Role of the epithelial Na⁺ channel (ENaC) in salt-sensitive hypertension and mechanisms of its regulation by EGF

Alexander Staruschenko, PhD

Department of Physiology

Институт эволюционной физиологии и биохимии им. И. М. Сеченова РАН

26 декабря 2012 г.

The two-membrane model of epithelial transport in principal cells

ENaC regulation

Physiological significance of ENaC

Regulation of the body fluid volume

Keeps the alveoli dry Clears the lungs of fluid at birth

sweat and salivary ducts

Retrieves salt from the sweat

ENaC-associated diseases

Liddle's syndrome

- hypertension
- hypokalemia
- metabolic alcalosis

Pseudohypoaldosteronism type I

- salt wasting
- hyperkalaemia
- unresponsiveness to mineralocorticoids

Cystic fibrosis, polycystic kidney disease etc

- Role of ENaC in the development of salt-sensitive hypertension in the Dahl Salt-Sensitive (SS) rats
- EGF and its related growth factors regulate ENaC
- Rac1 is essential for ENaC activity and regulates the channel via WAVE proteins
- EGF might regulates ENaC via Rho GDP-dissociation inhibitor RhoGDIα
- EGF modulates ENaC-mediated Na⁺ transport in the ASDN and participate in the development of salt-sensitive hypertension

Dahl SS rats

- Blood pressure salt-sensitivity
- Chronic kidney injury
- Reduced renal function
- Low renin hypertension

SS.13^{BN}

- consomic rats developed at MCW
- exhibit only 2% allelic differences compared to the SS strain, but salt-induced hypertension and renal injury are greatly attenuated.

Amiloride inhibits the blood pressure in the SS rats

Benzamil (given through drinking water – 15 mg/L) attenuates the development of hypertension in SS rats

High salt diet increases ENaC expression

SS rats (cortex)

High salt diet increases ENaC activity

High salt diet increases MAP and ENaC activity in SS rats fed a high salt diet compare to SS.13^{BN}

Cell-attached

High salt diet does not change ENaC expression in SS.13^{BN} rats

High salt diet increases ENaC abundance in the CCD of SS rats compare to SS.13^{BN}

ENaC expression is upregulated in chronic servo-controlled rats

*

n=10

Uncontrolled

controlled

Conclusion:

Dahl salt-sensitive (SS) rats develop severe hypertension on high-salt diet and ENaC contributes to the development of hypertension in the SS rat strain.

- Role of ENaC in the development of salt-sensitive hypertension in the Dahl Salt-Sensitive (SS) rats
- EGF and its related growth factors regulate ENaC
- Rac1 is essential for ENaC activity and regulates the channel via WAVE proteins
- EGF might regulates ENaC via Rho GDP-dissociation inhibitor RhoGDIα
- EGF modulates ENaC-mediated Na⁺ transport in the ASDN and participate in the development of salt-sensitive hypertension

ErbB receptors and their ligands

Biphasic effect of EGF on sodium transport in mpkCCD_{c14} cells

Levchenko et al. (2010) *J Cell Physiol*. 223(1): 252-259. Liu et al. (2009) *AJP Renal* 296(6): F1417-27.

EGF regulates Na⁺ transport in a concentration-dependent manner.

Effect of growth factors in the EGF-family on Na⁺ reabsorption across mpkCCD_{c14} monolayer

Expression profiles of ErbB receptor family proteins in mpkCCD_{c14} cells analyzed by Western Blot analysis

ErbB2 expression in rat kidney tissue

40X

40X

100X

Zheleznova et al. (2011) BBA - Mol Basis Disease 408: 242-7.

Effect of ErbB2 inhibitors (tyrphostin AG825 and ErbB2 Inhibitor II) on EGF-induced changes of amiloride-sensitive Na⁺ absorption

Conclusions:

Our data are consistent with the idea that EGF and its related growth factors (TGF- α , HB-EGF and amphiregulin) have a biphasic effect on sodium absorption in the mammalian kidney as represented by mpkCCD_{c14} cells.

In addition, we show that the EGF effect is mediated via the ErbB2 receptor, most probably via formation of ErbB2/EGFR heterodimers.

- Role of ENaC in the development of salt-sensitive hypertension in the Dahl Salt-Sensitive (SS) rats
- EGF and its related growth factors regulate ENaC
- Rac1 is essential for ENaC activity and regulates the channel via WAVE proteins
- EGF might regulates ENaC via Rho GDP-dissociation inhibitor RhoGDIα
- EGF modulates ENaC-mediated Na⁺ transport in the ASDN and participate in the development of salt-sensitive hypertension

Rac1 but not Cdc42 enhances ENaC activity overexpressed in CHO cells

Rac1 is essential for ENaC activity

Creation of M-1 stable cell line with lentivirus-mediated knock down of Rac1

shRNA-mediated silencing of Rac1 inhibit transepithelial Na⁺ currents and ENaC activity in M-1 cells

Expression profiles of N-WASP/WAVEs in rat kidney tissue and in epithelial cells

Rac1 enhances ENaC activity via WAVE1 or WAVE2

Conclusions:

- Co-expression of Rac1 with ENaC markedly increased channel activity, whereas co-expression of Cdc42 failed to change ENaC activity.
- Inhibition of Rac1-GEF interaction resulted in a decrease of ENaC activity in native principal cells. shRNA-mediated silencing of Rac1 inhibits transepithelial current in M-1 cells via decrease in the number of channels at the plasma membrane.
- Rac1 and WAVE1/2 are parts of the same signaling pathway with respect to activation of ENaC.
- Thus, our findings suggest that Rac1 is essential for ENaC activity and regulates the channel via WAVE proteins.

- Role of ENaC in the development of salt-sensitive hypertension in the Dahl Salt-Sensitive (SS) rats
- EGF and its related growth factors regulate ENaC
- Rac1 is essential for ENaC activity and regulates the channel via WAVE proteins
- EGF might regulates ENaC via Rho GDP-dissociation inhibitor RhoGDIα
- EGF modulates ENaC-mediated Na⁺ transport in the ASDN and participate in the development of salt-sensitive hypertension

Small GTPases cycle between a GDP- and GTP-bound state

EGF upregulates RhoGDIa in mpkCCD_{c14} cells

mpkCCD_{c14}

RhoGDIa downregulates ENaC activity via Rac1

Knockdown of RhoGDIa in M-1 cells upregulates ENaC expression

Conclusions:

Chronic treatment with EGF increases RhoGDIa expression

RhoGDIa downregulates ENaC activity via Rac1

- Role of ENaC in the development of salt-sensitive hypertension in the Dahl Salt-Sensitive (SS) rats
- EGF and its related growth factors regulate ENaC
- Rac1 is essential for ENaC activity and regulates the channel via WAVE proteins
- EGF might regulates ENaC via Rho GDP-dissociation inhibitor RhoGDIα
- EGF modulates ENaC-mediated Na⁺ transport in the ASDN and participate in the development of salt-sensitive hypertension

Level of EGF measured by ELISA in the cortex of SS rats fed a normal and high salt diets

Chronic intravenous infusion of EGF prevents development of hypertension in SS rats fed a HS diet

Chronic intravenous infusion of EGF decreases ENaC activity in SS rats fed a high salt diet

EGF attenuated renal glomerular and tubular damage

(

Conclusions:

EGF concentration is reduced in the SS rats fed a high diet, which we propose would enhance ENaC activity, sodium retention and hypertension.

Elevation of EGF is associated with diminished sodium reabsorption, an attenuation of hypertension, and a reduction of renal damage in Dahl SS rats fed high salt.

EGF deficiency in the renal cortex contributes to salt-sensitive hypertension in Dahl SS rats via upregulation of ENaC activity

Thus, elucidation of the interaction between EGF, small GTPases and ENaC will advance our understanding of the basic mechanisms of sodium regulation in salt-dependent forms of hypertension and might provide novel targets and strategies for their treatment.

 Na^+ retention \rightarrow Blood volume \rightarrow Cardiac output \rightarrow Arterial pressure

Thanks to:

Daria Hatovskaya, PhD

Allen W. Cowley, Jr., PhD Julian Lombard, PhD Andrey Sorokin, PhD David L. Mattson, PhD Nadezhda Zheleznova, PhD

- (MCW)

Paul M. O'Connor, PhD (GHSCU) Patricia D. Wilson, PhD (UCL)

Research was supported by the American Heart Association, American Diabetes Association and NIH Heart, Lung and Blood Institute Отдельное спасибо фонду Династия

