
Symbolic Analysis of Computer
Network Security Protocols

Andre Scedrov

University of Pennsylvania

Computer Security

Access control

OS security

Network security

Cryptography

…

Crypto

Security
Goal: protection of
computer systems and
digital information

Protocol Security

Cryptographic Protocol
• Program distributed over network

• Use cryptography to achieve goal

Attacker
• Read, intercept, replace messages, and

remember their contents

Correctness
• Attacker cannot learn protected secret

or cause incorrect protocol completion

Run of protocol

A

B
Initiate

Respond

C

D

Attacker

Correct if no security violation in any run

Correctness vs Security

Program or System Correctness
• Program satisfies specification

– For reasonable input, get reasonable output

Program or System Security
• Program resists attack

– For unreasonable input, output not completely
disastrous

Main differences
• Active interference from environment

• Refinement techniques may fail

Needham-Schroeder Key Exchange

{ A, Noncea }

{ Noncea, Nonceb }

{ Nonceb}

Ka

Kb

Result: A and B share two private numbers
not known to any observer without Ka-1, Kb

-1

A B

Kb

Anomaly in Needham-Schroeder

A E

B

{A, Na}

{A, Na} {Na, Nb}

{Na, Nb}

{Nb}

Ke

Kb Ka

Ka

Ke

Evil agent E tricks
honest A into revealing
private key Nb from B.

Evil E can then fool B.

[Lowe]

Kerberos Authentication Protocol

Protocol goals
• Repeatedly authenticate a client to multiple

servers
• Minimize use of client’s long term key(s)
• Does not guard against DOS attacks

Kerberos 4 - 1989
Kerberos 5

• Specified in RFC 4120 (2005)
• Subsequent revisions by working group

A real world protocol
• Windows 2000 and later (RFC 4120 + extensions)
• User login, file access, printing, etc.

Kerberos 5

Client C wants ticket for end server S
• Tickets are encrypted – unreadable by C

C first obtains long term (e.g., 1 day)
ticket from a Kerberos Authentication
Server K
• Makes use of C’s long term key

C then obtains short term (e.g., 5 min.)
ticket from a Ticket Granting Server T
• Based on long term ticket from K
• C sends this ticket to S

Contract Signing (Fair Exchange)

Contract already agreed on

Parties adversarial

Both parties want to sign a contract

Neither wants to sign first

Fairness: each party gets the other’s
signature or neither does

Scenario: Online Stock Trading

Signed contracts for each trade

Why include contracts:
• Customer may want to prevent a broker

who does not complete a requested trade
from claiming that the request was never
received

• Broker may want proof that it is acting
as requested

General protocol outline

Trusted third party can force or abort contract
• Third party can declare contract binding if

presented with first two messages.

B C

Willing to sell stock at this price

OK, willing to buy stock at this price

Here is my signature

Here is my signature

C B

m1= sign(B, c, hash(r_B))

sign(C, m1, hash(r_C))

r_B

r_C

Agree

B C
Network

T

Abort

???

Resolve Attack?

C B Net

T
sigT (m1, m2)

m1

???

m2 B

T

Asokan-Shoup-Waidner protocol

 If not already

resolved

 a1

sigT (a1,abort)

Important Modeling Decisions

How powerful is the adversary?
• Simple replay of previous messages
• Block messages; Decompose, reassemble and resend
• Statistical analysis, partial info from network traffic
• Timing attacks

How much detail in underlying data types?
• Plaintext, ciphertext and keys

– atomic data or bit sequences

• Encryption and hash functions
– “perfect” cryptography
– algebraic properties: encr(x*y) = encr(x) * encr(y) for
 RSA encrypt(k,msg) = msgk mod N

Common Intruder Model

 Derived from positions taken in Needham-Schroeder [1978]
and Dolev-Yao [1983]

 Idealization that makes protocol analysis palatable
• Adversary is nondeterministic process
• Adversary can

– Block network traffic
– Read any message, decompose into parts
– Decrypt if key is known to adversary
– Insert new message from data it has observed

• Adversary cannot
– Gain partial knowledge
– Guess part of a key
– Perform statistical tests…

Protocol Analysis Methods

Non-formal approaches
• Some crypto-based proofs [Bellare, Rogaway]

• Communicating Turing Machines [Canetti]

 BAN and related logics
• Axiomatic semantics of protocol steps

 Methods based on operational semantics
• Intruder model derived from Dolev-Yao
• Protocol gives rise to set of traces

– Denotation of protocol = set of runs involving arbitrary number of
principals plus intruder

 Protocol composition logic [Datta, Derek, Mitchell, Pavlovic]

 Cryptographic Library [Backes, Pfitzmann, Waidner]

Example projects and tools

Prove protocol correct
• Paulson’s “Inductive method”, others in HOL, PVS,

• MITRE - Strand spaces

• Process calculus: Abadi-Gordon, Gordon-Jeffrey

Search using symbolic representation of states
• Meadows: NRL Analyzer, Millen: CAPSL

Exhaustive finite-state analysis
• FDR, based on CSP [Lowe, Roscoe, Schneider, …]

• Murphi, CASPER, CAPSL, …

All depend on behavior of protocol in presence of attack

Multiset Rewriting Method

• A form of rewriting with

– One associative, commutative operator

 (Banatre, LeMetayer; Chem Abs Machine)

– to generate fresh data

• Conventions for modeling protocols,
adversary using rewriting

A notation for inf-state systems

• Many previous models are buried in tools
• Define common model in tool-independent formalism

Logical Proof
()

Process

Calculus
Finite Automata

Proof search
(Horn clause)

Multiset

rewriting

Modeling Requirements

Express properties of protocols
• Initialization

– Principals and their private/shared data

• Nonces
– Generate fresh random data

Model attacker
• Characterize possible messages by attacker

• Cryptography

Set of runs of protocol under attack

Notation commonly found in literature

• The notation describes protocol traces

• Does not
– specify initial conditions

– define response to arbitrary messages

– characterize possible behaviors of attacker

A B : { A, Noncea }Kb

B A : { Noncea, Nonceb }Ka

A B : { Nonceb }Kb

Rewriting Notation

Non-deterministic infinite-state systems

Facts
 F ::= P(t1, …, tn)

 t ::= x | c | f(t1, …, tn)

States { F1, ..., Fn }
• Multiset of facts

– Includes network messages, private state

– Intruder will see messages, not private state

Multi-sorted
first-order
atomic formulas

[Cervesato, Durgin, Lincoln, Mitchell, Scedrov]

Rewrite rules

Transition
• F1, …, Fk x1 … xm. G1, … , Gn

What this means
• If F1, …, Fk in state , then a next state ’ has

– Facts F1, …, Fk removed

– G1, … , Gn added, with x1 … xm replaced by new symbols

– Other facts in state carry over to ’

• Free variables in rule universally quantified

Note
• Pattern matching in F1, …, Fk can invert functions

• Linear Logic: F1…Fk x1 … xm(G1…Gn)

[Cervesato, Durgin, Lincoln, Mitchell, Scedrov]

Simplified Needham-Schroeder

 Predicates

A1(na)

 -- Alice in state 1 with nonce
na

B1(na ,nb)

 -- Bob in state 1 with na , nb

N1(na)

 -- Network contains message
1 with data na

 Transitions

x. A1(x)

A1(x) N1(x), A2(x)

N1(x) y. B1(x,y) …

A B: {na, A}Kb

B A: {na, nb}Ka

A B: {nb}Kb

Sample Trace
A B: {na, A}Kb

B A: {na, nb}Ka

A B: {nb}Kb

A2(na)

A1(na)

A2(na)

A2(na)

A3(na, nb)

A4(na, nb)

A4(na, nb)

B2(na, nb)

B1(na, nb)

B2(na, nb)

B3(na, nb)

B2(na, nb)

N1(na)

N2(na, nb)

N3(nb)

x. A1(x)

A1(x) A2(x), N1(x)

N1(x) y. B1(x,y)

B1(x,y) N2(x,y), B2(x,y)

A2(x), N2(x,y) A3(x,y)

A3(x,y) N3(y), A4(x,y)

B (x,y), N (y) B (x,y)

Formalize Intruder Model

Intercept, decompose and remember messages
 N1(x) M(x) N2(x,y) M(x), M(y)

 N3(x) M(x)

Decrypt if key is known
 M(enc(k,x)), M(k) M(x)

Compose and send messages from “known” data
 M(x) N1(x), M(x)

M(x), M(y) N2(x,y), M(x), M(y)

 M(x) N3(x), M(x)

Generate new data as needed

 x. M(x)

 Highly nondeterministic, same for any protocol

Protocol theory

Initialization theory
• Bounded theory that “precedes” protocol run
• Example: key. Principal(key)

Role generation theory
• Principal(key) A0(key), Principal(key)
• Principal(key) B0(key), Principal(key)

Role theory
• Finite ordered list of rules
 Ai(…), Nj(…) … Ak(…), Nl(x) where i<k, j<l

• Can also have persistent predicates on left/right

Two-phase intruder theory

Avoid pointless looping by intruder
• M(x), M(y) N(x,y), M(x), M(y)

• N (x,y) M(x), M(y)

Phase 1: Decomposition

Phase 2: Composition

Thesis: MSR Model is accurate

Captures “Dolev-Yao-Needham-Millen-Meadows- …” model
• MSR defines set of traces protocol and attacker

• Connections with approach in other formalisms

Useful for protocol analysis
• Errors shown by model are errors in protocol

• If no error appears, then no attack can be carried
out using only the actions allowed by the model

Attack on Simplified Protocol

A2(na)

A1(na)

A2(na)

A2(na)

B1(na’, nb)

N1(na)

x. A1(x)

A1(x) A2(x), N1(x)

N1(x) M(x)

 x. M(x)

M(x) N1(x), M(x)

N1(x) y. B1(x,y)

M(na)

M(na), M(na’)

N1(na’) A2(na) M(na), M(na’)

A2(na) M(na), M(na’)

Continue “man-in-the-middle” to violate
specification

Modeling Perfect Encryption

 Encryption functions and keys

• For public-key encryption

– two key sorts: e_key, d_key

– predicate Key_pair(e_key, d_key)

• Functions

 enc : e_key msg -> msg

 dec : d_key msg -> msg (implicit in pattern-matching)

 Properties of this model

• Encrypt, decrypt only with appropriate keys

• Only produce enc(key, msg) from key and msg

– This is not true for some encryption functions

Steps in public-key protocol

Bob generates key pair and publishes

• e_key u. d_key v. Bob1(u,v)

• Bob1(u,v) NAnnounce(u), Bob2(u,v)

Alice sends encrypted message to Bob
• Alice1(e,d,x), NAnnounce(e’) Alice2(e,d,x,e’)

• Alice2(e,d,x,e’) N1(enc(e’,x,e)), Alice3(e,d,x,e’)

Bob decrypts message and generates nonce
• Bob1(u,v), N1(enc(u, x,y)) z. Bob2(u,v,x,y,z)

Intruder Encryption Capabilities

Intruder can encrypt with encryption key

• Me(k), Mdata(x) Ni(enc(k,x)), Me(k), Mdata(x)

Intruder can decrypt with decryption key

• Nj(enc(k,x)),Key_pair(k,k’), Md(k’), Mdata(x), ...

Add to previous intruder model

 Assumes sorts data, e_key, d_key with typed

 predicates Mdata(data), Me(e_key), Md(d_key)

Connections with logic and tools

 Search can find protocol errors
• Backward search:

– Interrogator [Millen]
– NRL analyzer [Meadows]
– ProVerif [Blanchet]

• Forward search (model checking)
– FDR [Roscoe], Casper [Lowe], Murphi [Mitchell2 & Stern]
– SMV [Marrero, Clarke, & Jha]
– Athena [Song], TIPE [Denker, Meseguer, Talcott & Millen]

 Prove protocol properties
• Poly-time prob. process calculus [Lincoln, Mitchell, Ramanathan, Scedrov,Teague]

– CryptoVerif [Blanchet]

• Inductive proof:
– InaJo [Kemmerer], Coq [Bolignano]
– Isabelle [Paulson, Basin], PVS[Dutertre, Schneider, Millen]

Conventional wisdom

Find protocol errors

• Model checking

• Exhaustive search of finite-state system

Prove protocol correct

• Use theorem-proving system

• Exhausting development of formal proof

Are there decidable protocol cases?

• Many are short programs with simple data

• Ping-Pong protocols (D&Y: Ptime) too restrictive

• What causes intractability for interesting
protocols?

General protocols are undecidable

Even and Goldreich 1983, Heintze and Tygar 1996,
…

Idea: Post Correspondence Problem

• Given an indexed finite set of pairs of strings
(Ui,Vi) , is there a sequence of indices i1, …, in

 so that Ui1 … Uin = Vi1 … Vin

 Security: Intruder never learns SECRET

• Unreachability of state including M(SECRET)

General protocols are undecidable

 Post Correspondence Problem as a
protocol:
• Good guy appends pair (Ui,Vi) to end of

sequence

• If top and bottom read the same, spill
secret

–A -> B: {empty, empty}k

–B -> A: {X,Y}k {(X Ui), (Y Vi)}k

–A -> B: {X,X}k if X empty, send

SECRET

Protocols vs Rewrite rules

Can axiomatize any computational system

But -- protocols are not arbitrary programs

Initial data

Client

Select roles

Client TGS Server

Bounded message size

 Prohibit arithmetic

• Some protocols use successor:

– A -> B: {Nonce}k

– B -> A: {Nonce + 1}k

• Successor and equality test lead to undecidability

 Prohibit nested encryption

• Some protocols use nested encryption:

– A -> B: {{m}k, Nonce}k’

• Arbitrary depth encryption allows undecidability

– A -> B: {{m}k, {{{m}k}k}k, Q}k

• State is Q, two counters are 1 and 3.

What about a “realistic”
restricted class of protocols ?

Finite number of principals

Each role has finite number of steps

• But a principal may repeat any number of roles

Bounded message size

• Fixed number of fields in message

• Fixed set of message constants

• Fixed depth encryption

• Allow nonces (but only “create new nonce”, and =)

Everything constant, except number of roles and
number of new nonces

Protocol theory

Initialization theory
• Describes initial conditions such as key

generation or other shared information

Role generation theory
• Designates possibly multiple roles that

each participant may play (such as
initiator, responder, client, or server)

Agent theory
• Disjoint union of bounded subtheories

that each characterize a possible role

Protocol theory

Initialization theory
• Bounded theory that “precedes” protocol run
• Example: key. Principal(key)

Role generation theory
• Principal(key) A0(key), Principal(key)
• Principal(key) B0(key), Principal(key)

Role theory
• Finite ordered list of rules
 Ai(…), Nj(…) … Ak(…), Nl(x) where i<k, j<l

• Can also have persistent predicates on left/right

Two-phase intruder theory

Avoid pointless looping by intruder
• M(x), M(y) N(x,y), M(x), M(y)

• N (x,y) M(x), M(y)

Phase 1: Decomposition

Phase 2: Composition

Thesis: MSR Model is accurate

Captures “Dolev-Yao-Needham-Millen-Meadows- …” model
• MSR defines set of traces protocol and attacker

• Connections with approach in other formalisms

Useful for protocol analysis
• Errors shown by model are errors in protocol

• If no error appears, then no attack can be carried
out using only the actions allowed by the model

Secrecy still undecidable

There is no algorithm for deciding
whether a given protocol in
restricted form, run in combination
with the standard intruder, allows the
intruder to gain access to a given
initial secret.
• Represent existential Horn theories as

protocol theories

• Existential Horn theories w/o function
symbols are undecidable: Vardi ICALP'81,
Chandra, Lewis, and Makowsky STOC’81

Direct encoding

Turing machines, Cook’s Theorem
• but use nonces instead of propositional

variables

Start | 0 | 0 | 1 | q20 | 0 | 1 | 1 | 0 | End

Start | 0 | 0 | q51 | 1 | 0 | 1 | 1 | 0 | End

Start | 0 | 0 | 0 | q61 | 0 | 1 | 1 | 0 | End

Start | 0 | 0 | q51 | 1 | 0 | 1 | 1 | 0 | End

Start | 0 | 0 | 1 | q20 | 0 | 1 | 1 | 0 | End

Start | 0 | 0 | 0 | q61 | 0 | 1 | 1 | 0 | End

Turing machine

1 | q0 | 0

1

Constant (3) piece of state at time N

determines state of cell at time N+1

Turing machine

 Predicates

• Cell(name, symbol, right) -- contents of tape cell

• Below(cell, cell) -- next row of tableau

 Rules

• Cell(a,0,b), Cell(b, q20,c), Cell(c,1,…)

 d. Below(b,d), Cell(d,1,…),...

q20 0 1

1

 a b c

 d

Turing machine

• Cell(a,da, b), Cell(b,db, c), Cell(c,dc, d), Below(b,b’)

 c’. Below(c,c’), Cell(b’,F(da,db,dc),c’)

• Below(a,a’), Cell(a,Start,b)

 a’’,b’: Below(a’,a’’), Cell(a’,Start, b’)

• Below(a,a’), Cell(a,End,b)

 b’, c’: Cell(a’,0, b’), Cell(b’, End, c’)

• a,a’,b,c,d,e: Cell(a,Start,b), Cell(b,Qinit,c),

Cell(c, 0, d), Cell(d,End,e), Below(a,a’)

• Cell(a,Qfinal,b) Broadcast(Secret)

Turing
machine
 move

Start
and
End

Copy to
Next Time

Extend
Tape

Turing machine discussion

Each move is a protocol role

• Finite length protocol

Attacker replays and routes messages

• To prevent malicious alteration, encrypt all
messages will shared private key:

 { Cell(a,da, b) }k

Machine steps in standard protocol form

 Ai(…), Nm(…) Ak(…), Nl(…)

 Role reads hypotheses one at a time, saving data in
internal state.

Undecidability

Finite length protocols with

• bounded number of principals

• bounded message size

 have undecidable behavior if

• principals can repeat roles arbitrarily many
times

• runs can generate new atomic data

What happens if we

• Bound ability to generate new data?

• Restrict number of roles ?

Attack requires exponential run

Sender role broadcasts initial message

• A: Broadcast {0, 0, 0, 0}k

n responder roles modify secret messages

• B1: {x, y, z, 0 }k {x, y, z, 1 }k

• B2: {x, y, 0, 1 }k {x, y, 1, 0 }k

• B3: {x, 0, 1, 1 }k {x, 1, 0, 0 }k

• B4: {0, 1, 1, 1 }k {1, 0, 0, 0 }k

Server broadcasts key on specific message

• C : {1, 1, 1, 1, 1 }k Broadcast(k)

Attack requires 2n steps and 2n messages.

Security DEXP-time complete

No new data, but repeat roles arbitrarily

Same encoding of Horn clauses (DATALOG)

• Axiomatize bounded Turing machine tableau

Use counters instead of nonces to name cells

• Cell(name, data, neighbor) as before

• Represent name by pair of numbers

– Cell(0,1,0,...,0, 0,0,1,…,1, data, neighbor),

• 2n 2n tableau using messages of size 4n
n bits n bits

Testing for a = b , c d

 x y atomic

 Conditional transition rule

 a1=b1, … , ai=bi, c1 d1 , … , cj dj ; F1, …, Fk

 x1 … xm. G1, … , Gn

 What this means

• If F1, …, Fk in state , and if a1=b1, … , ai=bi,

 c1 d1 , … , cj dj are true, then a next state ’ has

– Facts F1, …, Fk removed

– G1, … , Gn added, with x1 … xm replaced by new symbols

– Other facts in state carry over to ’

• Free variables in rule universally quantified

Complexity results using MSR

 Key insight: existential quantification () captures cryptographic
nonce; main source of complexity

[Durgin, Lincoln, Mitchell, Scedrov]

 only

,

 only

,

Intruder
w/o

Intruder
with

Unbounded
use of

Bounded
use of

Bounded #
of roles

NP –

complete
Undecidable

??

DExp –

time

All: Finite number of different roles, each role of finite length, bounded message size

Lower bounds from Horn clauses

 Need to show that hard instances of Horn clause inference can be
be represented in the restricted form of a security protocol

[Durgin, Lincoln, Mitchell, Scedrov]

 only

,

 only

,

Intruder
w/o

Intruder
with

Unbounded
of

Bounded
of

Bounded #
of roles

NP-complete:

Provable by
bounded-

length proof

Undecidable:

Datalog +

??

Dexptime:

Datalog

All: Finite number of different roles, each role of finite length, bounded message size

Additional decidable cases

Bounded role instances, unbounded msg size
• Huima 99: decidable

• Amadio, Lugiez: NP w/ atomic keys

• Rusinowitch, Turuani: NP-complete, composite keys

• Other studies, e.g., Kusters: unbounded # data fields

Constraint systems
• Cortier, Comon: Limited equality test

• Millen, Shmatikov: Finite-length runs

 All: bound number of role instances

Lessons

Symbolic notation for unrestricted protocols

• Nonce becomes existentially quantified variable

• Translations to process calculus, strands, HOL, ...

• Fragment of linear logic

– Protocol search is proof search

– Formal proofs using linear-logic proof theory,
tools

Study decision problems (secrecy, authenticity)

• Undecidable if protocols generate new data

• DEXP-time complete with bounded new data

• NP-complete if bounded number of roles

Intruder: power and limitations

Can find some attacks

• Needham-Schroeder by exhaustive search

Other attacks are outside model

• Interaction between protocol and encryption

Some protocols cannot be modeled

• Probabilistic protocols

• Steps that require specific property of
encryption

Possible to prove erroneous protocol correct

• Requires property that crypto does not provide

Malleability

 Our idealized assumption

• If intruder produces Network(enc(k,x)) then either
– Network(enc(k,x)) M (enc(k,x)) (replay)
– M(k), M(x) M (enc(k,x)) (knows parts)

 Not true in general
• Given only the ciphertext it may be easy to generate a

different ciphertext so that the respective plaintexts are
related

• Attacks may exploit this: adversary computes enc(f(x)) given
only enc(x)

Malleability [Dolev,Dwork,Naor]

RSA

• enc(k,msg) = msgk mod N

• property enc(xy) = enc(x) enc(y)

• trivial to compute enc(2x) given only enc(x)

Model

– Network(enc(k,x)) M (…) ...
Network(enc(k,cx))

Can send encrypted message without “knowing”
message

Non-malleable crypto [Dolev,Dwork,Naor]

Kerberos 5 Analysis: Goals

Give precise statement and formal analysis
of a real world protocol
• Find a real world protocol – Kerberos 5

• Pick favorite formalization method - MSR

Identify and formalize protocol goals

Give proofs of achieved protocol goals
• Gain experience in reasoning with MSR

Note any anomalous behavior
• Suggest possible fixes, test these

[Butler, Cervesato, Jaggard, Scedrov]

Kerberos 5

Client C wants ticket for end server S
• Tickets are encrypted – unreadable by C

C first obtains long term (e.g., 1 day)
ticket from a Kerberos Authentication
Server K
• Makes use of C’s long term key

C then obtains short term (e.g., 5 min.)
ticket from a Ticket Granting Server T
• Based on long term ticket from K
• C sends this ticket to S

Protocol Messages

 Please give me ticket for T

 Ticket for C to give to T
C K

 Ticket from K, one for S?

 Ticket for C to give to S
C T

 Ticket from T

 Confirmation (optional)
C S

C K

C T

C S

Overview of Results

Formalized Kerberos 5 at different levels of
detail

Observed anomalous behavior
• Some properties of Kerberos 4 do not hold for

Kerberos 5

• Proved authentication properties that do hold for
Kerberos 5

Proofs of properties which do hold
• Methods adapted from Schneider

Interactions with Kerberos working group

Related Kerberos Work

Kerberos 4 - Bella & Paulson
• Inductive approach using theorem prover

Isabelle

• Proofs of authentication and
confidentiality

• Incorporated timestamps and temporal
checks

Bella & Riccobene
• Gurevich’s Abstract State Machine

Kerberos 5 - Mitchell, Mitchell, & Stern
• Analyzed simplified protocol with state

Related Formal Work

MultiSet Rewriting (MSR) formalism
• Lincoln, Mitchell, Scedrov, Durgin, and

Cervesato

• Extended to Typed MSR by Cervesato

Rank functions
• Defined by Schneider

• Our proof methods adapted from this
idea

Abstract Formalization

Contains core protocol
• Other formalization refines this one

Exhibits an anomaly
• This appears to be structural and not due

to omitted detail

Allows us to prove authentication
results

Messages in Abstract Level

 C,T,n1

 C,{kCT,C}kT
, {kCT,n1,T}kC

C K

 {kCT,C}kT
,{C}kCT

,C,S,n2

 C,{kCS,C}kS
,{kCS,n2,S}kCT

C T

 {kCS,C}kS
,{C,t}kCS

 {t}kCS

C S

C K

C T

C S

Detailed Formalization

Uses richer message structure

• Adds some fields for options

– E.g., anonymous tickets

• Models encryption type

• Adds checksums

Exhibits anomalies

• Encryption type option specific to this level

• Structural anomaly also seen at abstract level

– Also variations which use added detail

Messages in Detailed Level

 KOpts,C,T,n1,e1

 C,{Tflags,kCT,C}kT
, {kCT,n1,Tflags,T}e1’

kC

 {Tflags,kCT,C}kT
,{C,MD,t}kCT

,Topts,C,S,n2,e2

 C,{Sflags,kCS,C}kS
,{kCS,n2, Sflags,S}e2’

kCT

 SOpts,{Sflags,kCS,C}kS
,{C,MD’,t’}kCS

[{t’}e
kCS

]

C K|T|S
KRB_ERROR,[-|t|t’],terr,ErrCode,C,(K|T|S)

C K

C T

C S

C T

C K

C S

Encryption Type Anomaly

Kerberos 5 allows C to specify encryption types that
she wants used in K’s response

C’s key associated with the etype ebad is kbad

• Intruder I learns kbad

• C knows this and attempts to avoid ebad/kbad

• I can still force kbad to be used

 Please give me ticket for T using
etype (sent unencrypted) C K

 Ticket for C to give to T (other
info encrypted using etype) C K

Ticket Anomaly

 Ticket for C to give to T
C K

Kerberos 4:
• Ticket is enclosed in another encryption

Kerberos 5:
• Ticket is separate from other encryption

 {Ticket, Other data}kC

 Ticket, {Other data}kC

Ticket Anomaly

 Please give me a ticket for T

 Ticket for T, {Other data}kC

C K

 X, Ticket for S?

 Ticket for S.

T

I
X, {Other data}kC

I (cuts Ticket) C

I
 Ticket from K, ticket for S?

I C

C

K

T

Ticket Anomaly

T grants the client C a ticket for S

C has never sent a proper request for a
ticket
• C never has the ticket for T

• C thinks she has sent a proper request

• C’s view of the world is inaccurate

• Some properties of Kerberos 4 don’t hold
here

Seen in both formalizations
• Variations possible using added detail

– Anonymous tickets

C

•SKC and SKAnon are service keys generated
for regular and anonymous tickets.
•{m}k is the encryption of m with k.

K

•C has wrong beliefs about
data
•Undesirable, but doesn’t violate
design goals. However, …

KRB-AS-REQ

KRB-AS-REP (TGT, kTC)

The AS Exchange takes place as usual, producing TGT and kTC:

The client C requests a regular and an anonymous ticket (both for S) using TGT:

C T
KRB-TGS-REQ (Regular, based on TGT)

C T
KRB-TGS-REQ (Anonymous, based on TGT)

The TGS T replies, but the intruder I switches the tickets (undetected by C):

C T {SKC, C, …}kS, {SKC, …}kTC

C T {SKAnon, Anon, …}kS, {SKAnon, …}kTC
I

{SKAnon, Anon, …}kS, {SKC, …}kTC

{SKC, C, …}kS, {SKAnon, …}kTC

Anonymous Ticket Anomaly

C S

•C’s name is leaked or she has wrong beliefs about which type of
request succeeded/failed.

1. C’s name is leaked when she tries to contact S anonymously:

2. Alternatively, C sends each type of request. The request with anonymous
ticket gives error, but I fixes other request by replaying first authenticator.

I

Options for Final Step

{SKC, C, …}kS, {Anon, t}SKAnon

Intruder actions required if this message’s integrity is protected [Tom Yu].

C S
{SKAnon, Anon, …}kS, {C, t}SKC

C S
{SKC, C, …}kS, {Anon, t}SKAnon {SKC, C, …}kS, {C, t}SKC

I then tampers with error message so that it names C. C believes
anonymous request accepted (no error), regular request failed; reverse is
true instead.

Discussion

No violations of authentication or
confidentiality, but anomalous behavior
• Possible to leak C’s name (even if link to S is

integrity protected)

• Possible for C to have reversed view of
which type of request has been accepted

Are these (or related issues) of
practical concern?

We should be aware of possibility for
these types of problems.

An Authentication Theorem

If T processes the message
 {kCT,C}kT

,{C}kCT
,C,S,n2

 then some K sent the message
 C,{kCT,C}kT

, {kCT,n1,T}kC

 and C sent some message
 X,{C}kCT

,C,S’,n’2

Authenticate data origin using rank

• Show ticket {kCT,C}kT
 originates with some K

• Show authenticator {C}kCT
 originates with C

– This makes use of a corank argument for
confidentiality

Comments from Kerberos Designers

Generally positive response
• Should look at protocol extensions

Anomalies
• These scenarios can occur

• Practical concern unclear

• Anonymous ticket variation of interest
– Status of this option may change

– Good to highlight possible concerns here

Rank and Corank

Inspired by work of Schneider
Define functions on MSR facts

• k-Rank – encryptions by k
– Data origin authentication

• E-Corank – level of protection by keys in E
– Secrecy

Proofs
• State desired property
• Find applicable (co)rank functions
• Determine effect of MSR rules on these functions

(End glimpse of Kerberos 5 analysis)

A glimpse of contract signing

Each party enters contract with goal
• Party who wants contract acts to

complete the contract

Correctness is relative to goal
• Do not want well-intentioned party to

suffer

Leads to game-theoretic notions
• If A follows strategy S, then B cannot

achieve win over A

• Or, A follows strategy from some class …

[Chadha, Kanovich, Scedrov]

General protocol outline

Trusted third party can force or abort contract
• Third party can declare contract binding if

presented with first two messages.

B C

Willing to sell stock at this price

OK, willing to buy stock at this price

Here is my signature

Here is my signature

Optimism and Advantage

Once customer commits to the purchase, he cannot
use the commited funds for other purposes

Customer likely to wait for some time for broker
to respond, since contacting TTP to force the
contract is costly and can cause delays

Since broker can request abort from TTP, this
waiting period may give broker a way to profit: see
if shares are available at a lower price

The longer the customer is willing to wait, the
greater chance the broker has to pair trades at a
profit

Strategy: example

• Define execution tree using MSR

• Prune tree according to assumed strategy

• Determine correctness

 S4

 S7

 S

 S1

 S2

 S3

 S8

 S6

 S5

Honest participant

Principal P (B or C) is said to be
honest if
• P moves only according to protocol

Equivalent: P’s key not known to adversary

Power to Abort

tr\E is an abort tree for P if every leaf
node is labeled by a state which is aborted
for P

Q has the power to abort at if there is
an E such that tr\E is an abort tree for P

Balance for honest P: For any reachable
configuration , and for all bounds on the
number of steps the intruder can take, at
, Q does not have both the power to
abort and the power to complete

Advantage

Advantage
• Power to abort and power to complete

Balance
• Potentially dishonest Q never has an advantage

against an honest P

Reflect natural bias of honest P
• P is interested in completing a contract, so P is

likely to wait before asking TTP for an abort or
for a resolve

• Formulate properties stronger than balance

Optimistic participant

Honest P (B or C) is said to be
optimistic if
• Whenever P can choose between

– waiting for a message from other
participant Q

– contacting TTP for any purpose

 P waits and allows Q to move next

[Chadha, Mitchell, Scedrov, Shmatikov]

Advantage

Q is said to have the power to abort
against an optimistic P the protocol in S
• if Q can always drive the protocol to a

configuration that is aborted for P

Q is said to have the power to resolve
against an optimistic P the protocol in S
• if Q can always drive the protocol to a

configuration that is complete for P and Q has
P’s signature

Q has advantage against an optimistic P if
Q has both the power to abort and the
power to complete

Hierarchy

 Advantage against honest P H-adv

 Advantage against optimistic P O-adv

MSR model lets us define execution tree

Define strategies, correctness over execution model

Advantage flow

B C

 I am willing to sell at this price

 I am willing to buy at this price

 Here is my signature

 Here is my signature

 O-adv

 O-adv

 O-adv

Impossibility Theorem

In any optimistic, fair, and timely contract-
signing protocol, any potentially dishonest
participant will have an advantage at some
point if the other participant is optimistic

3-valued version of:
• Even’s impossibility of deterministic two-party

contract signing
• Fischer-Lynch-Paterson impossibility of

consensus in distributed systems

[Chadha, Mitchell, Scedrov, Shmatikov]

No evidence of advantage

 If
• Q can provide evidence of P’s participation to an

outside observer X,

 then
• Q does not have advantage against an optimistic

P

 Evidence: what does X know
 X knows fact in state

• is true in any state consistent with X’s
observations in

 (End glimpse of contract signing)

Example projects and tools

Prove protocol correct
• Paulson’s “Inductive method”, others in HOL, PVS,

• MITRE - Strand spaces

• Process calculus: Abadi-Gordon, Gordon-Jeffrey

Search using symbolic representation of states
• Meadows: NRL Analyzer, Millen: CAPSL

Exhaustive finite-state analysis
• FDR, based on CSP [Lowe, Roscoe, Schneider, …]

• Murphi, CASPER, CAPSL, …

All depend on behavior of protocol in presence of attack

Example description languages

First- or Higher-order Logic
• Define set of traces, prove protocol correct

Horn-clause Logic x… (A1A2 … B)
• Symbolic search methods

Process calculus
• FDR model checker based on CSP

• Spi-calculus proof methods based on pi-calculus

Additional formalisms
• CAPSL protocol description language [Millen]

• Mur language for finite-state systems

Paulson’s Inductive Method

Define set TR of traces of protocol+intruder

• Similar to traces in our formalism

• Transition F1, …, Fk x1 … xm. G1, … , Gn
gives one way of extending trace

Auxiliary functions mapping traces to sets

• Analz(trace) = data visible to intruder

• Synth(trace) = messages intruder can
synthesize

Definitions and proofs use induction

• Similar inductive arguments for many protocols

Symbolic Search Methods

Examples: NRL Protocol Analyzer, Interrogator, ProVerif
Main idea

• Write protocol as set of Horn clauses
– Transition F1, …, Fk x1 … xm. G1, … , Gn can

be Skolemized and translated to Prolog clauses
• Search back from possible error for contradiction

– This is usual Prolog refutation procedure
Important pruning technique

• Prove invariants by forward reasoning
• Use these to avoid searching unreachable states

Strands [Guttman et al.]

 Present information about causal interactions

 among protocol participants

 Events

• message sent, message received

 Strands

• finite sequences of events

 s1 s2 … sk , each sj an event

 Parametric strands

• messages may contain variables

 (some marked “fresh”)

Sample Trace Strand
A B: {na, A}Kb

B A: {na, nb}Ka

A B: {nb}Kb

A1(na)

A2(na)

A3(na, nb)

A4(na, nb)

B2(na, nb)

B1(na, nb)

B3(na, nb)

N1(na)

N2(na, nb)

N3(nb)

x. A1(x)

A1(x) A2(x), N1(x)

N1(x) y. B1(x,y)

B1(x,y) N2(x,y), B2(x,y)

A2(x), N2(x,y) A3(x,y)

A3(x,y) N3(y), A4(x,y)

B (x,y), N (y) B (x,y)

Process Calculus Description

 Protocol defined by set of processes

• Each process gives one step of one principal

• Can derive by translation from unifying notation

– F1, …, Fk x1 … xm. G1, … , Gn is one process

– Replace predicates by port names

– Replace pattern-matching by explicit destructuring

– In pi-calculus, use in place of

• Example

– B1(x,y) N2(x,y), B2(x,y)

– b1(p). let x=fst(p) and y=snd(p) in n2x,y| b2 x,y end

Spi-Calculus [Abadi Gordon 97]

Write protocol in process calculus
Express security using observ. equivalence

• Standard relation from programming language
theory

 P Q iff for all contexts C[], same
 observations about C[P] and C[Q]
• Context (environment) represents adversary

Use proof rules for to prove security
• Protocol is secure if no adversary can

distinguish it from an idealized version of the
protocol

Finite-state methods

Two sources of infinite behavior
• Many instances of participants, multiple runs
• Message space or data space may be infinite

Finite approximation
• Transitions: F1, …, Fk x1 … xm. G1, … , Gn

choose fixed number of Skolem constants
• Terms: restrict repeated functions f(f(f(f(x))))

Can express finite-state protocol + intruder in
• CSP : FDR-based model checking projects
• Other notations: Mur project, Clarke et al., ...

