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Introduction

The theory of hot-carrier quantum transport in semiconduc-
tors has a long history and reached a high level of
sophistication

What is the quantity of main interest? The current density.

But what about quantum diffusion? The idea of diffusion has
an even longer history. It dates back to Fourier and Laplace.

Quantum diffusion is well established in the study of atomic
migration in solids (tunneling)

The Einstein relation does not help under nonequilibrium
conditions. A unified theory of quantum transport and
quantum diffusion in semiconductors is needed.
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One-band theory: carrier drift

Starting point: Fokker-Planck equation for the probabilit y
density

sP (r − r0 | s) = δ(r − r0) + vz(s)
∂

∂z
P (r − r0 | s) + Dzz(s)

∂2

∂z2
P (r − r0 | s)

where the transport coefficients

vz(s) = −s2Z1(s), Dzz(s) =
s2

2
Z2(s) −

vz(s)

s

are calculated from the moments

Zn(s) =

∫
d3r(z − z0)

nP (r − r0 | s)

The main quantity is the probability propagator P .
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One-band theory: carrier drift

The quantum mechanics comes in by identifying the
probability P with a second-quantized expectation value. [E. K.

Kudinov, Y. A. Firsov Sov. Phys. JETP 22, 603 (1966)]

P m1m3
m2m4

(s) =
1

Z

∞∫

0

dte−stTrph

{
e−βHph〈0 | am2eiHt/~a†

m4
am3e−iHt/~a†

m1
| 0〉

}

All transport coefficients are simultaneously derived from the moments:

Zn(s) = in
∑

k,k′

∂n

∂κn
z

P (k, k′, κ | s) |κ=0≡ in
∑

k,k′

Pn(k, k′ | s)

That’s all! What remains are technical manipulations.

Paul-Drude-Institute for Solid State Electronics – p. 5/??



One-band theory: carrier drift

For the drift velocity, we obtain the final result:

vz(s) =
∑

k

veff (k, s)f(k, s)

with the quantum-kinetic Eq. for the distribution function:

f(k,s) = s
∑

k′

P0(k
′, k | s),

[
s +

eE

~
∇k

]
f(k,s) = s +

∑

k′

f(k′, s)W(k′, k | s)

and an effective spectral drift velocity:

veff(k, s) = vz(k) − i
∑

k′

W1(k, k′ | s)

Describe quantum transport via extended and localized states at the

same footing.
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One-band theory: quantum diffusion

The diffusion coefficient is calculated by the very same procedure:

Dzz(s) =
∑

k

veff (k, s)ϕ(k, s) −
1

2

∑

k,k′

f(k, s)W2(k, k′ | s)

The main quantity cannot be a scalar distribution function (rather

~ϕ ∼ ∇κf(k, κ, t)|κ=0). The "quantum-Boltzmann" Eq. for diffusion

phenomena is given by:
[
s +

eE

~

∂

∂kz

]
ϕ(k, s) =

∑

k′

ϕ(k′, s)W (k′ , k | s) + vz(k)f(k, s)

−
∑

k′

veff(k′, s)f(k′, s) − i
∑

k′

f(k′, s)W1(k
′, k | s)
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One-band theory: limiting cases

Low field regime:

v(1)
z =

∑

k

vz(k)f (1)(k), D(0)
zz =

∑

k

vz(k)ϕ(0)(k), f (1)(k) = eEϕ(0)(k)/kB T

The Einstein relation µ = eDzz/kBT is recovered (with µ = v(1)
z /E).

Wannier-Stark regime:

vz = −
1

eE

∑

k,k′

[
ǫ(kz) − ǫ(k′

z)
]
f(k′)W (k′ , k) + . . .

Dzz =
1

2

1

(eE)2

∑

k,k′

[ǫ(kz) − ǫ(k′
z)]

2f(k′)W (k′ , k) + . . .

Carriers execute Bloch oscillations, transport only due to inelastic

scattering, negative differential conductivity.
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One-band theory: hopping picture

Switching back to the real space by an exact transformation:

vz =
∑

k⊥,k′

⊥

∞∑

m=−∞

(md)n(k′
⊥)W̃ 0,m

0,m (k′
⊥ , k⊥)

Dzz =
1

2

∑

k⊥,k′

⊥

∞∑

m=−∞

(md)2n(k′
⊥)W̃ 0,m

0,m (k′
⊥ , k⊥)

This is the hopping picture of transport, lateral distribution function:

∞∑

m=−∞

∑

k′

⊥

n(k′
⊥)W̃ m,0

m,0 (k′
⊥ , k⊥) = 0,

∑

k⊥

n(k⊥) = 1

The field-dependent scattering probability W̃ satisfies a nonlinear

integral Eq. (intra-collisional field effects, electro-phonon resonances).
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One-band theory: ultra-quantum limit

Under the condition eEdτ/~ ≫ 1, hopping is restricted to
nearest neighbors. Principle of detailed balance:

W 0,1
0,1 (k′

⊥, k⊥)/W 0,−1
0,−1 (k⊥, k′

⊥) = exp

(
eEd + ε(k′

⊥) − ε(k⊥)

kBT

)

A "generalized Einstein relation" applies to this high-field regime:

Dzz =
vzd

2
coth

eEd

2kBT
, µ =

eDzz

kBT

tanh(eEd/2kBT )

eEd/2kBT

This simple result was confirmed by ensemble Monte Carlo
simulations of hopping transport. [M. Rosini, L. Reggiani, Phys.
Rev. B 72, 195304 (2005)].
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Two-band theory: basic equations

The main quantity is the conditional probability Pνν′(r − r0|t) to find an

electron at a given time t and lattice site r in the νth band, provided it

occupied r0, ν′ at an earlier time t = 0.

sPνν ′(r − r0 | s) = δνν ′δ(r − r0) +
∑

µ

∂

∂z
Pνµ(r − r0 | s)vµν ′(s)

+
∑

µ

∂2

∂z2
Pνµ(r − r0 | s)Dµν ′(s) +

∑

µ

Pνµ(r − r0 | s)ωµν ′(s)

The probability propagator is given by the vacuum expectation value:

P α1α3
α2α4

(s) =
1

Z

∞∫

0

dte−stTrph

{
e−βHph〈0 | aα2e

i
~

Hta†
α4

aα3e− i
~

Hta†
α1

| 0〉

}

Procedure: formal solution of the equation of motion → calculate

moments and transport coefficients.
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Two-band theory: kinetic equations

The carrier distribution function of the multiband system is defined by:

fµ′

µ (k, s) = s
∑

k′

∑

ν

(0)P νµ′

νµ (k′, k | s)

and satisfies the quantum-kinetic equation:
{

s +
eE

~
· ∇k +

i

~
[εν ′ (k) − εν (k)]

}
fν ′

ν (k, s)

+
i

~
eE ·

∑

µ

[
Qµν (k) fν ′

µ (k, s) − Qν ′µ (k) fµ
ν (k, s)

]

= sδνν ′ +
∑

k1

∑

µ,µ′

fµ′

µ (k1, s)W µ′ν ′

µν (k1, k′ | s)

It is a generalization of the Boltzmann Eq. (intra-collisional field effects)

and is also obtained by an alternative microscopic approach.

[V.V. Bryksin et al. Sov. Phys. Solid State 22, 1796 (1980)].
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Two-band theory: drift velocity

The theory for the drift velocity is able to cope with transport via

extended and localized states:

vd(s) =
1

Nb

∑

k

∑

ν,ν′

vν′

ν (k | s)fν′

ν (k, s)

The effective drift-velocity tensor has diagonal and off-diagonal

elements (tunneling):

vν ′

ν (k | s) = vν(k)δνν ′ −
eE

~
· ∇kQνν ′ (k) − i

∑

k′

∑

µ

(1)W ν ′µ
νµ (k, k′ | s)

Included is transport due to intersubband tunneling (Zener resonance).

The approach can be used to treat population inversion and gain in

quantum-cascade lasers.
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Two-band theory: diffusion coefficient

The basic result for Dzz(s) is derived by applying the very same

procedure.

Dzz(s) =
1

Nb

∑

k

∑

ν,ν′

v
ν′

ν (k | s)ϕ
ν′

ν (k | s) −
1

2Nb

∑

k

∑

ν,ν′

f
ν′

ν (k | s)
∑

k′µ

(2)
W

ν′µ
νµ (k, k

′
| s)

The "quantum Boltzmann" Eq. for ϕν′

ν has the form:

{
s +

eE

~
· ∇k +

i

~
[εν ′ (k) − εν (k)]

}
ϕν ′

ν (k | s)

+
i

~
eE ·

∑

µ

[
Qµν (k) ϕν ′

µ (k | s) − Qν ′µ (k) ϕµ
ν (k | s)

]

=
∑

k1

∑

µ,µ′

ϕµ′

µ (k1 | s)Wµ′ν ′

µν (k1, k′ | s)

+
∑

k1

∑

µ,µ′

fµ′

µ (k1 | s)vµ′ν ′

µν (k1, k′ | s) − vd(s)δνν ′
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Two-band theory: application

We treat a biased superlattice with two minibands in the high-field

regime. Integration by parts:

vd = −
1

~Nb

∑

k

∑

ν

ǫν(kz)
∂

∂kz

fν
ν (k) = v

(s)
d + v

(t)
d

The drift velocity decomposes into a semiclassical scattering v
(s)
d and

quantum-mechanical tunneling v
(t)
d contribution:

v
(s)
d = −

1

eE

1

Nb

∑

k,k′

∑

ν,ν ′

∑

µ

ǫµ(kz)f
ν ′

ν (k′)W ν ′µ
νµ (k′, k)

v
(t)
d =

i

~

1

Nb

∑

k

∑

ν,ν ′

fν ′

ν (k)Qνν ′(k) [ǫν ′(kz) − ǫν (kz)]

The tunneling current is espressed by the off-diagonal elements of the

density matrix.
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Two-band theory: application

A similar decomposition applies to the diffusion coefficient:

Dzz = −
1

~Nb

∑

k

∑

ν

ǫν(kz)
∂

∂kz

ϕν
ν(k) = D(s)

zz + D(t)
zz

D(t)
zz depends on the difference of subband drift velocities, which

changes its sign as a function of E and the superlattice
parameters. → Zener antiresonance possible in D(t)

zz .

[At the tunneling resonance, the subband states are strongly
mixed → there is no additional spreading due to different
subband velocities → Minimum.]
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Two-band theory: application

0 20 40 60 80 100
0

0.1

0.2

0.3

0.4

Ez [kV/cm]

ṽ
z
,

˜ D
z
z

ṽz

˜
Dzz

The dimensionless drift velocity ṽz = vz/(2d/τ ) (thin solid line) and longitudinal diffusion coefficient d2D̃zz/τ = Dzz

(thick solid line) as a function of the electric field Ez . The dashed line shows the scattering induced contributions ṽ
(s)
z and D̃

(s)
zz ,

which coalesce in this representation. The positions of tunneling resonances are indicated by vertical dotted lines. Parameters

used in the calculation are: T = 4 K, τ1 = 0.1 ps, τ2 = 0.05 ps, τ21 = 2 ps, τ = 1 ps, and d = 20 nm,

εg = 100 meV, ∆1 = 5 meV, ∆2 = 20 meV, (Q12/d)2 = 0.1.
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Summary

There is a striking imbalance between studies of quantum
transport (carrier drift) and quantum diffusion in
semiconductors.

The Einstein relation is not applicable under nonequilibri um
conditions.

There is a need to treat quantum diffusion in semiconductors .

We presented a rigorous theory of both transport coefficient s
that is applicable to transport both via extended and locali zed
states as well as to the hopping regime.

To my knowledge: Our general results for the transport
coefficients (beyond the Boltzmann approach) are not
appreciated by the transport community.
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The end

Thank you for
your attention
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