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Outline

Part I - General overview 
1. Traditional RG scheme for the disordered electron liquid  
2. Thermal transport and the Wiedemann Franz law 
3. Sigma model with Luttinger’s gravitational potential  
4. Specific heat 
5. RG and fixed point 
6. Subthermal regime 
7. Metallic side of the MIT in Si MOSFETs 

Part II - Details … 
1. Structure of the density and heat-density correlation functions 
2. Static parts of the correlation functions 
3. Dynamical parts of the correlation functions 
4. Heat density in the Coulomb problem 
5. Correlation function in the subthermal regime 
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Part I



Electron mean  
free path

Electron  
wave length

Diffusion

Drude conductivity

Metallic regime

Drude-Boltzmann

For high temperatures!

Quantum corrections

The wave nature of the electrons leads to 
quantum corrections at low T 

Most effective in the limit Typical magnitude



W
L

Weak localization

Sum over trajectories

Probability of reaching 
r‘ is reduced 

time reversed 
trajectories

Constructive  
interference

Suppression of conductivity

Origin of the common wisdom 
“no metal in 2D“

Abrahams, Anderson, Licciardello and Ramakrishnan (1979)
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Altshuler - Aronov interaction corrections

�⇢(r) ⇠ U0
T 2

sinh2(rT/vF )
sin(2kF r)

Friedel oscillations caused  
by a single impurity:

ballistic regime

T > 1/⌧
diffusive regime

T < 1/⌧

Zala, Narozhny, Aleiner (2001)
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In the presence of disorder 
     is considerably enhanced at low T

F

Perturbation theory – interacting systems

For (insulating)

Altshuler, Aronov and Lee (1980), Finkel’stein (1983)

Finkel‘stein (1983)

WL correction 
(Gang of 4)

1-singlet 
contribution

3-triplet 
contribution

Disorder makes the  
interaction scale-dependent



diffuson

cooperon

Non-linear Sigma model: Effective low energy  (Τ < 1/τ < EF) action 
for the disordered Fermi/electron liquid- Finkel’stein (1983) 

[noninteracting case: Wegner, Efetov Larkin Khmelnitskii,… (1979-)]

frequency renormalization

triplet-channel

Different methods: Replica/Keldysh

Non-linear Sigma model (NLσM)



The interplay of disorder and interactions is captured by a set of 
coupled Renormalization Group (scaling) equations for ρ and γ2

One more equation:

 does not affect the flow of ρ and γ2, 
important to understand thermodynamic properties

Structure of the RG equations

1-loop: leading 
order in ρ, all 
orders in the 
interaction.



Data from the region C* in a high- 
mobility sample. No adjustable 
parameters  are used.

A.Punnoose and A. Finkelstein, PRL (2002) 
S. Anissimova et al.,  Nature Physics (2007) 

 Pudalov, et al., (’98)

Analysis of high-mobility sample with RG for two valleys
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Thermal transport and the 
Wiedemann Franz law



Electric current Heat current

Energy  
current

Particle 
current

Transport coefficients

Electric  
conductivity

Thermal 
conductivity

Peltier 
coefficient

Seebeck  
coefficient Onsager relation



The Wiedemann-Franz law

Electric  
conductivity

Thermal 
conductivity

Peltier 
coefficient

Seebeck  
coefficient

The Wiedemann-Franz “law” Lorenz number

The Wiedemann Franz law is an approximate  
low-temperature relation for itinerant electron systems. 

What is the range of validity?



• Wiedemann-Franz law (κ/σT=const.) holds  
    for noninteracting disordered electron systems - Chester, Thellung (1961). 

• Wiedemann-Franz law holds  
    for a Fermi liquid - Langer (1962). 

 After the development of the scaling theory of localization for interacting electrons   
[Finkel‘stein 83, Castellani et al. 84]: 

• Wiedemann-Franz law holds  
    for the disordered electron liquid (renormalized perturbation theory, Ward Identities) 
  - Castellani, di Castro, Kotliar, Lee, Strinati (1987-).  

• Wiedemann-Franz law violated  
    for the disordered electron liquid (perturbation theory)          
   

Kubo-formula – Arfi (1992), Niven, Smith (2005). 

Kinetic equation approaches  - Livanov et al. (1991), Raimondi et al. (2004), Catelani, Aleiner (2005),  
        Michaeli, Finkelstein (2009).

Heat transport and the Wiedemann-Franz law in disordered 
electron systems - History of the problem

While approaches differ, the result is common: Additional corrections, Wiedemann-Franz law violated 

Can one resolve the contradiction and construct a comprehensive theory 
(including RG and additional log corrections) ?



• How is heat transported through the system? 
• What are the consequences of replacing the electric 

field by a temperature gradient

Can one generalize the RG approach to thermal  
transport?
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How to approach the problem? 
How to do RG including a temperature gradient? 

The scaling theory for σ was developed on the basis of a field theory (NlσM) with 
source fields. How to account for a temperature gradient? 

    

Perturbative calculations for κ were (mostly) based on kinetic equation approaches. 
Including a temperature gradient is straightforward, but how to do RG?

Our approach: Renormalize the NlσM with source fields  
(Luttinger‘s „gravitational potential“ mimics temperature variation). 

 



Source fields for the heat density correlation function

Action:

Gravitational  
potential

Luttinger (1964)



Source fields for the heat density correlation function

Action:

Gravitational  
potential

Luttinger (1964)



Source fields for the heat density correlation function

Problem:

Change of variables:

After this transformation, the derivation of the NLσM is straightforward:

nonlinear in η!



NlσM with “gravitational potentials”



The correlation function - phenomenology

Heat density correlation function  
in the diffusive limit

Static limit Conservation law

Thermal conductivity
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The correlation function - phenomenology

Heat density correlation function  
in the diffusive limit

Static limit Conservation law

Thermal conductivity

�nn = �@n

@µ

Dnq2

Dnq2 � i!

�nn(q ! 0,! = 0) = �@n

@µ
�nn(q = 0,! ! 0) = 0

� = e2
@n

@µ
Dn



Castellani, Di Castro (1986)

Specific heat and the static part of the correlation function



RG and the dynamical part  
of the correlation function



RG and the dynamical part of the correlation function

Initial conditions:

Parameterization:

fast slow slowest: distribution function



RG and the dynamical part of the correlation function

Result: Fixed point
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(Generalized) Einstein relations: 

The structure immediately implies:  
Wiedemann Franz law is not violated within the RG regime (T<ε<1/τ),  

neither for short-range nor for long-range (Coulomb) interaction.

Something is missing in this treatment!

Conductivities and the Wiedemann Franz law

� = e2
@n

@µ
Dn = 2⌫e2D  = cDk = cFLD



Beyond RG – the sub-temperature regime 



Additional logarithms

For short-range interactions no additional (log) corrections 

For long-range Coulomb interactions  
additional logarithmic corrections  

from scattering processes with sub-T frequency transfer. 

+ + +...

All contributions are proportional to Im(VR):   
Decay into particle-hole pairs or drag-processes

Example: ��kk /
Z

k,",⌫
"⌫@"F"(F"+⌫ + F"�⌫)ReD2(k, ⌫)ImV R(k, ⌫)
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Consistent with 
conservation law!

Corrections to heat conductivity

Additional logarithmic correction  (not related to c!):

Additional logarithmic correction to κ:

WF law is violated!

From the regime:

Agrees with the result of 
(recent) kinetic  

equation approaches

Dk =
1

z

�
Dn + �Dh

�
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Thermal conductivity in the ballistic regime.

Lyakov, Mishchenko (2003)

 =
"2F

T ln "F
T

 / T"F
�"

 / T ⌧"F

� = �imp + �e�e

�e�e = a
T 2

"F
ln

"F
T

 / T ⌧"F � aT (T ⌧)2 ln
"F
T

�imp =
1

⌧
Drude 

Catelani, Aleiner (2005)

“Localizing”
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Results: Thermal transport and the WFL

Energy scales

WFL
-disordered Fermi liquid

-disordered electron liquid
despite strong renormalizations

WFL

RG regime

sub-T regime -disordered Fermi liquid

-disordered electron liquid
WFL

Additional (delocalizing) logarithmic corrections!

 GS & Finkel’stein, with Keldysh NLσM 
PRB 89 (2014); PRB 90 (2014)(R); PRB 90 (2014); arXiv:1509.02519, 

arXiv:1510.06529 

S[Q] ⇠
Z

dr tr[D(rQ)2 + 2iz{"̂,�}Q] +
X

i

Q��iQ
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The metallic side of the metal-insulator transition 
in Si-MOSFETS 

@⇢

@⇠
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
nv + 1� (4n2
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One-loop result: 
Universal behavior of the resistance
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The metallic side of the metal-insulator transition 
in Si-MOSFETS 
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The metallic side of the metal-insulator transition 
in Si-MOSFETS 
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Application: Thermal transport on the metallic side 
of the metal-insulator transition in Si MOSFETs
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Wiedemann-Franz law:

⇢k = ⇢, Rk(⌘) = R(⌘)

Violation parametrized by:

Maximum in Rk at universal (Pmax independent) value η=-0.0785. 



• We developed a field theoretic model with „gravitational potentials“ 
suitable for the analysis of heat density correlation function in the 
disordered electron liquid. 

• For short range interactions the renormalization of κ  and of σ  are 
linked through the WF law. 

• For long-range (Coulomb) interaction there are additional logarithmic 
corrections originating from outside of the RG regime. They lead to a 
violation of the WF law. 

• As an application, we considered the metallic side of the MIT in Si-
MOSFETS.
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Summary - Part I 

Thank you!
 Georg Schwiete  &  Alexander Finkel’stein,   
 Phys. Rev. B 89 (2014);  RG with Keldysh NLσM; 
 Phys. Rev. B 90 (2014)(R); Wiedemann Franz law 
 Phys. Rev. B 90 (2014); RG for Keldysh NLσM with grav. potentials 
 arXiv:1509.02519: Analysis of low temperature regime, electron gas 
 arXiv:1510.06529: Analysis of low temperature regime, electron liquid


