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J The theory of equilibrium and nonequilibrium GFs is a
powerful tool in the field of many-particle physics.

J Diagrammatic decoupling schemas are applied to handle the
exact but intractable basic theory.

J Which systematic rearrangement of diagrammatic
contributions justify a truncation at a given level?

J The cumulant expansion is most prominent in statistical
physics.

J There are problems with the crossing symmetry.




Thermodynamic GFs-Hamiltonian

Let us treat a system of Fermions with pair interaction:

H = Z/drmp;(r t) [——A —I—V(r)] s (r,t)

+3 3 [ drdr gl 0wl o, Dot — 1) (o, a1

ss’

Equations for the thermodynamic GFs
(R "GA...n, 1" ...n") = (T{Y@Q)...p(n)Pp"(n')...vT (1)}

are derived from the von Neumann equation

)
—zhaws(r,t) = [H, ¢s(r,t)]_

by taking into account the anticommutator relations.




Thermodynamic GFs-Egs. of motion

The equation of motion is obtained from the generating functional:

G[c] [>‘9 77] =1+ Z

o, ()

XG(1...n,1"...n" )n(1")...n(n")

/dl c..dndl’...dn'X(n)... (1)

with n(7), A(y) denoting anticommutating fields. The hierarchy is
obtained from a functional differential Eq.:

h? 0
{%Arl —V(ry) + zhatl } G\, 7]

) ) )
Sn(TT) OA(T) oA(1)

= n()GA, 7] — ih / div (1 — 1) GIA, 7]

where we used the abbreviation V(1 — 2) = v(r1 — r2)d(t1 — t2).
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Thermodynamic GFs-cumulant expansion

All the many-body physics can be exactly handled by the
previous Eqgs. However, approximations are necessary.
Should we, therefore, reorganize the whole chain of Egs.?
What would be nice having a theory for:

G.(12,1'2") = G(12,1'2") — [G(1,1)G(2,2') — G(1,2")G(2,1")]

A theory for these correlated GFs is easily derived from the
generating functional given by:

G[)‘a 77] — €eXp {Gc[)‘a 77]}

(A systematic n-particle approach is obtained by terminating at
the (n 4+ 1)-particle level.)
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Thermodynamic GFs-two-particle level

The first Egs. of this infinite chain are given by:

G(1,1) = Go(1,1') — ih/didiGO(LI)V(I — 2)G.(21,271)

For the correlated two-particle GF:

G.(12,1'2") = ih/didiV(T — §){-G0(1,T)Gc(ﬁ2,§+1’2’)
+ |Go(1,1)G(2,2)G(1,1)G(2,2") — Go(1,1)G(2,2)G(1,2")G(2,1')]
+ |Go(1,1)G(2,2)G(12,1'2")]

+[Go(1,1)G(2,1)G(12,272) + Go(1,T)G(2,2')G.(12,1'2)

— Go(1,1)G(1,1)G(22,272') + Go(1,1)G(1,2')G.(22,127) }

G denotes the Hartree-Fock GF




Thermodynamic GFs-crossing symmetry

The optimized pair approximation is obtained by neglecting the
correlated three-particle GF. However, the resulting Eq. is not
crossing symmetric!  (which is a fundamental symmetry of
particle statistics)

G(12,1'2) = —G(21,1'2") = —G(12,2'1") = G(21,2'1)

The crossing symmetry can be rescued by constructing the
symmetric result with the help of the exact Eq.:

1
Go(12,1'2) = ~ {G.(12,1'2') — G.(21,1'2')}

The diagrammatic representation is shown on the next slide.
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Crossing-symmetric two-particle channels
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Correlated GFs-BCS approach

From the Cooper channel, the BCS approach is easily obtained:

G.(12,1'2') = if / didzVv (i — 2)

X2 [Go(L,T)G(2.2) + G(1L1)Go(2,2)] Go(12,1'2)

Crucial is the symmetry property of the four-point function:

Ge(T1T2, T1/ T2 |20 200 W0) = — G (T1/ T2, T1X2|2), 2, W)

Besides the one-particle GF, we need the gap function defined by:

1
A(xi1x2, /Ty |Wn) = v(r1 — r2)v(ry, — r2/)—2 Z Ge(ix2, 1@y |20 2 wn)

v,v’

A coupled set of nonlinear integral Egs. is derived fot the one- and
two-particle GF.
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Correlated GFs-BCS approach

The theory of BCS superconductivity is governed by the following EqQs.:

G(k, z,) = Go(k, z,) — Go(k, z,,) Zeswm(kk'q|wn)

1
X [Go(k, 2,)G(q — kywn — 2,) + G(k,2,)Go(q — kywn — 2,)]

and an Eq. for the gap function:

A(kK qlwn) = v(k — k1) A(k1k g|wn)
ki

X{—% ; [Go(kl, zu)G’(q — k1,wn — zu) + G(klazu)GO(q —k1,wn — zV)] }
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Correlated GFs-BCS approach

Analytical results are obtained by adopting the simplifications:

O Gol,z) = - —1€(I<:)

(D vk — k) = —gO(wp — le(k — u))O(wp — le(k’ — ul)

1
(B AWK qlwn) = 5 3 Aurosorsa (kk'qlorn) = —i88,,005,0A (k, k')

81,82

The final result is the gap Eq. for the transition temperature:

1
B Z (hzy — p)2 — E(k)?’

E(k) = V/(e(k) — u)? + |A(K)|2




Novel scattering channels

G.(12,1'2') ~ ih / d1d2V (1 — 2)

1 o L o -
X 5{Go(l, 1)G(2,1)G(12,272') + Go(2,1)G(2,1")G. (11,27 2)

+G0(17 T)G(§7 2,)Gc(127 1,§+) =+ G0(27 T)G(§7 2,)Gc(1T7 1,§+)}

G.(12,1'2) ~ —ik / d1d2V (1 — 2)

1 _ _ . _ _ _ .
xg{aou, 1)G(1,1)Ge(22,212) + Go(1, 1)G(1,2)Go(22,1'27)

+Go(2,1)G(1,1)Ge(12,272') + Go(2,1)G(T,2)G.(12, 1'§+)}

Are there any interesting two-particle excitations in thes e less studied
scattering channels?
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) The theory of correlated GFs generates the

J

Cooper channel, from which the BCS approach
to superconductivity is easily obtained.

Crossing symmetric linear parquet Egs. were
obtained for the correlated two-particle GF.

There are two crossing symmetric pair
contributions, which deserve further studies.
Are there any interesting unexplored
two-particle excitations?




Thank you for
your attention
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