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Sakharaov paradigm: "metrical elasticity of space-generalized
forces which oppose the curving of space”- induced gravity

General Relativity -Thermodynamics
nexus(Jacobson-Padmanabhan..)

Thermodynamics— > stat mech of atoms.
Gen. Rel, dynamics of spacetime—— > emergent spacetime
Dark-energy, quantum gravity..

Gravity not fundamental?
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approaches

» No go theorem:Weinberg-Witten theorem

» Sakharov induced gravity:general relativity arises as an
emergent property of quantized matter fields

» AdS-CFT,

» Horava-Lifshitz,(Gen Rel low energy -high energy spacetime
non covariant-metric still fundamental)

» Verlinde entropic gravity; spin foam...

» Non commutative( Moyal ) spacetime and NC U(1)as
emergent gravity?? Rivelles (2002),H.S.Yang (2005),also
Steinacker (2008)
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quantised spacetime-Moyal Plane

» Endow spacetime with a symplectic structure B,

» quantize the spacetime y? with its Poisson structure
62> = (B~1)b, described by {y?, y*} = i§?"

» Deformation :(f.g)(x) — (f * g)(x)

> [, gl— > {f,g}o+ ..
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U(1). gauge transformation is translation:

exp ik.y = f(x) * exp —iky = f(x + 0k). Infinitesmally
_iBab[yba f] = Oaf

NC U(1): No local gauge invariant observables ,non- linearity
:similarity to GTR.

NC scalar-U(1)coupling —scalar- linear gravity coupling.
(Rivelles):UV-IR mixing =effect of emergent gravity
(Grosse-Steinacker)-NC U(N) =gravity + SU(N)(Steinacker)
the gauge symmetry acting on U(1) gauge fields as

A — A+ d¢ is a diffeomorphism symmetry generated by a
vector field Xy satisfying Lx,B =0,

Darboux theorem of symplectic geometry as equivalence
principle; can always locally eliminate EM by coordinate
transformation .(H.S.Yang)

Can U(1) gauge theory on symplectic lead to gravity?
Can quantised spacetime be emergent?
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» Matrix models — spacetime structure.

> SikkT = —3 Tr[Xa, Xp][X2, X*]

» Eqn of motion: [X;,[X?, X?]] =0,

» A classical solution is given by X3 = y@, with [y, y?] = i
(NC) spacetime is a solution and not given apriori.
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IKKT model-fluctuation
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expand X2 = 62bD,, around the Moyal vacuum .
Da()/) = Babyb + Aa(y)

UXU' symmetry leads to Gauge transform of A
—i[Da(y), Do(¥)ls = _

92Ab(y) — ObAa(y) — i[Aa(y), Ab(y)]« — Bab

= ab()/) — Bap.
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» Then the IKKT matrix model becomes NC U(1) gauge theory
Sne = yG"’Cde(F B) (F B)C where

Ga aacgbc
» equations of motion for NC gauge fields : 5[3//-:1)(_.] =0

» How metric is related to Gauge field?
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metric from gauge field-HS Yang

» Poisson algebra provides f — X¢-Hamiltonian vector field
Xr(g) ={g.f}o
» f and the corresponding Hamiltonian vector field Xr is the Lie

algebra homomophism in the sense X(f 1, = —[X¢, X;]
» Given D, ) )
S = v OD4(y) Of
—i[Da(y), f(y)lx = —0" ay(uy) 8}91) +e
» Vector fields V,[](y) to order 6 is 9’“’8%&”% which form a

set of vector fields. But V/, are not orthonormal.

» Orthonormal E, = (\)"1V, where \? = det V}'
ds® = gpE? @ EP
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Emergent gravity and dark energy- HS Yang (JHEP)

» eqn of motion for gauge field — Einstein eqn for the metric .

» Flat spacetime comes from ASP) = B.py? whose field strength

is constant = B,,— Flat spacetime condensation of gauge
field

» Energy associated with vacuum is Mﬁ.

» Vacuum energy is used to make flat spacetime , hence does
not gravitate! Soln to CC problem!

» Generalization to constant curvature space?
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Yang &MSK

> Smcs = KTr<3i!eABCXA[XB X€] - AXAXA).

> Equation of motion : [XA, XB] = —iXe”B - XC

> Invariant (—)*R? = gagXAXEB. They describe a
two-dimensional manifold M.

> Mo is symplectic
Local coordinates: 1 B,pdy? A dy? = —dy! A dy?.

» My as a hypersurface embedded in IR? or IR?? and described
by LA = LA(y?),
XA = [A is classical solution.

» For eg:dS, y? = (sinh t, )

Y=y, 12=./T+y2sing, [3=/1+ y?cosp,where
y =sinht.

(0) abOLla 0
>V, =10 Byb Dy3"




d=2 Constant curvature manifolds from Matrix models



d=2 Constant curvature manifolds from Matrix models



d=2 Constant curvature manifolds from Matrix models

» fluctuation of the surface My around the vacuum geometry
XA(y) = LAy) + AAy).



d=2 Constant curvature manifolds from Matrix models

» fluctuation of the surface My around the vacuum geometry
XA(y) = LAy) + AAy).

> action for the fluctuations L
Smcs = —ﬁwl f d2y<SABCXA* FBC 4 )\XA*XA .
where FAB = [[A ABYy — (LB A7}y + {AA AB}y 4+ ABCAC



d=2 Constant curvature manifolds from Matrix models

» fluctuation of the surface My around the vacuum geometry
XA(y) = LAy) + AAy).

» action for the fluctuations

~

Smcg = —ﬁwfdzy<sABC)A(A*l?BC —I—)\)?A*)?A .
where FAB = {14 ABYy — {1B A7}y + {AA, AB}y + 4B CAC.

» The equations of motion derived from the variation with
respect to A% is FAB =0,



d=2 Constant curvature manifolds from Matrix models

» fluctuation of the surface My around the vacuum geometry
XA(y) = LAy) + AAy).

> action for the fluctuations L

Smes = — oty [ dy <5ABCXA % FBC 1A X4 % XA).
where FAB = {14 ABYy — {1B A7}y + {AA, AB}y + 4B CAC.

> The equations of motion derived from the variation with
respect to AAis FAB —q,

» The fluctuating coordinate system satisfies the following
Poisson bracket relation {XA, X8}y = —cABXC + FAB
where



d=2 Constant curvature manifolds from Matrix models

» fluctuation of the surface My around the vacuum geometry
XA(y) = LAy) + AAy).

> action for the fluctuations L

Smes = — oty [ dy <5ABCXA % FBC 1A X4 % XA).
where FAB = [[A ABYy — (LB A7}y + {AA AB}y 4+ ABCAC

> The equations of motion derived from the variation with
respect to AAis FAB —q,

» The fluctuating coordinate system satisfies the following
Poisson bracket relation {XA, X8}y = —cABXC + FAB
where

» Note FAB should satisfy Jacobi identity. This gives
eapc{X?, {XB, X }p}g = 0. This constraint can be solved by

taking 0
AB _ _ABCOF(X
F (X) =€ oX¢
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» (XA XBYy = 5ABC%GT(XC) where the polynomial G(X) is
defined in M = IR37P" and given by
G(X) = F(X) — 3848 X" X" + p.

» function F(X) is an arbitrary polynomial in 3 variables in M
defines a two-dimensional surface M>

» determine the embedding coordinate by solving the polynomial

equation G(X) = 0 .The metric of the two-dimensional

_ pabdXaly) 8
= 9 Ty"aya + ...

surface given by the vector fields VA

A B . . . . .
> gAB %);a %% is the induced metric for arbitrary potential
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Mass deformed IKKT model: S, = Sixxr + m* TrX?X,
"Linearized” form

S = Tr(3MapM?P — L M,p[ X2, XP] 4+ 2 X, X?)
Symmetry: (X2, M,p) — U(X?2, M,p)UT

Equation of motion: [X?, X?] = kM3P

[Mab,Xb] +(d—-1)X2=0.

The above eqn is has Snyder algebra as solution:
[Xa,Xb] = kM?3P,

[Xa Mbc] — gacxb _ gabxc

[Mab Mcd] — gachd . gadec . gbcMad + gbdMac
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Constant curvature Matrix model for d=2n

Mass deformed IKKT model: S, = Sixxr + m* TrX?X,
"Linearized”" form

S = Tr(3MapM?P — L M,p[ X2, XP] 4+ 2 X, X?)
Symmetry: (X2, M,p) — U(X?2, M,p)UT

Equation of motion: [X?, X?] = kM3P

[M?? Xp] + (d — 1) X2 = 0.

The above eqn is has Snyder algebra as solution:

[X2, XP] = kM2b,

[Xa Mbc] — gacxb _ gabxc

[Mab Mcd] — gachd . gadec . gbcMad + gbdMac
» Comments: Snyder algebra is Lorentz algebra in d + 1 dim
{Map&Xa} = Map

v

v

v

v
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Vaccuum geometry in mass-deformed IKKT

» To map Matrix algebra to NC * algebra:

Snyder algebra from deformation quantisation of a Poisson
manifold whose Poisson tensor :M = 1L25(x) 823 A %
{x?,x"kn = L?(x)

» Need to define a vector field: Enough to have Poisson tensor
A — T¥(A) = L*P(x)A4(x) 525 Given a smooth Poisson
manifold (M, ), there is map f — X¢ = M¥(df) is a
lie-algebra homomorphism

» the vector fields for the background D;(,O)(X) are given by
ad50[f1(x) = =D (x), F(x)l = Vi () 552 + - -

> The vector fields (V% S9) € I(TMyaq) as differential
Lorentz generators of SO(5 — p, p) Sgg = ﬁ(XB% — XABX%)

» consider a invariant of the bd Lorentz algebra
gABXAXB = (—1)ﬁR2 .

> ds? = 6D dx? @ dxb = (det 8 0)gap VI VOB dxa @ dxb =
(det Q5§?)(gabx§ + Z55Xaxp) dx® © dxP = gag 2L O dx? @ dxb

Ox? dxb




fluctuation

» Emergent Vacuum geometry is Constant curvature space in
d-dimensions such as S9, dSy and AdSy , depending on
embedded flat Euclidean or Lorentzian spacetime in
(d + 1)-dimensions.



fluctuation

» Emergent Vacuum geometry is Constant curvature space in
d-dimensions such as S9, dSy4 and AdS, , depending on
embedded flat Euclidean or Lorentzian spacetime in
(d + 1)-dimensions.

» Consider fluctuations of X? = /@g"’bﬁb(x) around the vacuum
solution as:D,(x) = Bgo)(x) + A,(x) where ﬁgo)(x) = &abyb



fluctuation

» Emergent Vacuum geometry is Constant curvature space in
d-dimensions such as S9, dSy4 and AdS, , depending on
embedded flat Euclidean or Lorentzian spacetime in
(d + 1)-dimensions.

» Consider fluctuations of X? = /@g"’bﬁb(x) around the vacuum
solution as:D,(x) = Bgo)(x) + A,(x) where ﬁgo)(x) = &abyb



fluctuation

» Emergent Vacuum geometry is Constant curvature space in
d-dimensions such as S9, dSy4 and AdS, , depending on
embedded flat Euclidean or Lorentzian spacetime in
(d + 1)-dimensions.

» Consider fluctuations of X? = /@g"’bﬁb(x) around the vacuum
solution as:D,(x) = Bgo)(x) + A,(x) where ﬁgo)(x) = &abyb

> [Dav§b]* — R R R N L R
ik Lap(x) + [DS?, Al — [DL, Aal. + [As, Apls = iFap.



fluctuation

» Emergent Vacuum geometry is Constant curvature space in
d-dimensions such as S9, dSy4 and AdS, , depending on
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» Emergent Vacuum geometry is Constant curvature space in
d-dimensions such as S9, dSy4 and AdS, , depending on
embedded flat Euclidean or Lorentzian spacetime in
(d + 1)-dimensions.

» Consider fluctuations of X? = /@g"’bﬁb(x) around the vacuum
solution as:D,(x) = Bgo)(x) + A,(x) where ﬁgo)(x) = &abyb

> [537 5b]* —

_1Z b( ) + [Bgo), //Ab]* - [ﬁl(,O)a //Aa]* + [//Aaa //Ab]* = ’./'Eab~

> the actlon for the fluctuations in
S = & Trig® g Fap + Feg + U525 Tryg? D, # Dy

> Respects NC U(1) symmetry
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New Matrix model constructed and emergent fluctuating
geometry studied. Spacetime satisfying Snyder algebra is
classical solution. Spacetime again is emergent
concept-background independence.

The correspondence between NC %-algebra and,generalized
vector fields extended to mass deformed IKKT model to get
constant curvature space. Fluctuation about vacuum
geometry is NC massive gauge theory.

» Einstein gravity with CC from massive gauge theory?

» Nonlinear Snyder algebra?

S¢ = Tr(3MapM3 — 2 Mop[X2, XP] 4+ 2= G(X)). This has as
eqn of motion:[M3, X, + {aG(X)} =0 If G(X) is given
[M?3? M<9] can be calculated by applying the Jacobi identity.

G(X) is quadratic— > usual Snyder algebra — > Constant
curvature.If G(X) cubic and above — >what geometry?
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Broad picture

» Matrix model —NC spacetime—NC algebra
fluctuating coordinates-; NC U(1) gauge field— fluctuating
geometry.

» Pure gauge fluctuation is Killing symmetry of vacuum
geometry

» Dynamics of NCU(1) gauge field — dynamics of gravity
Opposite to KK!

» A link between symplective geometry and Riemann geometry!
Symmetries of Matrix model— symmetries of NC spacetime
— symmetries of general relativity

» Emergent time 7Emergent matter?
» THANKS!
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