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| ntroduction

J Spintronics : Generation and manipulation of nonequilibrium
spin densities by exclusively electrical means in nonmagne tic
semiconductors.

J Spin-orbit interaction  (SOI) gives rise to an effective magnetic
fleld — magnetoelectric effect that profits from spin-charge
coupling.

J Bulk and structural inversion asymmetry result in Dressel-
haus and Rashba SOI, which depend on the in-plane  k vector
— inhomogeneous broadening.

J Most important are electric-field mediated  spin excitations in
semiconductors.




Quantum-kinetic equation (Hamiltonian)

Two-dimensional electron gas, SOI and in-plane electric field E

Hy = Z a’Ls [ek - EF] Qs — Z (ha;k: ) 5:33’) alsak:s’

o + u Z Z a,zsak,rs

& vector of Pauli matrices, e Fermi energy, e, = h?k?/2m*, general class of
linear SOI: w; (k) = a;;k;, for instance Rashba-Dresselhaus model:

11 = —0g2 = G, a2 = —ag; = O

Spin-density matrix:

S (kK | t) = (al aps )

with the physical components f = Trf(charge density) and f = Tr(&’f)
(spin density).
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Quantum-kinetic equation (general for m)

New vectors: k — k + k/2, k' — k — k/2, (k — inhomogeneity)

Equation for the charge density

P o i, - e

= > Z{ Sk, k| )WL (K k) — sg(k,nlt)vv;;;(k,k’,n)}

S$,81,82 Kk’

Equation for the spin density

o0 > 1h > 2 - 1 e -

9 _ M. _ 4z — C D “(E .

O Flhlt) = ko )= 280 x T Laef 4 S8 V)T

=2 { o2 (K6 | OWSZ (K ky k) — £33 (K, 6 | )W (K, k',")}ﬁssu
k’,Si
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Kinetic equation (elastic scattering)

uY Y alaw. =20 —e(k))

k,k’ s
Approximations made in the calculation: No dependence In scattering, weak
SOI (R?K?/m*e;, < 1, K = m*a//h?), no virtual transitions.

The final coupled set of quantum-kinetic equations for the spin-density
matrix:

8 Zh - ’l:_, — €é = o 1 —
Ef(k’nlt)_m*k nf—£wn-f+%E'ka—;(f—f)
o - h - 2, -1 = F
a—f( n|t)—z—*(k-n)f—%wkXf—%wnf+%(E'Vk)f
1 = = W 0 — 1 0 =
;(f ) + T oe(k)’ ;Be(k)wkf

= f denotes an integration over the polar angle of the vector k.
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Quantum-kinetic equation (solution)

Four methods are applied:
J momentum method — spin-remagnetization modes
J perturbation theory — AHE, spin-Hall current

J drift-diffusion approach (strong SOI)

J drift-diffusion approach (weak SOI)




Spin-remagnetization modes

x = 0 so that there is no coupling between spin and charge components.

—

sf'—2c3k><f'—|—%(E’-Vk)f’= %(ﬁ_f)_l_f(m

Momentum method: The decoupling ki k., fr. = (k*/2)6;.. F, is exact at
E = 0. We adopt this approximation also for weak fields.

(UpE x f©),
s[(s+2/75)? + (eHeg/mc)?| + g% [s + 2 /75 + (LE)? /D]

F.(s) =

with the abbreviations:

U = 2 [sa + goyao,], g = 4Dﬁ|a|, H.g = 2 apkE
2 _4Dm* 2 2 2 e - .
. = " a (af, + o, + a3, + a3,), D diffusion coefficient, . mobility.
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Spin-remagnetization modes

There are three spin-remagnetization modes (the zeros of the
denominator). For instance for the Rashba model (3 = 0, E, = 0):

t E,
e 3t/27s ginh (\/ 1 — €2 ) figo), € = H

F.(t) =

€
V1 — €2 27, - DK

Damped out-of-plane spin rotation for DK /u < E, (K = m*«a/h?) with the
complex eigenfrequency:

w = 2DK? (\/62 “14 37:) . 1/7, = 4ADK?

Further excitation: persistent spin helix (as explained later).

Corresponding pseudospin excitations in graphene.




Perturbation approach (in E and k)

Expansion with respect to E and « by exploiting the formal exact solution

or — 2w X T + 4551@(551@ "F)/O‘
o2 + 4w?

f(k|s) =

with the abbreviations o = s + 1/7, 7 = R+ f/r and

in o eE_ - 1 8 hae 8 —
—_— — . — _’K’ _ - h_’ _
R m(n k)f — idn f h Vil + Tﬁekf Wk T Oe€eg
To lowest order in E and k:
/ -
o r - = . d
foo = n{ex) = foo, foo = —hwkn—, foo =0, with n' = n(ex)
S S dsk

Furthermore: The expression for fox is obtained from f.o by the replacement

.‘.g




Anomalous Hall effect (basic theory)

Nonanalytic behavior of the AHE in the limit w — 0, 7 — oo for the
Rashba-Dresselhaus model.

WS = (—aky + Bka, aky, — Bky, M)

(homogeneous out-of-plane magnetization M)

The charge current is given by the time derivative of the dipole moment:

jat) = ST = TS S 0 — 1 G

Oxy = 0, + o, results from an expansion with respect to the electric field.
(pure Hall conductivity when a;y = 0)




Anomalous Hall effect (exact result)

S :_82 wT o — 32 . Po(k | w)
2y (W) hzw-l—’i/T( 'B)zk; ( )P+(k|8)P_(k|W)-|-P0(k|w)2

I 1%+ 5 2 M
2 M 1 _ 20p _ 4(w? — (M/R)?)
Po(k | w) = T+ h (02+4wg)\/m’ 7= a2—|—,326, 0= 0'2—|—4w,3

J no AHE for the special Rashba-Dresselhaus model o =g

J no w = 0 AHE for disordered samples

J nonanalytic behavior in the limit w — 0and 7 — o©




Anomalous Hall effect (numerical results)
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ac conductivity, Rashba model, resonances due to SOI. Parameters:
wT = 0.5 (1), 1 (2), 1.5 (3), and 2 (4). og is given by e?ma?7/(wh?).
In addition: B3 =0, a = 10~ eVem, 7 = 1 ps, and n = 10'° cm—2




Spin-Hall current

Two different definitions  for the spin current (which does not enter
Maxwells equations):

"conventional " 33(3) ~ Z Vier ® f(k,k | 8) |weo
k
"more physical " 33(3) ~ Z Ve® flk,k | 8) |r=o
k

According to : the spin current is given by the time derivative of the

spin displacement. (physical motivation: J. Shi et al. Phys. Rev. Lett.
96, 076604 (2006)).
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" conventional” spin-Hall current

We treat the Rashba model and obtain a nonvanishing stationary
spin-Hall current that is independent of the electric field!

- hK
Jy (s) = 2ms Zskn’(ek)
k

which gives j7(w) = —Kep/(2mh) at zero temperature. The
field-induced spin-Hall current results from

20Twin’

o2sT + 2wi(2sT + 1)

—

WE

Foe (kls) = 22 { (eun' -

}, o = (K x E)
™m

In clean samples jZ(w = 0) = —eFE /8mh (universal dependence);
In disordered samples no spin-Hall current Iy
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"physical” spin-Hall current

there is also a contribution independent of the electric field:

w,%T
o2sT + sz(ZST + 1)

j3(s) = =" Y n(ew)
k

But it results from the initial spin accumulation according to
sf(e|s)n/2 = eEgjg(e|s)n’. It disappears in the steady state.

General transport in an infinite system: First the volume and

afterwards the time goes to infinity (first « — 0 and than w — 0). This
procedure leads to the exact result (for a clean system):

, el W
jJ2(w —0) = ———1n
Yy 8wh 2w,
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J We treated the influence of an in-plane electric field on a 2DEG with SOl and
short-range elastic scattering. = Quantum-kinetic equations were rigorously
derived for the spin-density matrix. Analytic solutions we re obtained by
exploiting the momentum method and perturbation theory.
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short-range elastic scattering. = Quantum-kinetic equations were rigorously
derived for the spin-density matrix. Analytic solutions we re obtained by
exploiting the momentum method and perturbation theory.

J Three spin-remagnetization modes were identified that are due to the
electric field. These (resonant) rotations of the spin densi ty have a simple
origin.
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short-range elastic scattering. = Quantum-kinetic equations were rigorously
derived for the spin-density matrix. Analytic solutions we re obtained by
exploiting the momentum method and perturbation theory.

J Three spin-remagnetization modes were identified that are due to the
electric field. These (resonant) rotations of the spin densi ty have a simple
origin.

J The AHE for a system with Rashba-Dresselhaus SOl was treated. The
intrinsic AHE caused by the electric field is exactly cancell ed by collisions
(Smit (1955)). An ac electric field induces an AHE with alinea  r slope in M also
for disordered samples.
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J We treated the influence of an in-plane electric field on a 2DEG with SOl and
short-range elastic scattering. = Quantum-kinetic equations were rigorously
derived for the spin-density matrix. Analytic solutions we re obtained by
exploiting the momentum method and perturbation theory.

J Three spin-remagnetization modes were identified that are due to the
electric field. These (resonant) rotations of the spin densi ty have a simple
origin.

J The AHE for a system with Rashba-Dresselhaus SOl was treated. The
intrinsic AHE caused by the electric field is exactly cancell ed by collisions
(Smit (1955)). An ac electric field induces an AHE with alinea  r slope in M also
for disordered samples.

J The "conventional" definition of the spin-Hall current has serious defects.
The proper approach starts from the time derivative of the sp in displacement.
(In general, both definitions differ even for the charge tran sport!) %
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Introduction

J Starting from the kinetic equations for the spin-density ma trix,
coupled spin-charge drift-diffusion equations are derive d by
two methods:

@ rigorous expansion with respectto  «
(arbitrary strength of SOI)

@ approach for the drift-diffusion evolution period
(weak SOI)

J Applications refer to the spin accumulation in a strongly
confined two-dimensional hole gas and on spin-remagneti-
zation waves on a cylindrical surface




Drift-diffusion approach 1 (starting point)

Again, we start from the quantum-kinetic equations for the spin
and charge degrees of freedom:

D pholt) = LR~ Lae - F4 SB-Vef = 1F - 1)
D Fk,wlt) — Lo R~ 26 x F— 1anf + S(B - Vu)F
o 1 — — (Ijk d — 1 0 =
=70 =Dt Teem ! T rem S

For the sake of simplicity, let us treat the Rashba model.
These equations are nothing but a set of coupled linear
equations, which have the following explicit form:




Drift-diffusion approach 1 (method)

of +iQqzfy — qyfz) =

o
ofz +2Qcos(p)f. —1Qqyf = Rz + Qsin(p)— Tj;

, , hOf
O'fy —|— 212 Sln(cp)fz —|— Zﬂqwf = Ry — QCOS(C‘O);B—%

o f. — 2Q [cos(p) f= + sin(p) fy] =

with: Q = wiT, @p,y = Ka,y/k, 0 = 00 — 1Q2k(g, cos ¢ + g, sinp) /K,

h O

R=f+7fo, R.= f + 7 fox — ;a—ﬂfsm(cp)

_ h O
R.=f,+7fo:y, Ry=Ff,+7foy+ iyt cos()

J The exact solution is expanded up to second order in g .
Integration over the angle ¢; o0g = s7+ 1

J Fort > 7 (st < 1): f(ek,q|s) = n(er)F(q|s)




Drift-diffusion approach 1 (solution)

The final equations are given for f, f.. = i(R X ?)z, fq=1iRf, f.

s 4+ Do(s)k*] f + V(s)f, = fo
s+ Ml(s) -+ Dr(s)fez] fr = Va(s)R*f = fro
- ) - o
5 s Do) T = Ve(o)Fa = S
E + Tsj(s) + Dd(S)"Lzl fa— Va(s)®f, = fao
o2 + 202 oo 1 02
with 74 (s8) = 752 , Tsz(8) = T7s—, — = 4DK? =2—— and
oo 2 TS T
D o2 — 12032
D()(S): a—g, D:’UZT/2, DZ(S): (0%+492)2D,...

In the strong-coupling limit a non-Markovian behavior occurs.
But what is most astonishing?




Drift-diffusion approach 1 (discussion)

J For strong coupling (2 > 1/4/12) the diffusion coefficient
D, becomes negative — instability in the spin system!
(similar results by an alternative approach: T.D. Stanescu and
V. Galitski Phys. Rev. B 75, 125307 (2007))

C

However: f_ and f, rapidly change on the length scale of
the mean-free path (g expansion?)

C

Nevertheless: spin oscillations also appear from the exact
solution of the kinetic equation in the ballistic regime

sz

B(k,s) + 4w?/B(k,s)’ B(k,s) = s —i(k-v), v =hk/m”

i

fz(K,8) =




Drift-diffusion approach 1 (illustration)

Half plane y > 0 with a given spin polarization at the boundary:

0.1 ﬂ 2wt

0 10 20 30 40 50 60
§=2Ky

Spin polarization v f, / f.o as a function of ¢ = 2Ky calculated for the
half space y > 0. &




Drift-diffusion approach 1 (application)

We treat a two-dimensional hole gas and an in-plane electric field, which
couples spin and charge degrees of freedom.

v _ —
(s + io_—dnm + Dor?)f + iL.kyf, = fo
0

1 . Ud P . —
(s + +1—Ke + Dr%)f, +1Loky, f =0
Tsz 0o
with the transport coefficients
D oe — 1207

Do = 0_3’ D, :D(a_g+492)2, oo =87 +1

90?2 302 — 402 1 4072
o = va 2 2)2° -

2y (0§ + 4022) Tsz ooT

90? , 4000* + 802 — 303sT
Fz = Vg

27 "0 (oosT + 492) (02 + 4022)

Coupling is due to the drift velocity vy = eET/m™.




Drift-diffusion approach 1 (stripe)

As an example, a stripe geometry is treated (— Lo < y < Ly,
Kk, — t0/0y). The electric field at the boundaries

E,(y = £Ly) = Lt E, is used to solve the Poisson equation
dE,/dy = 4mwe(f — fo)/e. We obtain the analytic solution

Tz(y) - =

eEoTo A2 [ sinh(A\1y) sinh(A2y) ]
Tsz T
4e )\% — )\% SiIlh()\lLo) Siﬂh()\zL())

with A, 2 being the solution of the characteristic equation

5 5 1 5 4me
AT, — ( A°D, — )\DO—I—Tﬂfo =0

TS z

Two different classes of solutions:




Drift-diffusion approach 1 (figure)

weak coupling

20 ~10 0 10 20




Drift-diffusion approach 1 (figure)

strong coupling

20 ~10 0 10 20




Drift-diffusion approach 2 (starting point)

J The second derivation of spin-charge coupled drift-diffusion equations
applies for weak SOI. The procedure is illustrate for a 2DEG on a
cylindrical surface . The model Hamiltonian [L. I. Magarill, D. A.
Romanov, A. V. Chaplik, Zh. Eksp. Teor. Fiz. 86, 771 (1998)].

~2
h? k2 4 Pe
2m* 2m*

a'kzs (‘P)

Hp = Czl—:Z{Z a;rezs(‘P)
0

ky - s

+od al () [07,Pp — hk=Bser] ag_ s ()

1 - - )
+8 Z CLLZS(LP) 5 (Ess’pcp + psozss’) - hkzass’] ar, s’ (‘P)}




Drift-diffusion approach 2 (model)

The periodic boundary condition — discrete Fourier transformation:

o o) (e o)

ar.t (P) = Y  €™Car.mr, ar.i (@) =€ > e ™Par.m,

m=—00 "M =—00

In addition: elastic scattering and electric field along the cylinder axis.

H = Z s(k)aksaks + Z Z(ﬁwl(k) assz)ak Qs

k s,s’

-|—UZ Z a,k ag’g —zeE Z Vk.',a _gsa’k—l—%s

k,k’ s

=0
. 1 h? k2 h h
k—(kwakzao)a kso — <m+§) /R’ €(k)_ 2m* o ﬁ (a_ 4m*R>

&1 (k) = (0, —(aks = k), kol — 5——2) — ﬂkz)




Drift-diffusion approach 2 (kinetic egs.)

Spin-density matrix: f(k, k’|s) = 3 f5S.s

Shift of momentum vectors: k — k+ /2, k' — k — k/2

1 0 1e2t¥ 1 1 0 1 0 e2t¥
§¥ — = S* = = ST — =
2 ( —je—2ip 0 ) ’ 2 ( 0 —1 ) ’ 2 ( e—2iv )

The derivation of kinetic equations proceeds as for a planar 2DEG.
The final result has the same form , however, with a specific vector:

Oy = (wly('(‘") sin(2¢p), wly('(‘") cos(2¢), —wi.(K))

Again, an integration over the polar angle x of the momentum vector
k = k(cos x, sin x, 0) is necessary.

i




Drift-diffusion approach 2 (Ansatz)

The main step: treat the evolution period, in which a non-
equilibrium spin polarization and charge density still exist,
whereas the energy of particles is already thermalized.

In this regime, the following Ansatz is justified:

n'(e(k)) —= =
dn/der’ f(k,k|t) = —F(k|t)

n’(e(k))
dn/dsp

f(k,k|t) = —F(k|t)

n(e(k)) denotes the Fermi function and n = [ dep(e)n(e).

Procedure: expand the exact solution with respect to K, integrate
over o and finally over the energy (k).

i




Drift-diffusion approach 2 (result)

8 => ) — —
[——'uE-R’+Dn2]F+ " 3. — 6] - 57 =0
ot hpup
— —ituE -k + Dk +T| M — M X Heg — X(T'Heg)— — —QuF =G
ot m*c n 2TcC

with: M = ppF, ug = eh/2m*c, x = psn’, p = eDn’/n.
2m™ T 2m*2c
h? eh?

A = (a21puEy + az22pE.,a31pE, + as2pE.,a11pE, + a12pE>)

Q. =

(B X A)y, Hegg = — (A 4+ 2iD3,.)

T =
ADm*2 a?, +a?, + a3, + a3, —(az22a32 + az1a31) —(a11a21 + az2a12)
2 2 2 2
i —(az22a32 + az21a31) aj; +aj, +a3; + as, —(ai12a32 + ai11a31)
2 2
—(a11a21 + az2a12) —(ai2a32 + ai1a31) a3, + a3, + a3, + a3,
hZ
ai11 = Bsin(2¢), a21 = Bcos(2¢), az31 = —|a—
(2¢) (2¢) 2m* R

a1z = —asin(2yp), a2 = —acos(2¢), asz2 =0




Drift-diffusion approach 2 (applications)

Solution of four linear equations for the

charge density and the magnetization. The
zeros of the determinant determine the
eigenfrequencies of spin-remagnetization
waves.

ldentify spin excitations by an appropriate

experimental set up. Similar to physics of
space-charge waves. New electric-field-
Induced modes appear due to the spin-charge
coupling.

.bg
— J. L




1 Persistent field-mediated spin mode

Eigenmodes w = w(k) are solutions of the cubic equation:

Y(0® + wi) + g2 <a+ (“E)Z) =0

D

witho = X + g1, wyg = (e/m*c)Heg, and X = iw — iuE - k + DE2.
Effective coupling constants are given by:

4Dm*2 2 2 h h
h? [a +07 - 2m* R (a B 4m*R)]

o 4Dm*?\? o h 2
o (22 oo )

A long-lived spin excitation exists for the Rashba model (3 = 0) and a
given radius of the cylinder: R = h/2m*a.

g1 = 2




1 Persistent field-mediated spin mode

The persistent spin mode at k, — K = 2m™*a/h exists only on a
cylindrical surface and has no counterpart in the planar Rashba model:

wy2(k.) = —pE, (k. £ K) —iD (k, £ K)?

The excitation leads to spatial and temporal oscillations of the radial
magnetization:

M,
M,(z,t) = &

{e_D(K9+K)2t cos|Kgz + pE. (K, + K)t

4 e~ D(Kg—K)t cos[Kgz + pE, (K, — K)t]}

To excite the spin wave, a regular pattern of spin polarization perpen-
dicular to the cylinder surface can be used, which is provided by laser

pulses.




2 Spin-mediated space-charge waves

Under illumination, photogeneration of carriers along the cylinder axis:
g(z,t) = go[1 + mcos(Kzz + O cos(f2t))]

Basic equations for the treatment of space-charge waves:

e OF
E(z,t) = Eo +0E(z,t), —— +7j(z,t)=1(1)
47 Ot
8n+n—n0+ e O0°E (2,1)
ot T 4me 0z0t — 9%

The spin enters by a modification of the charge current:

, on
j(z,t) = eDa— + enpFE 4+ eap,
Z




2 Spin-mediated space-charge waves

Without SOI the steady-state current response is given by the
well-known result:

o

B m 3 1 mgo 2 n 1+ ANlw
= =3 (Rom) X O @

l=—o0

2
91,2=1(d+i]f‘>:|:\/1(d+’il"> -|-i I‘—DK -|— ‘|‘i
T 4 \ 1T

2 TTM ™™

with 7as = e/(4meung) being the Maxwellian relaxation time,
d=pEoK,7,\ = DK,/nE,.

There are trap recharging waves (2 ~ 1/K,) and oscillations of the
free electron gas (2 ~ K).

Are there any pronounced spin-mediated excitations?

Yes!

i




2 Spin-mediated space-charge waves

Under the condition R =~ h/2m™*«a sharp resonances appear at:

2 2
Q=Q./l, ﬂr:quKg(l—l— T hK)

2m*D 2m*

fo/

Frequency [Hz]




J Spin-charge coupled drift-diffusion equations are
systematically derived from kinetic equations for the
spin-density matrix.
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J
J

Spin-charge coupled drift-diffusion equations are
systematically derived from kinetic equations for the
spin-density matrix.

There are two complete different regimes : weak and
strong SOI.

Oscillations of the spin polarization occurs under
non-Markovian conditions that develop at strong SOI.

Numerous physical spin effects are described by the
drift-diffusion equations. We focused on the study of
spin-remagnetization waves
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