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Noncommutative analysis

Noncommutative analysis is an analysis of functions whose arguments do
not commute and whose values do not commute. We will discuss

differentiation,

Taylor-type approximation,

applications to mathematical physics /perturbation theory.

Functions are defined on operators acting in a separable Hilbert space (can
think of finite matrices). In the first part of the talk, H and V are
self-adjoint. H is an initial operator and V its perturbation.
Given a Borel function f : R 7→ C bounded on the spectrum on H, the
operator function f (H) is defined via the spectral theorem (functional
calculus).
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Spectral theorem
(diagonalisation of an operator)

Finite-dimensional case: H = H∗ is a finite matrix with eigenvalues
{λk}nk=1. If Pk is a projection onto the eigenspace corresponding to
λk , then

H =
n∑

k=1

λk · Pk .

Infinite-dimensional case: H = H∗ is an operator. There is a unique
spectral measure E such that

H =

∫
R
λ dE (λ) =

∫
spectrum(H)

λ dE (λ).

For Borel f : R 7→ C bounded on σ(H), the function of H is defined by

f (H) :=

∫
R

f (λ) dE (λ).
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I.M. Lifshits, Physics Literature ’47 — Uspehi Mat. Nauk
’52

If H describes interactions between the atoms of a pure crystal and H + V
of a crystal with impurities, then the change in the free energy of a crystal
equals (here, tr is the standard trace)

tr
[
f (H + V )− f (H)

]
,

for a small defect V (mathematically, if the trace above is well defined).
Lifshits was looking for efficient formulas to compute the change in the
free energy.
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Non-commutative Lipschitz estimates

In 1953 M. G. Krein proved that if H and V are self-adjoint
and V ∈ S1, then f (H + V )− f (H) ∈ S1 for every f ∈ C∞c . Here,
Sp is the Schatten-von Neumann class.

M.G. Krein asked (in the case p = 1):
Let V ∈ Sp, 1 ≤ p ≤ ∞ and if f ∈ C 1(R). Is it true that

f (H + V )− f (H) ∈ Sp?

A positive answer was relatively simply found for p = 2.

Yu. Farforovskaya (and later others, e.g. Davies, Peller) showed that
the answer is negative for p = 1 and p =∞ in 1972 and 1967,
respectively.

Theorem

The answer is positive if 1 < p <∞ ( D. Potapov & F.S., Acta
Math. 2011).
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Perturbation argument, in its simplest form

Let A =
∑

j λjEj and B =
∑

k µkFk . We argue as follows

f (B)− f (A) =∑
j,k

Fk (f (B)− f (A)) Ej =∑
j,k

Fk f (B)Ej − Fk f (A)Ej =∑
j,k

f (µk)FkEj − f (λj)FkEj =∑
j,k

(f (µk)− f (λj))FkEj =∑
j,k

ψjk (µk − λj) FkEj =

∑
j,k

ψjk (µkFkEj − FkλjEj) =∑
j,k

ψjk (FkBEj − FkAEj) =∑
j,k

ψjkFk (A− B) Ej .

Thus, we obtained

f (B)− f (A) = Tψf (A− B),

Tφ(X ) =
∑
j,k

φ(λj , µk)FkXEj

ψf (x , y) =
f (x)− f (y)

x − y
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Schur multipliers and Fourier multipliers

As we have seen on the previous frame, the analysis of the difference

f (B)− f (A)

can be reduced to the question about the behavior of the Schur multiplier

Tψf
, where ψf (x , y) =

f (x)− f (y)

x − y

on the element A− B ∈ Sp, 1 ≤ p <∞. The study of various classes of
Schur multipliers on Schatten-von Neumann classes Sp is one of the
active areas of Noncommutative Analysis. This study is a noncommutative
counterpart of the classical Fourier analysis. We shall exploit this
connection for the case when 1 < p 6= 2 <∞.

F. Sukochev (UNSW) Analysis — modern advances
Samara State University, Samara, June 24, 2013 7

/ 22



A S2 estimate is simple

The following lemma is well known:

Lemma (non-commutative Parseval’s identity)

If X ∈ S2, then
‖X‖22 =

∑
j ,k

‖FkXEj‖22 ,

where {Ej} and {Fk} are families of orthogonal projections.

This lemma ensures that Tψf
is bounded on S2 as long as

ψf ∈ L∞ ⇐⇒ f ′ ∈ L∞.

This explains the simplicity of the argument behind the Lipschitz
estimate for p = 2.
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Vector-valued Harmonic analysis in UMD-spaces

The new approach to Sp have become possible due to recent (and
not so recent) developments in the vector-valued Harmonic analysis.

The key concept in this area is the concept of UMD (unconditional
martingale differences) spaces introduced by Pisier and developed by
Burkholder.

One of the key results is the vector-valued Marcinkiewicz multiplier
theorem due to J. Bourgain

Theorem

If X is a UMD Banach space, then the Fourier multiplier defined by

̂(Tm(f ))(k) = mk f̂ (k), k ∈ Z

is bounded on vector-valued Bochner space Lp(T,X ) if m is a bounded
sequence and m is of bounded variation over every dyadic
interval 2d ≤ |k | < 2d+1 uniformly for d ∈ N.
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The new approach to Sp with 1 < p <∞, p 6= 2

Unlike the simple case p = 2, the approach of D. Potapov & F.S. [Acta
Math., 2011] is based on vector valued Marcinkiewicz multiplier theorem
and the following ideas:

Lemma

There is a rapidly decreasing function h such that, for every ‖f ′‖∞ ≤ 1,

ψf (x , y) =
f (x)− f (y)

x − y
=

∫
R
h(σ) |f (x)− f (y)|iσ |x − y |−iσ dσ.

The operator Rσ = Twσ , where wσ(x , y) = |x − y |iσ is linked with
the Calderon-Zygmund theory of vector-valued singular integral
operators, in particular, with the Marcinkiewicz multiplier theorem.

The representation above allows to write our Schur multiplier as
follows

Tψf
=

∫
R

h(σ) R̃σ · R−σ dσ.
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The new approach to Sp with 1 < p <∞, p 6= 2

computing the total variation of the sequence λ =
{

nis
}
n>0

over dyadic
intervals via the fundamental theorem of the calculus, we have∣∣nis − (n + 1)is

∣∣ ≤ |s|
n
, n ≥ 1

and thus immediately∑
2k≤n≤2k+1

∣∣nis − (n + 1)is
∣∣ ≤ |s| , k ≥ 0.

Together with the vector valued Marcinkiewicz multiplier theorem and
Transference Method (developed, in particular, by Berkson and Gillespie),
we infer that ‖R−σ‖Sp→Sp ≤ (1 + |s|). A similar estimate also holds for
R̃σ. This allows us to conclude that ‖Tψf

‖Sp→Sp <∞. We are done.
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Spectral shift function of M.G. Krein

Answering Lifshits’s question, computing

tr (f (H + V )− f (H)) ,

M.G. Krein introduced an object known now as a spectral shift function of
Krein (the function ξ below).

Theorem (M.G. Krein, 1953)

If H and V are self-adjoint and V ∈ S1, then there is
L1-function ξ = ξH,V such that

tr (f (H + V )− f (H)) =

∫
R

f ′(t) ξ(t) dt,

for every f ∈ C∞c .
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Construction of the Krein’s function in case of finite trace

Let H,V ≥ 0, let τ be finite trace and let nH(t) := τ(EH(t,∞)), t ∈ R.
It follows from the functional calculus that f (H) = −

∫∞
0 f (s)dEH(s,∞).

Taking the trace and integrating by parts, we obtain

τ(f (H)) = −
∫ ∞
0

f (s)dnH(s)

= − f (s)nH(s)
∣∣∣∞
0

+

∫ ∞
0

f ′(s)nH(s)ds =

∫ ∞
0

f ′(s)nH(s)ds.

Thus, we arrive at

τ(f (H + V )− f (H)) =

∫ ∞
0

f ′(s)(nH+V − nH)(s)ds.
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Spectral shift function explained

Figure: M.G. Krein spectral shift function explained
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L. Koplienko development of the trace formula

In 1984, L. Koplienko proved the following improvement of the
M.G. Kreins trace formula:

Theorem (Koplienko, 1984)

If H and V are self-adjoint and V ∈ S2, then there is an L1-function η
(the spectral shift function of Koplienko) such that

tr (R2(f ,H,V )) =

∫
R

f ′′(t) η(t) dt, for every f ∈ C∞c ,

where R2(f ,H,V ) = f (H + V )− f (H)− d

dt
[f (Ht)]

∣∣∣
t=0

.

L. Koplienko also attempted to establish a version of the spectral shift
formula for V ∈ Sp with p > 2.
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L. Koplienko conjecture of 1984

The following result was conjectured by L. Koplienko in 1984

Theorem

If H and V are self-adjoint and V ∈ Sn, then there is an
L1-function ηn = ηn,H,V such that

tr (Rn(f ,H,V )) =

∫
R

f (n)(t) ηn(t) dt, for every f ∈ C∞c ,

where Rn(f ,H,V ) = f (H + V )−
n−1∑
k=0

1

k!

dk

dtk
[f (Ht)]

∣∣∣
t=0

.

The conjecture is now fully proved by D. Potapov, A. Skripka & F. S.,
Invent. Math. (to appear).
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Advanced estimates of higher order

A complex combination of vector-valued harmonic analysis enabled
the following result:

Theorem (D. Potapov, A. Skripka & F.S., Invent. Math. (to
appear))

Let H and V be self-adjoint operators and let 1 < p <∞, n > 1. There
is cn,p > 0 such that,

if V ∈ Snp then

∥∥∥∥ dn

dtn
f (H + tV )

∥∥∥∥
p

≤ cn,p · ‖V ‖nnp ·
∥∥∥f (n)

∥∥∥
∞

if V ∈ Sn, then

∣∣∣∣tr( dn

dtn
f (H + tV )

)∣∣∣∣ ≤ cn · ‖V ‖nn ·
∥∥∥f (n)

∥∥∥
∞

The result above lies at the core of our resolution of Koplienko
conjecture of 1984.
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Koplienko spectral shift function for contractions

In 2008, F. Gesztesy, A. Pushnitski, and B. Simon conjectured that
Koplienko result holds also for contractions. The conjecture was as follows
(here and below H and V are not necessarily self-adjoint).

Theorem

If H and V are such that H and H + V are contractions and V ∈ S2,
then there is an L1-function η = ηH,V such that

tr (R2(f ,H,V )) =

∫
T

f ′′(z) η(z) dz ,

for every polynomial f .

The conjecture is now settled positively by D. Potapov and F. S.
(Comm. Math. Phys 2012).
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Higher order spectral shift for contractions

The following result shows the existence of spectral shift function for
n ≥ 3 in case of contractions.

Theorem

If H and V are such that H and H + V are contractions and V ∈ Sn,
n ≥ 3, then there is a function ηn = ηn,H,V ∈ L1(T) such that

tr (Rn(f ,H,V )) =

∫
T

f (n)(z) ηn(z) dz ,

for every polynomial f .

Theorem above is now fully proved by D. Potapov, A. Skripka &
F. S., London Math. Soc. (to appear).
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Advanced estimates of higher order in case of contractions

The following results lies at the core of the proof of Theorem above.

Theorem (D. Potapov, A. Skripka & F.S., London Math. Soc. (to appear))

Let H and V be such that H and H + V are contractions and let n > 1
and α > n. There is cn > 0 such that for any polynomial f , the following
estimates hold:

if V ∈ Sα, then sup
t0∈[0,1]

∥∥∥∥ dn

dtn
f (H + tV )

∣∣∣
t=t0

∥∥∥∥
α
n

≤ cn ‖V ‖nα
∥∥∥f (n)

∥∥∥
L∞(T)

;

if V ∈ Sn, then sup
t0∈[0,1]

∣∣∣∣tr( dn

dtn
f (H + tV )

∣∣∣
t=t0

)∣∣∣∣ ≤ cn · ‖V ‖nn ·
∥∥∥f (n)

∥∥∥
L∞(T)

.

The two cases above are the ones of self-adjoints and unitaries, while the

case of contractions reduces to the case of unitaries by applying the Sz.-

Nagy-Foiaş dilation theory.

However, the proofs can not be carried over from the self-adjoint case and

require an independent treatment for the case of unitaries.
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Applications and Connections, (aka Names dropping)

Scattering theory [Birman, Krein, Soviet Math. Dokl. ’62]:
Krein’s SSF = scattering phase

Perturbation theory (connection with Fredholm perturbation
determinant).

More general perturbations have been studied:

H = (−∆)
n
4
+ε, ε > 0,

where V is a multiplication by a function in L∞(Rn) ∩ L2(Rn) (e.g.,
Koplienko, Yafaev, Azamov, Potapov, Skripka, F.S.).

Inverse spectral problems for Schrödinger operators −∆ + V ,
reconstruction of potentials from spectral data (e.g., Gesztesy, Simon,
Acta ’96)
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Applications and Connections, II

Integrated density of states for some random operators (e.g., Combes,

Hislop, Nakamura, CMP ’01)

(Physics) multichannel scattering problem and physical calculations

for neutron scattering off heavy nuclei (e.g., Rubtsova, Kukulin,

Pomerantsev, Faessler, Physical Review C ’10)

Noncommutative geometry (e.g., Azamov, A.L. Carey, & F. S., CMP

’07)

Krein’s SSF = spectral flow (provided both exist)

Super-symmetric quantum systems and connection with Witten index

(Gesztesy, Tomilov, Carey, Potapov, F.S.)

Q: what is a geometric meaning of Koplienko’s SSF?
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