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Emergent gravity-motivations

I Sakharaov paradigm: ”metrical elasticity of space-generalized
forces which oppose the curving of space”- induced gravity

I General Relativity -Thermodynamics
nexus(Jacobson-Padmanabhan..)

I Thermodynamics− > stat mech of atoms.

I Gen. Rel, dynamics of spacetime–− > emergent spacetime

I Dark-energy, quantum gravity..

I Gravity not fundamental?
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approaches

I No go theorem:Weinberg-Witten theorem

I Sakharov induced gravity:general relativity arises as an
emergent property of quantized matter fields

I AdS-CFT,

I Horava-Lifshitz,(Gen Rel low energy -high energy spacetime
non covariant-metric still fundamental)

I Verlinde entropic gravity; spin foam...

I Non commutative( Moyal ) spacetime and NC U(1)as
emergent gravity?? Rivelles (2002),H.S.Yang (2005),also
Steinacker (2008)
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quantised spacetime-Moyal Plane

I Endow spacetime with a symplectic structure Bab

I quantize the spacetime ya with its Poisson structure
θab ≡ (B−1)ab, described by {ya, yb} = iθab

I Deformation :(f .g)(x)→ (f ? g)(x)

I [f , g ]?− > {f , g}θ + ..
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NC EM as General Relativity ?
I U(1)∗ gauge transformation is translation:

exp ik .y ∗ f (x) ∗ exp−iky = f (x + θk). Infinitesmally
−iBab[yb, f ] = ∂af

I NC U(1): No local gauge invariant observables ,non- linearity
:similarity to GTR.

I NC scalar-U(1)coupling →scalar- linear gravity coupling.
(Rivelles):UV-IR mixing =effect of emergent gravity
(Grosse-Steinacker)-NC U(N) =gravity + SU(N)(Steinacker)

I the gauge symmetry acting on U(1) gauge fields as
A→ A + dφ is a diffeomorphism symmetry generated by a
vector field Xφ satisfying LXφ

B = 0,
I Darboux theorem of symplectic geometry as equivalence

principle; can always locally eliminate EM by coordinate
transformation .(H.S.Yang)

II Can U(1) gauge theory on symplectic lead to gravity?
I Can quantised spacetime be emergent?



NC EM as General Relativity ?
I U(1)∗ gauge transformation is translation:

exp ik .y ∗ f (x) ∗ exp−iky = f (x + θk). Infinitesmally
−iBab[yb, f ] = ∂af

I NC U(1): No local gauge invariant observables ,non- linearity
:similarity to GTR.

I NC scalar-U(1)coupling →scalar- linear gravity coupling.
(Rivelles):UV-IR mixing =effect of emergent gravity
(Grosse-Steinacker)-NC U(N) =gravity + SU(N)(Steinacker)

I the gauge symmetry acting on U(1) gauge fields as
A→ A + dφ is a diffeomorphism symmetry generated by a
vector field Xφ satisfying LXφ

B = 0,
I Darboux theorem of symplectic geometry as equivalence

principle; can always locally eliminate EM by coordinate
transformation .(H.S.Yang)

II Can U(1) gauge theory on symplectic lead to gravity?
I Can quantised spacetime be emergent?



NC EM as General Relativity ?
I U(1)∗ gauge transformation is translation:

exp ik .y ∗ f (x) ∗ exp−iky = f (x + θk). Infinitesmally
−iBab[yb, f ] = ∂af

I NC U(1): No local gauge invariant observables ,non- linearity
:similarity to GTR.

I NC scalar-U(1)coupling →scalar- linear gravity coupling.
(Rivelles):UV-IR mixing =effect of emergent gravity
(Grosse-Steinacker)-NC U(N) =gravity + SU(N)(Steinacker)

I the gauge symmetry acting on U(1) gauge fields as
A→ A + dφ is a diffeomorphism symmetry generated by a
vector field Xφ satisfying LXφ

B = 0,
I Darboux theorem of symplectic geometry as equivalence

principle; can always locally eliminate EM by coordinate
transformation .(H.S.Yang)

II Can U(1) gauge theory on symplectic lead to gravity?
I Can quantised spacetime be emergent?



NC EM as General Relativity ?
I U(1)∗ gauge transformation is translation:

exp ik .y ∗ f (x) ∗ exp−iky = f (x + θk). Infinitesmally
−iBab[yb, f ] = ∂af

I NC U(1): No local gauge invariant observables ,non- linearity
:similarity to GTR.

I NC scalar-U(1)coupling →scalar- linear gravity coupling.
(Rivelles):UV-IR mixing =effect of emergent gravity
(Grosse-Steinacker)-NC U(N) =gravity + SU(N)(Steinacker)

I the gauge symmetry acting on U(1) gauge fields as
A→ A + dφ is a diffeomorphism symmetry generated by a
vector field Xφ satisfying LXφ

B = 0,

I Darboux theorem of symplectic geometry as equivalence
principle; can always locally eliminate EM by coordinate
transformation .(H.S.Yang)

II Can U(1) gauge theory on symplectic lead to gravity?
I Can quantised spacetime be emergent?



NC EM as General Relativity ?
I U(1)∗ gauge transformation is translation:

exp ik .y ∗ f (x) ∗ exp−iky = f (x + θk). Infinitesmally
−iBab[yb, f ] = ∂af

I NC U(1): No local gauge invariant observables ,non- linearity
:similarity to GTR.

I NC scalar-U(1)coupling →scalar- linear gravity coupling.
(Rivelles):UV-IR mixing =effect of emergent gravity
(Grosse-Steinacker)-NC U(N) =gravity + SU(N)(Steinacker)

I the gauge symmetry acting on U(1) gauge fields as
A→ A + dφ is a diffeomorphism symmetry generated by a
vector field Xφ satisfying LXφ

B = 0,
I Darboux theorem of symplectic geometry as equivalence

principle; can always locally eliminate EM by coordinate
transformation .(H.S.Yang)

II Can U(1) gauge theory on symplectic lead to gravity?

I Can quantised spacetime be emergent?



NC EM as General Relativity ?
I U(1)∗ gauge transformation is translation:

exp ik .y ∗ f (x) ∗ exp−iky = f (x + θk). Infinitesmally
−iBab[yb, f ] = ∂af

I NC U(1): No local gauge invariant observables ,non- linearity
:similarity to GTR.

I NC scalar-U(1)coupling →scalar- linear gravity coupling.
(Rivelles):UV-IR mixing =effect of emergent gravity
(Grosse-Steinacker)-NC U(N) =gravity + SU(N)(Steinacker)

I the gauge symmetry acting on U(1) gauge fields as
A→ A + dφ is a diffeomorphism symmetry generated by a
vector field Xφ satisfying LXφ

B = 0,
I Darboux theorem of symplectic geometry as equivalence

principle; can always locally eliminate EM by coordinate
transformation .(H.S.Yang)

II Can U(1) gauge theory on symplectic lead to gravity?
I Can quantised spacetime be emergent?



IKKT model (1996)

I Matrix models → spacetime structure.

I SIKKT = −1
4Tr [Xa,Xb][X a,X b]

I Eqn of motion: [Xa, [X
a,X b]] = 0,

I A classical solution is given by X a
cl = ya, with [ya, yb] = iθab.

(NC) spacetime is a solution and not given apriori.
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IKKT model-fluctuation

I expand X a ≡ θabD̂b around the Moyal vacuum .

I D̂a(y) = Baby
b + Âa(y)

I UXU† symmetry leads to Gauge transform of A

I −i [D̂a(y), D̂b(y)]? =
∂aÂb(y)− ∂bÂa(y)− i [Âa(y), Âb(y)]? − Bab

=F̂ab(y)− Bab.
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b + Âa(y)

I UXU† symmetry leads to Gauge transform of A

I −i [D̂a(y), D̂b(y)]? =
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IKKT model-fluctuaion

I Then the IKKT matrix model becomes NC U(1) gauge theory
SNC = 1

4g2
YM

∫
d2nyG acGbd

(
F̂ − B

)
ab
?
(
F̂ − B

)
cd

where

G ab = θacθbc

I equations of motion for NC gauge fields : D̂[aF̂bc] = 0

I How metric is related to Gauge field?
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metric from gauge field-HS Yang

I Poisson algebra provides f 7→ Xf -Hamiltonian vector field
Xf (g) = {g , f }θ

I f and the corresponding Hamiltonian vector field Xf is the Lie
algebra homomophism in the sense X{f ,g}θ = −[Xf ,Xg ]

I Given Da

−i [D̂a(y), f̂ (y)]? = −θµν ∂Da(y)
∂yν

∂f (y)
∂yµ + · · ·

I Vector fields Va[](y) to order θ is θµν ∂Da(y)
∂yν

∂
∂yµ which form a

set of vector fields. But Va are not orthonormal.

I Orthonormal Ea = (λ)−1Va where λ2 = det V µ
a

ds2 = gabE
a ⊗ Eb
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Emergent gravity and dark energy- HS Yang (JHEP)

I eqn of motion for gauge field → Einstein eqn for the metric .

I Flat spacetime comes from A
(0)
a = Baby

b whose field strength
is constant = Bab→ Flat spacetime condensation of gauge
field

I Energy associated with vacuum is M4
P

I Vacuum energy is used to make flat spacetime , hence does
not gravitate! Soln to CC problem!

I Generalization to constant curvature space?
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2d Constant curvature manifolds from Matrix models-HS
Yang &MSK

I SmCS = κTr
(

i
3!εABCXA[XB ,XC ]− λ

2 XAXA
)
.

I Equation of motion : [XA,XB ] = −iλεAB
CXC

I Invariant (−)]R2 ≡ gABXAXB . They describe a
two-dimensional manifold M2.

I M2 is symplectic
Local coordinates: 1

2Babdya ∧ dyb = −dy1 ∧ dy2.

I M2 as a hypersurface embedded in IR3 or IR2,1 and described
by LA = LA(ya),
XA = LA is classical solution.

I For eg:dS2 ya = (sinh t, ϕ)
L1 = y , L2 =

√
1 + y2 sinϕ, L3 =

√
1 + y2 cosϕ,where

y = sinh t.

I V
(0)
A = θab ∂LA

∂yb
∂
∂ya .
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d=2 Constant curvature manifolds from Matrix models

I fluctuation of the surface M2 around the vacuum geometry
XA(y) = LA(y) + AA(y).

I action for the fluctuations
ŜmCS = − κ

12π|θ|
∫

d2y
(
εABC X̂A ? F̂BC + λX̂A ? X̂A

)
.

where FAB = {LA,AB}θ −{LB ,AA}θ + {AA,AB}θ + εAB
CAC .

I The equations of motion derived from the variation with
respect to ÂA is F̂AB = 0,

I The fluctuating coordinate system satisfies the following
Poisson bracket relation {XA,XB}θ = −εAB

CXC + FAB

where

I Note FAB should satisfy Jacobi identity.This gives
εABC{XA, {XB ,XC}θ}θ = 0. This constraint can be solved by
taking
FAB(X ) = εABC ∂F (X )

∂XC
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ŜmCS = − κ

12π|θ|
∫

d2y
(
εABC X̂A ? F̂BC + λX̂A ? X̂A

)
.

where FAB = {LA,AB}θ −{LB ,AA}θ + {AA,AB}θ + εAB
CAC .

I The equations of motion derived from the variation with
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d=2 Constant curvature manifolds from Matrix models
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defined in M = IR3−p,p and given by
G (X ) = F (X )− 1

2gABXAXB + ρ.

I function F (X ) is an arbitrary polynomial in 3 variables in M
defines a two-dimensional surface M2

I determine the embedding coordinate by solving the polynomial
equation G (X ) = 0 .The metric of the two-dimensional

surface given by the vector fields V̂A = θab ∂XA(y)
∂yb

∂
∂ya + ....

I gAB
∂XA

∂ya
∂XB

∂yb is the induced metric for arbitrary potential
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Constant curvature Matrix model for d=2n

I Mass deformed IKKT model: Sm = SIKKT + m2TrX aXa

I ”Linearized” form
:Sκ = Tr

(
1
4MabM

ab − 1
2κMab[X a,X b] + d−1

2κ XaX
a
)

I Symmetry: (X a,Mab)→ U(X a,Mab)U†

I Equation of motion: [X a,X b] = κMab

[Mab,Xb] + (d − 1)X a = 0.

I The above eqn is has Snyder algebra as solution:
[X a,X b] = κMab,
[X a,Mbc ] = gacX b − gabX c ,
[Mab,Mcd ] = gacMbd − gadMbc − gbcMad + gbdMac

I Comments: Snyder algebra is Lorentz algebra in d + 1 dim
{Mab&Xa} = MAB
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Vaccuum geometry in mass-deformed IKKT
I To map Matrix algebra to NC * algebra:

Snyder algebra from deformation quantisation of a Poisson
manifold whose Poisson tensor :Π = 1

2Lab(x) ∂
∂xa ∧ ∂

∂xb

{xa, xb}Π = Lab(x)

I Need to define a vector field: Enough to have Poisson tensor
A 7→ Π](A) = Lab(x)Aa(x) ∂

∂xb Given a smooth Poisson

manifold (M,Π), there is map f 7→ Xf = Π](df ) is a
lie-algebra homomorphism

I the vector fields for the background D
(0)
a (x) are given by

adbD(0)
a

[f̂ ](x) = −i [D̂
(0)
a (x), f̂ (x)]? = V

(0)µ
a (x)∂f (x)

∂xµ + · · ·
I The vector fields (V

(0)
a , S

(0)
ab ) ∈ Γ(TMback) as differential

Lorentz generators of SO(5− p, p) S
(0)
AB = κ

(
xB

∂
∂xA − xA

∂
∂xB

)
I consider a invariant of the 5d Lorentz algebra

gABxAxB = (−1)]R2 .

I ds2 = G
(0)
ab dxa ⊗ dxb = (det G

(0)
ab )gABV

(0)A
a V

(0)B
b dxa ⊗ dxb =

(det G
(0)
ab )(gabx

2
5 + g55xaxb)dxa ⊗ dxb = gAB

∂xA

∂xa
∂xB

∂xb dxa ⊗ dxb
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fluctuation

I Emergent Vacuum geometry is Constant curvature space in
d-dimensions such as Sd , dSd and AdSd , depending on
embedded flat Euclidean or Lorentzian spacetime in
(d + 1)-dimensions.

I Consider fluctuations of X a ≡ κgabD̂b(x) around the vacuum

solution as:D̂a(x) = D̂
(0)
a (x) + Âa(x) where D̂

(0)
a (x) = gab

κ xb

I [D̂a, D̂b]? =

iκ−1L̂ab(x) + [D̂
(0)
a , Âb]? − [D̂

(0)
b , Âa]? + [Âa, Âb]? ≡ i F̂ab.

I the action for the fluctuations in
Ŝκ = κ2

4 TrHgacgbd F̂ab ? F̂cd + (d−1)κ
2 TrHgabD̂a ? D̂b

I Respects NC U(1) symmetry



fluctuation

I Emergent Vacuum geometry is Constant curvature space in
d-dimensions such as Sd , dSd and AdSd , depending on
embedded flat Euclidean or Lorentzian spacetime in
(d + 1)-dimensions.

I Consider fluctuations of X a ≡ κgabD̂b(x) around the vacuum

solution as:D̂a(x) = D̂
(0)
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Conclusion and open problems

I New Matrix model constructed and emergent fluctuating
geometry studied. Spacetime satisfying Snyder algebra is
classical solution. Spacetime again is emergent
concept-background independence.

I The correspondence between NC ?-algebra and,generalized
vector fields extended to mass deformed IKKT model to get
constant curvature space. Fluctuation about vacuum
geometry is NC massive gauge theory.

I Einstein gravity with CC from massive gauge theory?

I Nonlinear Snyder algebra?
SG = Tr

(
1
4MabM

ab − 1
2κMab[X a,X b] + 1

2κG (X )
)
. This has as

eqn of motion:[Mab,Xb] +
[
∂G(X )
∂Xa

]
= 0 If G (X ) is given

[Mab,Mcd ] can be calculated by applying the Jacobi identity.

I G (X ) is quadratic− > usual Snyder algebra − > Constant
curvature.If G (X ) cubic and above − >what geometry?
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Broad picture

I Matrix model →NC spacetime→NC algebra
fluctuating coordinates-¿ NC U(1) gauge field→ fluctuating
geometry.

I Pure gauge fluctuation is Killing symmetry of vacuum
geometry

I Dynamics of NCU(1) gauge field → dynamics of gravity
Opposite to KK!

I A link between symplective geometry and Riemann geometry!
Symmetries of Matrix model→ symmetries of NC spacetime
→ symmetries of general relativity

I Emergent time ?Emergent matter?

I THANKS!
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