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A.Ya. Khintchine, Über dyadische Brüche”, Math. Z.,
18:1 (1923), 109–116.

In 1923, A.Ya. Khintchine proved his famous inequalities, which
we cite in the form accepted in function theory, using the
Rademacher functions rn(t) = sign sin(2nπt), 0 ≤ t ≤ 1, (n ∈ N).

Theorem (Khintchine inequalities)

For every 0 < p <∞ there are constants Ap > 0 and Bp > 0 such
that for every n ∈ N and for arbitrary a = (ak)nk=1 ∈ Rn the
following inequality holds

Ap‖a‖2 ≤
∥∥∥ n∑
k=1

ak rk

∥∥∥
p
≤ Bp‖a‖2.

Here, ‖ · ‖p is the norm in Lp[0, 1] and ‖ · ‖2 is the norm in l2.

F.Sukochev Sequences of independent functions in symmetric spaces



Johnson-Schechtman inequality in the commutative setting
Noncommutative Framework

Johnson-Schechtman in the noncommutative setting
Sketch of the proof

The most general form of the scalar Khintchine inequality

Rodin and Semenov (and independently, Pisier) managed to
extend Khintchine inequality to general symmetric function spaces.
Their objective was to describe the sharp condition on a space in
which Khintchine inequality holds.

Theorem
Let E be a symmetric function space. The inequality

‖
n∑

k=1

ak rk‖E ∼ ‖a‖2

holds for an arbitrary a ∈ l2 if and only if the space E contains a
(separable part of the) Orlicz space exp(L2).
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Rosenthal inequality

In 1970, H. Rosenthal asked a more general question: what is the
subspace in Lp(0, 1) generated by a sequence of independent
random variables, thus extending Khintchine inequality.

Theorem (Rosenthal)

If xk ∈ Lp(0, 1) are independent mean zero functions, then

‖
n∑

k=1

xk‖p ∼ ‖
n⊕

k=1

xk‖(Lp∩L2)(0,∞), p > 2

‖
n∑

k=1

xk‖p ∼ ‖
n⊕

k=1

xk‖(Lp+L2)(0,∞), 1 < p < 2

Here,
⊕

denotes the sum of disjoint copies.
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Johnson-Schechtman inequality (1989)

Johnson and Schechtman extended Rosenthal inequality to general
symmetric function spaces as follows.

Theorem (Johnson-Schechtman)

Let E ⊃ Lp (for some p <∞) be a symmetric function space (on
the interval (0, 1)). If xk ∈ E , 1 ≤ k ≤ n, are independent mean
zero random variables, then

‖
n∑

k=1

xk‖E ∼ ‖
n⊕

k=1

xk‖E2 .

Here, E2 is the symmetric function space on the semi-axis with a
quasi-norm (equivalent to a norm)

‖x‖E2 = ‖µ(x)χ(0,1)‖E + ‖min{µ(x), µ(1, x)}‖2.
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When does the Johnson-Schechtman inequality hold?

The question in the title of this frame is motivated by the
Rodin-Semenov’s result. The Johnson-Schechtman inequality is, in
fact, valid outside of the Lp−scale. An answer to this question was
given in 2005 by Astashkin and F.S. via so-called Kruglov operator.

Theorem
Let E be a symmetric function space (on the interval (0, 1))
equipped with a Fatou norm. If xk ∈ E , 1 ≤ k ≤ n, are
independent mean zero random variables, then the inequality

‖
n∑

k=1

xk‖E ∼ ‖
n⊕

k=1

xk‖E2

holds if and only if the Kruglov operator K : L0(0, 1)→ L0(0, 1)
maps E into itself.
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Singular value function

Let M be a von Neumann algebra equipped with a faithful normal
semifinite trace τ. For a (τ−measurable) operator A, define its
singular value function µ(A) : (0,∞)→ (0,∞) by setting

µ(t,A) = inf{‖A(1− p)‖∞ : τ(p) ≤ t}.

An equivalent definition involves a distribution function
d|A| : (0,∞)→ (0,∞)

d|A|(t) = τ(E|A|(t,∞)).

It can be proved that

µ(t,A) = inf{s : d|A|(s) ≤ t}.
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Definition of a symmetric operator space

Definition
A Banach space (E , ‖ · ‖E ) is said to be a symmetric operator
space if

1 E consists of τ−measurable operators affiliated with M.

2 If operators 0 ≤ B ≤ A are such that A ∈ E , then B ∈ E and
‖B‖E ≤ ‖A‖E .

3 If operators A,B are such that µ(A) = µ(B) and A ∈ E , then
B ∈ E and ‖B‖E = ‖A‖E .

If M = L∞(0, 1) or M = L∞(0,∞), then E is a symmetric
function space. If M = l∞, then E is a symmetric sequence space.
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J. von Neumann, Some matrix inequalities and metrization
of matric-space, Rev. Tomsk Univ. 1 (1937), 286–300.

Suppose that M is an algebra of all n× n matrices. It is clear that
µ(t,A), t ∈ (n, n + 1) is the n−th eigenvalues of the operator |A|
(eigenvalues are taken in the decreasing order).

Theorem (J. von Neumann, 1937)

Let ‖ · ‖E be a symmetric norm on Rn. One can define a norm on
an algebra of all n × n matrices by setting

‖A‖E = ‖(µ(0,A), . . . , µ(n − 1,A))‖E .
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Infinite dimensional generalisation of von Neumann’s result

Given a symmetric function (respectively, sequence) space E and
an atomless (respectively, atomic) von Neumann algebra M, one
can define

E (M) = {A is τ−measurable : µ(A) ∈ E}.

A priori, the mapping E (M)→ R given by the formula
A→ ‖µ(A)‖E does not have to be a norm. Even if it were a norm,
it is not clear why it should be a Banach norm. This important
question was resolved by Kalton and the speaker.

Theorem (N. Kalton & F.S., 2008)

Let E be a symmetric function (or sequence) space. The set
E (M) is a symmetric operator space.
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Noncommutative random variables

Definition
Let M be a von Neumann algebra equipped with a faithful normal
finite (normalized) trace τ .

1 A pair (M, τ) is called noncommutative probability space.

2 Self-adjoint operators affiliated with M (that is commuting
with all unitaries from M) are called random variables.
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Definition of noncommutative independence

We employ the noncommutative notion of independence due to
Junge-Xu (1988) (p. 233). We then present some natural
examples of noncommutative independent variables.

Definition
Let (M, τ) be a noncommutative probability space and let Ak ,
k ∈ N, be von Neumann subalgebras of M. We say that
subalgebras Ak are independent if for every k, the equality

τ(AB) = τ(A)τ(B)

holds for all A ∈ Ak and for all B in the von Neumann subalgebra
generated by Aj , j 6= k. Random variables Ak are called
independent if they generate independent subalgebras.
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Example: Tensor independence.

This independence is the most transparent generalisation of the
classical one. Let M be a von Neumann algebra equipped with a
faithful normal semifinite trace τ . Let Ak , k ∈ N, be a sequence of
von Neumann subalgebras such that

M = ⊗k∈NAk .

Clearly, algebras Ak , k ∈ N, are independent. If all Ak are
commutative, we recover the classical case.
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Example: Free independence.

Let M be a von Neumann algebra equipped with a faithful normal
semifinite trace τ . Let Mk , k ∈ N, be a sequence of von Neumann
subalgebras such that

M = ?k∈NMk .

Here, ? denotes free product of von Neumann algebras.
Let Bj ∈Mnj , 1 ≤ j ≤ m, and let τ(Bj) = 0 for every j . If
nj1 6= nj2 6= · · · 6= njm , then τ(B1 · · ·Bm) = 0.
Let An, n ∈ N, be a sequence of (noncommutative) random
variables and let An be the subalgebra generated by An. Elements
An, n ∈ N, are said to be freely independent if the family of
subalgebras An, n ∈ N, possesses the property above.
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Classical independence versus Free independence.

Classical independence may be stated as follows

τ(A1A2 . . .An) = 0

whenever Ak ∈ Ajk and j1, j2, . . . , jn are ALL distinct and
τ(Ak) = 0 for all 1 ≤ k ≤ n.
Free independence requires only

τ(A1A2 . . .An) = 0

whenever Ak ∈ Ajk and j1 6= j2 6= j3 · · · 6= jn and τ(Ak) = 0 for all
1 ≤ k ≤ n.
The freeness is related to independence only by analogy, since
independence is about commuting subalgebras and freeness is
highly noncommutative.
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Rosenthal inequality

Theorem (Junge-Xu)

Let (M, τ) be a noncommutative probability space and let
Ak ∈ Lp(M), 1 ≤ k ≤ n, be independent random variables such
that τ(Ak) = 0 for 1 ≤ k ≤ n. We have

‖
n∑

k=1

Ak‖p ∼ ‖
n⊕

k=1

Ak‖(Lp∩L2)(M⊗l∞), p > 2.

‖
n∑

k=1

Ak‖p ∼ ‖
n⊕

k=1

Ak‖(Lp+L2)(M⊗l∞), 1 < p < 2.
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Johnson-Schechtman inequality

The following generalisation of the Junge-Xu’s result from the
preceding frame is due to Dirksen, de Pagter, Potapov and F.S.
(2011).

Theorem
Let (M, τ) be a noncommutative probability space and let
Ak ∈M, 1 ≤ k ≤ n, be independent random variables such that
τ(Ak) = 0 for 1 ≤ k ≤ n. If E is an (Lp, Lq)−interpolation space
for some 2 < p < q <∞, then

‖
n∑

k=1

Ak‖E(M) ∼ ‖
n⊕

k=1

Ak‖E2(M⊗l∞).
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Johnson-Schechtman inequality in the free probability
(mean zero case)

Remarkably, Johnson-Schechtman inequality holds in the free
probability setting without any restrictions on the symmetric
operator space. The following results are due to F.S. and Zanin.

Theorem
Let (M, τ) be a noncommutative probability space and let
Ak ∈M, 1 ≤ k ≤ n, be freely independent random variables such
that τ(Ak) = 0 for 1 ≤ k ≤ n. If E is a symmetric function space
on (0, 1) equipped with a Fatou norm, then

‖
n∑

k=1

Ak‖E(M) ∼ ‖
n⊕

k=1

Ak‖E2(M⊗l∞).
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Johnson-Schechtman inequality in the free probability
(positive case)

Theorem
Let (M, τ) be a noncommutative probability space and let
Ak ∈M, 1 ≤ k ≤ n, be freely independent positive random
variables. If E is a symmetric function space on (0, 1) equipped
with a Fatou norm, then

‖
n∑

k=1

Ak‖E(M) ∼ ‖
n⊕

k=1

Ak‖E1(M⊗l∞).

Here, E1 is the symmetric function space on the semi-axis with a
quasi-norm (equivalent to a norm)

‖x‖E1 = ‖µ(x)χ(0,1)‖E + ‖min{µ(x), µ(1, x)}‖1.
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Semicircular random variables

Definition
A random variable A ∈M is called semicircular if its distribution is
absolutely continuous with the density given by the formula

1

2π

√
4− t2χ(−2,2)(t)dt.

In the free probability theory it plays a role similar to that of
Gaussian random variables in the classical probability theory.
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Nica-Speicher result

The proof of the latter theorem depends crucially on the following
construction due to Nica and Speicher (1996) (see p. 806).

Theorem
Let (M, τ) be a noncommutative probability space and let M1,
M2 be freely independent von Neumann subalgebras of M. If
Ak ∈M1, 1 ≤ k ≤ n, are pairwise orthogonal random variables
and if B ∈M2 is semicircular, then BAkB, 1 ≤ k ≤ n, are freely
independent random variables.
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Free Kruglov operator

Let (M, τ) be a noncommutative probability space and let M1,
M2 be freely independent von Neumann subalgebras of M.
Identify L∞(0, 1) with a von Neumann subalgebra of M1. If
B ∈M2 is a semicircular random variable, then

K : L0(0, 1)→ L0(M), Kx = BxB

is a linear operator mapping disjointly supported functions into
freely independent random variable. Since the commutative
Kruglov operator maps disjointly supported functions into
tensor-independent ones, the analogy is very clear.
Since B is a bounded random variable, it follows that
K : E → E (M) for every symmetric function space E .
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Idea of the proof 1

If freely independent positive random variables Ak , 1 ≤ k ≤ n, are
such that

n∑
k=1

τ(supp(Ak)) ≤ 1,

then the inequality

‖
n∑

k=1

Ak‖E(M) ≤ const · ‖
n⊕

k=1

Ak‖E(M)

follows from the boundedness of the free Kruglov operator
K : E → E (M).
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Idea of the proof 2

If E = L∞(0, 1), then

‖
n∑

k=1

Ak‖∞ ≤ 64‖
n⊕

k=1

‖(L∞∩L2)(M⊗l∞)

is a Voiculescu inequality.
The inequality ≤ in our theorem follows from the particular case
stated in the previous slide combined with Voiculescu inequality.
The proof of the inequality ≥ is much more involved. In particular,
this is the place where we use the Fatou norm.
In the special case E = Lp, 1 ≤ p ≤ ∞, this result was proved by
Junge, Parcet and Xu (see [Theorem A]).
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