the diffusion coefficient
Dz becomes negative → instability in the spin system!
(similar results by an alternative approach: T.D. Stanescu and
V. Galitski Phys. Rev. B 75, 125307 (2007))

However: fz and fd rapidly change on the length scale of
the mean-free path (q expansion?)

Nevertheless: spin oscillations also appear from the exact
solution of the kinetic equation in the ballistic regime

fz(κ, s) =
fz0

β(κ, s) + 4ω2
k/β(κ, s)

, β(κ, s) = s − i(κ · v), v = ~k/m∗
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Drift-diffusion approach 1 (illustration)

Half plane y > 0 with a given spin polarization at the boundary:

0 10 20 30 40 50 60
−0.2

−0.1

0

0.1

0.2

ξ = 2Ky

vf
z
/f

z0
2ωkt

Spin polarization vfz/fz0 as a function of ξ = 2Ky calculated for the

half space y > 0.
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Drift-diffusion approach 1 (application)

We treat a two-dimensional hole gas and an in-plane electric field, which
couples spin and charge degrees of freedom.

(s + i
vd

σ0

κx + D0κ2)f + iΓzκyfz = f0

(s +
1

τsz

+ i
vd

σ0

κx + Dzκ2)fz + iΓ0κyf = 0

with the transport coefficients

D0 =
D

σ2
0

, Dz = D
σ2

0 − 12Ω2

(σ2
0 + 4Ω2)2

, σ0 = sτ + 1

Γ0 = vd
9Ω2

2γ

3σ2
0 − 4Ω2

(σ2
0 + 4Ω2)2

,
1

τsz
=

4Ω2

σ0τ

Γz = vd
9Ω2

2γ
σ2

0
4σ0Ω

2 + 8Ω2 − 3σ2
0sτ

(σ0sτ + 4Ω2)(σ2
0 + 4Ω2)

Coupling is due to the drift velocity vd = eEτ/m∗.
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Drift-diffusion approach 1 (stripe)

As an example, a stripe geometry is treated (−L0 ≤ y ≤ L0,
κy → i∂/∂y). The electric field at the boundaries
Ey(y = ±L0) = ±E0 is used to solve the Poisson equation
dEy/dy = 4πe(f − f0)/ε. We obtain the analytic solution

fz(y) = −εE0Γ0

4πe
τsz

λ2
1λ2

2

λ2
1 − λ2

2

[
sinh(λ1y)

sinh(λ1L0)
− sinh(λ2y)

sinh(λ2L0)

]

with λ1,2 being the solution of the characteristic equation

λ2Γ0Γz −
(

λ2Dz − 1

τsz

) [
λ2D0 +

4πe

ε
µf0

]
= 0

Two different classes of solutions:
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Drift-diffusion approach 1 (figure)

weak coupling
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Drift-diffusion approach 1 (figure)

strong coupling
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Drift-diffusion approach 2 (starting point)

The second derivation of spin-charge coupled drift-diffusion equations
applies for weak SOI . The procedure is illustrate for a 2DEG on a
cylindrical surface . The model Hamiltonian [L. I. Magarill, D. A.
Romanov, A. V. Chaplik, Zh. Eksp. Teor. Fiz. 86, 771 (1998)]:

H0 =

2π∫

0

dϕ

2π

∑

kz

{∑

s

a
†
kzs(ϕ)

[
~
2k2

z

2m∗
+

p̂2
ϕ

2m∗

]
akzs(ϕ)

+α
∑

s,s′

a
†
kzs(ϕ)

[
σz

ss′ p̂ϕ − ~kzΣss′

]
akzs′(ϕ)

+β
∑

s,s′

a
†
kzs(ϕ)

[
1

2
(Σss′ p̂ϕ + p̂ϕΣss′) − ~kzσz

ss′

]
akzs′(ϕ)

}

with the abbreviations:

p̂ϕ = − i~

R

∂

∂ϕ
, Σ̂ =



 0 −ie−iϕ

ieiϕ 0




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Drift-diffusion approach 2 (model)

The periodic boundary condition → discrete Fourier transformation:

akz↑ (ϕ) =
∞∑

m=−∞

eimϕakzm↑ , akz↓(ϕ) = eiϕ
∞∑

m=−∞

eimϕakzm↓

In addition: elastic scattering and electric field along the cylinder axis.

H =
∑

k,s

ε(k)a
†
ksaks +

∑

k

∑

s,s′

(~~ω1(k) · ~σss′)a
†
ksaks′

+U
∑

k,k′

∑

s

a
†
ksak′s − ie~E ·

∑

k,s

∇κa
†

k− κ

2
s
ak+ κ

2
s

∣∣∣∣∣∣
κ=0

~k = (kϕ , kz , 0), kϕ =

(
m +

1

2

)
/R, ε(k) =

~
2k2

2m∗
− ~

2R

(
α − ~

4m∗R

)

~ω1(k) =

(
0, −(αkz − βkϕ), kϕ(α − ~

2m∗R
) − βkz

)
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Drift-diffusion approach 2 (kinetic eqs.)

Spin-density matrix: ~f(k, k′|s) =
∑
s,s′

fs
s′

~Sss′

Shift of momentum vectors: k → k + κ/2, k′ → k − κ/2

Sϕ =
1

2



 0 ie2iϕ

−ie−2iϕ 0



 , Sz =
1

2



 1 0

0 −1



 , Sr =
1

2



 0 e2iϕ

e−2iϕ 0





The derivation of kinetic equations proceeds as for a planar 2DEG.

The final result has the same form , however, with a specific vector:

~ωκ = (ω1y(κ) sin(2ϕ), ω1y(κ) cos(2ϕ), −ω1z(κ))

Again, an integration over the polar angle χ of the momentum vector
~k = k(cos χ, sin χ, 0) is necessary.
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Drift-diffusion approach 2 (Ansatz)

The main step: treat the evolution period, in which a non-
equilibrium spin polarization and charge density still exist,
whereas the energy of particles is already thermalized.
In this regime, the following Ansatz is justified:

f(k, κ|t) = −F (κ|t)n′(ε(k))

dn/dεF

, ~f(k, κ|t) = −~F (κ|t)n′(ε(k))

dn/dεF

n(ε(k)) denotes the Fermi function and n =
∫

dερ(ε)n(ε).

Procedure: expand the exact solution with respect to ~κ, integrate
over α and finally over the energy ε(k).
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Drift-diffusion approach 2 (result)

[
∂

∂t
− iµ~E · ~κ + Dκ2

]
F +

i

~µB

[
~ωκ − ~Ωκ

]
· ~M = 0

[
∂

∂t
− iµE · κ + Dκ2 + Γ̂

]
~M −

e

m∗c
~M × ~Heff − χ(Γ̂ ~Heff )

F

n
−

iµ

2τc
~ΩκF = ~G

with: ~M = µB
~F , µB = e~/2m∗c, χ = µ2

Bn′, µ = eDn′/n.

~Ωκ =
2m∗τ

~2
(~ωκ × ~Λ), ~Heff = −2m∗2c

e~2
(~Λ + 2iD~ωκ)

~Λ = (a21µEϕ + a22µEz , a31µEϕ + a32µEz , a11µEϕ + a12µEz)

Γ̂ =

4Dm∗2

~4





a2

11
+ a2

12
+ a2

31
+ a2

32
−(a22a32 + a21a31) −(a11a21 + a22a12)

−(a22a32 + a21a31) a2

11
+ a2

12
+ a2

21
+ a2

22
−(a12a32 + a11a31)

−(a11a21 + a22a12) −(a12a32 + a11a31) a2

21
+ a2

22
+ a2

31
+ a2

32





a11 = β sin(2ϕ), a21 = β cos(2ϕ), a31 = −
(

α − ~
2

2m∗R

)

a12 = −α sin(2ϕ), a22 = −α cos(2ϕ), a32 = β
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Drift-diffusion approach 2 (applications)

1 Solution of four linear equations for the
charge density and the magnetization. The
zeros of the determinant determine the
eigenfrequencies of spin-remagnetization
waves.

2 Identify spin excitations by an appropriate
experimental set up. Similar to physics of
space-charge waves. New electric-field-
induced modes appear due to the spin-charge
coupling.
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1 Persistent field-mediated spin mode

Eigenmodes ω = ω(k) are solutions of the cubic equation:

Σ(σ2 + ω2
H) + g2

(
σ +

(µE)2

D

)
= 0

with σ = Σ + g1, ωH = (e/m∗c)Heff , and Σ = iω − iµE · k + Dk2.
Effective coupling constants are given by:

g1 = 2
4Dm∗2

~2

[
α2 + β2 − ~

2m∗R

(
α − ~

4m∗R

)]

g2 =

(
4Dm∗2

~2

)2 [
β2 − α

(
α − ~

2m∗R

)]2

A long-lived spin excitation exists for the Rashba model (β = 0) and a

given radius of the cylinder: R = ~/2m∗α.
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1 Persistent field-mediated spin mode

The persistent spin mode at kz → K = 2m∗α/~ exists only on a

cylindrical surface and has no counterpart in the planar Rashba model:

ω1,2(kz) = −µEz (kz ± K) − iD (kz ± K)
2

The excitation leads to spatial and temporal oscillations of the radial

magnetization:

Mr(z, t) =
Mr0

2

{
e−D(Kg+K)2t cos[Kgz + µEz(Kg + K)t

+e−D(Kg−K)2t cos[Kgz + µEz(Kg − K)t]

}

To excite the spin wave, a regular pattern of spin polarization perpen-

dicular to the cylinder surface can be used, which is provided by laser

pulses.
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2 Spin-mediated space-charge waves

Under illumination, photogeneration of carriers along the cylinder axis:

g(z, t) = g0 [1 + m cos (Kgz + Θ cos(Ωt))]

Basic equations for the treatment of space-charge waves:

E(z, t) = E0 + δE(z, t),
ε

4π

∂E

∂t
+ j(z, t) = I(t)

∂n

∂t
+

n − n0

τ
+

ε

4πe

∂2E

∂z∂t
= g(z, t)

The spin enters by a modification of the charge current:

j(z, t) = eD
∂n

∂z
+ enµE + eαρϕ
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2 Spin-mediated space-charge waves

Without SOI the steady-state current response is given by the

well-known result:

f0 =
I(t)

I0
=

1

2

(
mg0

n(0)τM

)2 ∞∑

l=−∞

J2
l (Θ)

1 + λlω

|(Ω − Ω1)(Ω − Ω2)|2

Ω1,2 =
1

2

(
d

τ
+ iΓ

)
±

√
1

4

(
d

τ
+ iΓ

)2

+
1

τ τM
, Γ = DK2

g +
1

τ
+

1

τM

with τM = ε/(4πeµn0) being the Maxwellian relaxation time,

d = µE0Kgτ , λ = DKg/µE0.

There are trap recharging waves (Ω ∼ 1/Kg) and oscillations of the

free electron gas (Ω ∼ Kg).

Are there any pronounced spin-mediated excitations?
Yes!
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2 Spin-mediated space-charge waves
Under the condition R ≈ ~/2m∗α sharp resonances appear at:

Ω = Ωr/l, Ωr = µE0Kg

(
1 +

τ

2m∗D

~
2K2

2m∗

)

0 1 2 3 4 5

x 10
10

0.5

1

1.5

2

Frequency [Hz]

f 0
/

   
m

2 2

  
g 0

τ
n

(0
)  

2   
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Summary

Spin-charge coupled drift-diffusion equations are
systematically derived from kinetic equations for the
spin-density matrix.
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Summary

Spin-charge coupled drift-diffusion equations are
systematically derived from kinetic equations for the
spin-density matrix.

There are two complete different regimes : weak and
strong SOI.

Oscillations of the spin polarization occurs under
non-Markovian conditions that develop at strong SOI.

Numerous physical spin effects are described by the
drift-diffusion equations. We focused on the study of
spin-remagnetization waves .
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The end

Thank you for
your attention
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