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The Superposition Principle (Physicists):

If a quantum system can be in one of two mutually distinguishable

states |A〉 and |B〉, it can be both these states at once. Namely, it

can be in the superposition of states

α |A〉+ β |B〉

where α and β are both complex numbers and |α|2 + |β|2 = 1.

If you look at the system, the chance of seeing it in state |A〉 is

|α|2 and in state |B〉 is |β|2.
The Superposition Principle (Mathematicians):

The state of a quantum system is a unit vector in a complex

Hilbert space (Cd for finite dimensional systems.

Measuring the system projects the vector onto one of a set of

orthonormal basis vectors, with probability proportional to the

squared length of the projection.
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We call a two-dimensional quantum system a qubit.

Example: If you have a polarized photon, there can only be two

distinguishable states, for example, vertical | l〉 and horizontal |↔〉
polarizations.

All other states can be made from these two.

| րւ 〉 =
1√
2
|↔〉+ 1√

2
| l 〉

| ցտ 〉 =
1√
2
|↔〉 − 1√

2
| l 〉

| ⊳⊃〉 =
1√
2
|↔〉+ i√

2
| l 〉

| ⊂⊲〉 =
1√
2
|↔〉 − i√

2
| l 〉
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If you have two qubits, their joint state space is the tensor product

of their individual state spaces (e.g., C4).

Two qubits can be in any superposition of the four states

| l l 〉 | l↔〉 |↔l 〉 |↔↔〉
This includes states such as an EPR (Einstein-Podolsky-Rosen)

pair of photons,

1√
2
(| l↔ 〉 − |↔l 〉) =

1√
2
(| րւ ցտ 〉 − | ցտ րւ 〉),

where neither qubit alone has a definite state. Such states are

called entangled states.
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If you have n qubits, their joint state is described by a 2n

dimensional vector.

Let’s label basis vectors for each qubit by | 0〉 and | 1〉.
The basis states of this vector space are:

| 000 . . . 00〉 | 000 . . . 01〉 · · · | 111 . . . 11〉

where

| 0100 . . . 1〉 = | 0〉 ⊗ | 1〉 ⊗ | 0〉 ⊗ | 0〉 ⊗ . . .⊗ | 1〉
This high dimensional tensor product spaces is where quantum

information theory (as well as quantum computation) lives.
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Density Matrices

In quantum mechanics, the fundamental objects are often taken to

be pure quantum states (unit vectors in Cd). These are analogous

to deterministic states of classical systems.

For quantum information theory, we need to work with

probabilistic ensembles of quantum states. These are represented

by density matrices.

A density matrix ρ is an d× d Hermitian trace-1 positive

semi-definite matrix.
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Density Matrices, Continued

A rank one density ρ corresponds to the pure quantum state v

(sometimes denoted | v〉) with ρ = vv† (or ρ = | v〉 〈v |).
Density matrices arise naturally from pure states in two ways:

1. probabilistic ensembles of pure quantum states.

2. states of subsystems of pure quantum states.
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Density Matrices I

Suppose we have a probabilistic quantum system which is in state

vi with probability pi.

The corresponding density matrix is

ρ =
∑

i

piviv
†
i

The density matrix ρ gives as much information as possible about

the outcomes of experiments performed on the system, so two

systems with the same density matrix ρ are indistinguishable.
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Density Matrices II

Suppose you have a joint quantum system on Ca ⊗ Cb in the state

ρAB. If you only consider the first part of the system, it is

effectively in the state

ρA = TrB ρAB

Here, TrB is the partial trace over the second quantum space. That

is, if we have a tensor product state

ρAB = ρA ⊗ ρB ,

then

TrB ρAB = (TrρB) ρA,

and we extend this linearly to define the partial trace on entangled

states.
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POVM Measurements
(Positive Operator Valued Measurements).

We are given a set of positive semidefinite matrices Ei satisfying
∑

i Ei = I.

The probability of the i’th outcome is

pi = Tr(Eiρ)

For von Neumann measurements, take a basis ei and let Ei = eie
†
i

Then, the probability of the i’th outcome is

pi = Trρieie
†
i = e†iρei
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Quantum Channels

A (memoryless) quantum channel (or quantum operation) Φ is a

completely positive trace-preserving linear map.

This is the most general physical reasonable map on quantum

states (i.e., density matrices).

• Trace-preserving: Φ takes trace 1 matrices to trace 1 matrices.

• Positive: Φ takes positive semidefinite matrices to positive

semidefinite matrices.

• Completely positive: Even if Φ is tensored with the identity

map, Φ⊗ I remains positive.
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Another characterization of quantum channels

Krauss operator sum representation:

Any quantum channel Φ on a finite dimensional space can be

represented as

Φ(ρ) =
∑

i

AiρA†
i

where the Ai are matrices satisfying
∑

i

Ai
†Ai = I.

This second condition is required for Φ to be trace preserving.
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A third characterization of quantum channels.

Theorem (Stinespring dilation theorem)

Any quantum channel ρ→ Φ(ρ) can be implemented by first

embedding the input space into a larger Hilbert space; this takes

ρ→ ρ⊗ σ; next by applying a unitary trasformation U, and finally

taking a partial trace (e.g. discarding part of the larger Hilbert

space)

ρ
Φ−−−−→ Φ(ρ)





y

x




Tr2

ρ⊗ σ
U−−−−→ U(ρ⊗ σ)U †
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Birkhoff’s Theorem

Every doubly stochastic matrix is a convex combination of

permutation matrices.
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What this says is that any stochastic map which takes the uniform

random distribution can be represented as a probabilistic coin flip,

followed by a deterministic permuation map.

14



No Quantum Birkhoff Theorem

We can ask whether this is true of quantum channels. Can every

unital map be represented as the convex combination of unitary

maps?

This is not true. The unital map ρ→∑

i AiρA†
i cannnot be

represented this way, where

A1 =
1√
2

0

B

B

@

0 1 0

1 0 0

0 0 0
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A
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1√
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is not a convex combination of unitaries.
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The Asymptotic Quantum Birkhoff Conjecture

Suppose that we have a quantum map Φ. Can Φn be arbitrarily

well approximated by unitaries as n goes to ∞? The Asymptotic

Quantum Birkhoff (AQB) Conjecture is that it can be.

We can show that the 3-dimensional map given above is a

counterexample to the AQB conjecture.

Since this process involves the limit of Φ⊗n as n→∞, it matters

which norm we use in the approximation. The correct one is the

diamond norm, known as the cb-norm by analysts.
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Exactly Factorizable Maps

Recall that any quantum map can be written as

Φ(ρ) = Tr2U(ρ⊗ σ)U †

where σ is some quantum state (this is the Stinespring dilation

theorem).

An exactly factorizable map is one that can be written

Φ(ρ) = Tr2U(ρ⊗ In/n)U †

for some n.
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Exactly Factorizable Maps and the Asymptotic Quantum
Birkhoff Property

Theorem: If Φ⊗n is a convex combination of unitaries with rational

coefficients, then Φ is exactly factorizable.

Proof: Suppose that

Φ⊗n(ρ) =
1

m

m
∑

j=1

UjρU †
j

Then define a unitary map V as follows

V (|w〉 | j〉) = (Uj |w〉) | j〉

We get (where Tr1̄ is the trace on all but the first system)

Tr1̄V (ρ1 ⊗ I/dn−1 ⊗ I/m)V † = Tr1̄
1

m

m
∑

j=1

Uj(ρ⊗ I/dn−1)U †
j

= Tr1̄Φ
⊗n(ρ⊗ I/dn−1) = Φ(ρ).
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Strongly Factorizable Maps

Call the closure of the set of exactly factorizable maps the set of set

of strongly factorizable maps.

Theorem: If Φ satisfies the asymptotic Birkhoff conjecture, then

Φ is strongly factorizable.

Proof Sketch: Use the previous theorem and take limits.
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A Non-Strongly-Factorizable Map

We start the proof. We will show that the map Φ given above

which was not a mixture of unitaries is not exactly factorizable. It

is easy to calculate that

Φ









ρ1 =









1 0 0

0 0 0

0 0 0

















=
1

2









0 0 0

0 1 0

0 0 1








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Choosing U to match Φ If Φ(ρ) = TrUρU †, and

U =

0

B

B

@

A B C

D E F

G H J

1

C

C

A

then

U(ρ1 ⊗ In)U† =

0

B

B

@

AA† AD† AG†

DA† DD† DG†

GA† GD† GG†

1

C

C

A

By matching with the reult of Φ(ρ) from the previous slide, this

shows that TrAA† = 0, so A = 0. We also have that
1

nTrDD† = 1

nTrGG† = 1/2.
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Proof Continued

We have shown that

U =









0 B C

D 0 F

G H 0









This must be unitary, so UU † = U †U = I. This says that

BB† + CC† = DD† + FF † = GG† + HH† = I

CF † = BH† = DG† = 0

D†D + G†G = B†H + F †H = C†C + F †F = I

G†H = D†F = B†C = 0
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Proof Continued

We have

GG† + HH† = I (1)

We also have G†H = 0. Multiplying both sides by H, we get

HH†H = H

This shows that the eigenvalues of H†H are either 0 or 1. Recall

that TrH†H = n
2
, so we have exactly n

2
eigenvalues of 0 and of 1.

By (1), the column space of G is perpendicular to the column space

of H.
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Proof Continued

Recall that GG† had n
2

eigenvalues of 0 and n
2

eigenvalues of 1.

By the singular value theorem, this means that

G =

n/2
∑

k=1

| vk〉 〈wk |

where | vk〉 are orthonormal vectors. The same is true of H.

Since GG† =
∑ | vk〉〈vk | and GG† + HH† = I we see that the

column space of G is orthogonal to the column space of H.
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Proof Concluded

By looking at inputs other than ρ1 into the map Φ, we can show

that

TrCG† = n/2

By Cauchy-Schwarz, this can only happen if the column (and row)

spaces of C and G are equal. This gives

col(C) = col(G) ⊥ col(H) = col(F ) ⊥ col(D) = col(B) ⊥ col(C)

a contradiction.
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How About Strongly Factorizable?

We need to show that we cannot approximate this unital map with

an exactly factorizable map. Thie proof goes along the same lines,

except that we need to make lots of approximations.

We won’t go into the details in this talk.
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Related Work

After we did this research, we discovered that Haagerup and Musat

had done similar work.

Definition A factorizable map is one which can be represented as

Φ(ρ) = tr2U(ρ⊗ τ)U †

where U is an automorphism of an operator algebra Md(V), the set

of d× d matrices over a von Neumann algebra V , τ is a tracial

state, and tr is a normalized trace.

The difference between factorizable and strongly factorizable is

that for strongly factorizable, V has to be Mn (and we are allowed

to take the limit n→∞). For von Neumann algebras, one can

show that no limit is necessary.
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A Non-Factorizable Map

Haagerup and Musat showed that the map Φ(ρ) =
∑

i AiρA†
i is not

factorizable, where the Ai are

A1 =
1√
2

0

B

B

@

0 1 0

−1 0 0

0 0 0

1

C

C

A

; A2 =
1√
2

0

B

B

@

0 0 −1

0 0 0

1 0 0

1

C

C

A

[A3 =
1√
2

0

B

B

@

0 0 0

0 0 1

0 −1 0

1

C

C

A

They also have a number of other results showing that different

maps were not factorizable (some based on previous work).
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Unital
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| = iff Connes embedding conjecture is true
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|
Exactly Factorizable
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| 6=
Convex Combination of Unitaries
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Convex Combination of Unitaries ( AQBP

Mendl and Wolf, 2009, computationally investigated the set of

unital channels, and found cases where Φ⊗ Φ was a convex

combination of unitaries, when Φ was not.
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Schur contractions

A subclass of quantum operation are Schur contractions. In these

maps, an input matrix ρij goes to αijρij , where αij is a Hermitian

matrix with diagonal 1 (so αii = 1).

Recall from Choi’s theorem that a trace-preserving linear map Φ is

a quantum operation if and only if, when Φ⊗ I is applied to the

maximally entangled state 1

d

∑d
i=1
| ii〉∑d

i=1
〈ii |, the result is

positive semidefinite.

Thus, for a Schur contration to be a quantum operation, we require

that the matrix
1

d

∑

i,j

αij | ii〉 〈jj |

is positive semidefinite. This is equivalent to the matrix [αij ] being

positive semidefinite.
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More on Schur Contractions

Suppose we have a Schur contraction that is factorizable.

Then

U | i〉 |φ〉 = | i〉Ui |φ〉

We have

tr2U(| i〉 〈j | ⊗ I)U † = | i〉 〈j | trUiU
†
j .

Thus αij = trUiU
†
j .

Here, tr2 is a normalized trace, and in dimension n should be

thought of as 1

nTr2.
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Connes’ Embedding Conjecture

Let Ed be the set of exactly factorizable Schur contractions in

dimension d (i.e. [αij ] where where αij = TrUiU
†
j ).

Let Gd be the set of factorizable Schur contractions in dimension d.

Theorem (Dykema and Juschenko)

Closure(Ed) = Gd iff Connes’ embedding conjecture is true.
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Connes’ Embedding Conjecture

Theorem: Connes’ embedding conjecture is true iff the set of

strongly factorizable maps is the set of factorizable maps.

← By the results of Dykema and Juschenko, we only need to prove

that every strongly factorizable Schur contraction is the limit of

exactly factorizable Schur contractions.

→ This follows from the statement of Connes’ embedding

conjecture and theorems about von Neumann algebras.
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