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Introduction

The theory of equilibrium and nonequilibrium GFs is a
powerful tool in the field of many-particle physics.

Diagrammatic decoupling schemas are applied to handle the
exact but intractable basic theory.

Which systematic rearrangement of diagrammatic
contributions justify a truncation at a given level?

The cumulant expansion is most prominent in statistical
physics.

There are problems with the crossing symmetry.
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Thermodynamic GFs-Hamiltonian

Let us treat a system of Fermions with pair interaction:

H =
∑

s

∫

drψ†
s(r, t)

[

−
~
2

2m
∆r + V (r)

]

ψs(r, t)

+
1

2

∑

s,s′

∫

drdr′
ψ

†
s(r, t)ψ

†
s′(r

′
, t)v(r − r

′)ψs′(r′
, t)ψs(r, t)

Equations for the thermodynamic GFs

(i~)n
G(1 . . . n, 1′

. . . n
′) = 〈T {ψ(1) . . . ψ(n)ψ†(n′) . . . ψ†(1′)}〉

are derived from the von Neumann equation

−i~
∂

∂t
ψs(r, t) = [H,ψs(r, t)]−

by taking into account the anticommutator relations.
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Thermodynamic GFs-Eqs. of motion

The equation of motion is obtained from the generating functional:

G[c][λ, η] = 1 +
∞
∑

n=1

1

(n!)2

∫

d1 . . . dnd1′ . . . dn′λ(n) . . . λ(1)

×G[c](1 . . . n, 1
′ . . . n′)η(1′) . . . η(n′)

with η(j), λ(j) denoting anticommutating fields. The hierarchy is

obtained from a functional differential Eq.:
{

~
2

2m
∆r1

− V (r1) + i~
∂

∂t1

}

δ

δλ(1)
G[λ, η]

= η(1)G[λ, η] − i~

∫

d1V (1 − 1)
δ

δη(1
+
)

δ

δλ(1)

δ

δλ(1)
G[λ, η]

where we used the abbreviation V (1 − 2) = v(r1 − r2)δ(t1 − t2).
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Thermodynamic GFs-cumulant expansion

All the many-body physics can be exactly handled by the
previous Eqs. However, approximations are necessary.
Should we, therefore, reorganize the whole chain of Eqs.?
What would be nice having a theory for:

Gc(12, 1′2′) = G(12, 1′2′) − [G(1, 1′)G(2, 2′) −G(1, 2′)G(2, 1′)]

A theory for these correlated GFs is easily derived from the
generating functional given by:

G[λ, η] = exp {Gc[λ, η]}

(A systematic n-particle approach is obtained by terminating at
the (n+ 1)-particle level.)
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Thermodynamic GFs-two-particle level

The first Eqs. of this infinite chain are given by:

G(1, 1′) = G0(1, 1
′) − i~

∫

d1d2G0(1, 1)V (1 − 2)Gc(21, 2
+
1′)

For the correlated two-particle GF:

Gc(12, 1′2′) = i~

∫

d1d2V (1 − 2)

{

−G0(1, 1)Gc(212, 2
+
1′2′)

+
[

G0(1, 1)G(2, 2)G(1, 1′)G(2, 2′) − G0(1, 1)G(2, 2)G(1, 2′)G(2, 1′)
]

+
[

G0(1, 1)G(2, 2)Gc(12, 1′2′)
]

+
[

G0(1, 1)G(2, 1′)Gc(12, 2
+
2′) + G0(1, 1)G(2, 2′)Gc(12, 1′2

+
)
]

−
[

G0(1, 1)G(1, 1′)Gc(22, 2
+
2′) + G0(1, 1)G(1, 2′)Gc(22, 1′2

+
)
]

}

G0 denotes the Hartree-Fock GF.
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Thermodynamic GFs-crossing symmetry

The optimized pair approximation is obtained by neglecting the
correlated three-particle GF. However, the resulting Eq. is not
crossing symmetric! (which is a fundamental symmetry of
particle statistics)

G(12, 1′2′) = −G(21, 1′2′) = −G(12, 2′1′) = G(21, 2′1′)

The crossing symmetry can be rescued by constructing the
symmetric result with the help of the exact Eq.:

Gc(12, 1
′2′) =

1

2
{Gc(12, 1

′2′) −Gc(21, 1
′2′)}

The diagrammatic representation is shown on the next slide.
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Crossing-symmetric two-particle channels
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Correlated GFs-BCS approach

From the Cooper channel, the BCS approach is easily obtained:

Gc(12, 1′2′) = i~

∫

d1d2V (1 − 2)

×
1

2

[

G0(1, 1)G(2, 2) +G(1, 1)G0(2, 2)
]

Gc(12, 1′2′)

Crucial is the symmetry property of the four-point function:

Gc(x1x2, x1′x2′ |zνzν′ωn) = −G∗
c(x1′x2′ , x1x2|z∗

ν′z
∗
νω

∗
n)

Besides the one-particle GF, we need the gap function defined by:

∆(x1x2, x1′x2′ |ωn) = v(r1 − r2)v(r1′ − r2′)
1

β2

∑

ν,ν ′

Gc(x1x2, x1′x2′ |zν zν ′ωn)

A coupled set of nonlinear integral Eqs. is derived fot the one- and
two-particle GF.
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Correlated GFs-BCS approach

The theory of BCS superconductivity is governed by the following Eqs.:

G(k, zν) = G0(k, zν) −G0(k, zν)
i

~β

∑

q,n

eεωn∆(kk′q|ωn)

×
1

2
[G0(k, zν)G(q − k, ωn − zν) +G(k, zν)G0(q − k, ωn − zν)]

and an Eq. for the gap function:

∆(kk′q|ωn) =
∑

k1

v(k − k1)∆(k1k′q|ωn)

×

{

−
1

2β

∑

ν

[G0(k1, zν )G(q − k1, ωn − zν ) + G(k1, zν )G0(q − k1, ωn − zν )]

}
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Correlated GFs-BCS approach

Analytical results are obtained by adopting the simplifications:

1 G0(k1, zν) =
1

~zν − ε(k)

2 v(k − k′) = −gΘ(ωD − |ε(k − µ|)Θ(ωD − |ε(k′ − µ|)

3 ∆(kk′q|ωn) =
1

2

∑

s1,s2

∆s1s2,s1s2
(kk′q|ωn) = −i~βδn,0δq,0∆(k, k′)

The final result is the gap Eq. for the transition temperature:

1 =
g

β

∑

k,ν

1

(~zν − µ)2 − E(k)2
, E(k) =

√

(ε(k) − µ)2 + |∆(k)|2
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Novel scattering channels

Gc(12, 1′2′) ∼ i~

∫

d1d2V (1 − 2)

×
1

2

{

G0(1, 1)G(2, 1′)Gc(12, 2
+
2′) +G0(2, 1)G(2, 1′)Gc(11, 2

+
2′)

+G0(1, 1)G(2, 2′)Gc(12, 1′2
+
) +G0(2, 1)G(2, 2′)Gc(11, 1′2

+
)

}

Gc(12, 1′2′) ∼ −i~

∫

d1d2V (1 − 2)

×
1

2

{

G0(1, 1)G(1, 1′)Gc(22, 2
+
2′) +G0(1, 1)G(1, 2′)Gc(22, 1′2

+
)

+G0(2, 1)G(1, 1′)Gc(12, 2
+
2′) +G0(2, 1)G(1, 2′)Gc(12, 1′2

+
)

}

Are there any interesting two-particle excitations in thes e less studied
scattering channels?
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Summary

The theory of correlated GFs generates the
Cooper channel, from which the BCS approach
to superconductivity is easily obtained.
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Summary

The theory of correlated GFs generates the
Cooper channel, from which the BCS approach
to superconductivity is easily obtained.

Crossing symmetric linear parquet Eqs. were
obtained for the correlated two-particle GF.

There are two crossing symmetric pair
contributions, which deserve further studies.
Are there any interesting unexplored
two-particle excitations?
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The end

Thank you for
your attention
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