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Computer Security 

Access control 

OS security 

Network security 

Cryptography 

… 

 

Crypto 

Security 
Goal: protection of 
computer systems and 
digital information 



Protocol Security 

Cryptographic Protocol 
• Program distributed over network 

• Use cryptography to achieve goal 

Attacker 
• Read, intercept, replace messages, and 

remember their contents 

Correctness 
• Attacker cannot learn protected secret 

or cause incorrect protocol completion 



Run of protocol 

A 

B 
Initiate 

Respond 

C 

D 

Attacker 

Correct if no security violation in any run 



Correctness vs Security 

Program or System Correctness 
• Program satisfies specification 

– For reasonable input, get reasonable output 

Program or System Security 
• Program resists attack 

– For unreasonable input, output not completely 
disastrous 

Main differences 
• Active interference from environment 

• Refinement techniques may fail 



Needham-Schroeder Key Exchange 

{ A, Noncea } 

{ Noncea, Nonceb } 

{ Nonceb} 

Ka 

Kb 

Result: A and B share two private numbers  
not known to any observer without Ka-1, Kb 

-1  

A B 

Kb 



Anomaly in Needham-Schroeder 

A E 

B 

{A, Na} 

{A, Na} {Na, Nb} 

{Na, Nb} 

{Nb} 

Ke 

Kb Ka 

Ka 

Ke 

Evil agent E tricks 
honest A into revealing 
private key Nb from B. 

Evil E can then fool B. 

[Lowe] 



Kerberos Authentication Protocol  

Protocol goals 
• Repeatedly authenticate a client to multiple 

servers 
• Minimize use of client’s long term key(s) 
• Does not guard against DOS attacks 

Kerberos 4 - 1989 
Kerberos 5 

• Specified in RFC 4120 (2005) 
• Subsequent revisions by working group 

A real world protocol 
• Windows 2000  and later (RFC 4120 + extensions) 
• User login, file access, printing, etc. 



Kerberos 5 

Client C wants ticket for end server S 
• Tickets are encrypted – unreadable by C 

C first obtains long term (e.g., 1 day) 
ticket from a Kerberos Authentication 
Server K 
• Makes use of C’s long term key 

C then obtains short term (e.g., 5 min.) 
ticket from a Ticket Granting Server T 
• Based on long term ticket from K 
• C sends this ticket to S 



Contract Signing (Fair Exchange) 

Contract already agreed on 

Parties adversarial 

Both parties want to sign a contract 

Neither wants to sign first 

Fairness: each party gets the other’s 
signature or neither does  



Scenario: Online Stock Trading 

Signed contracts for each trade 

Why include contracts:  
• Customer may want to prevent a broker 

who does not complete a requested trade 
from claiming that the request was never 
received 

• Broker may want proof that it is acting 
as requested 

 



General protocol outline 

Trusted third party can force or abort contract 
• Third party can declare contract binding if 

presented with first two messages. 

B C 

Willing to sell stock at this price 

OK, willing to buy stock at this price 

Here is my signature 

Here is my signature 



C B 

m1= sign(B,  c, hash(r_B) ) 

sign(C,  m1, hash(r_C) ) 

r_B 

r_C 

Agree 

B C 
Network 

T 

Abort 

??? 

Resolve Attack? 

C B Net 

T 
sigT (m1, m2) 

m1 

??? 

m2 B 

T 

Asokan-Shoup-Waidner protocol 

  If not already 

resolved 

   a1  

sigT (a1,abort) 



Important Modeling Decisions 

How powerful is the adversary? 
• Simple replay of previous messages 
• Block messages; Decompose, reassemble and resend 
• Statistical analysis, partial info from network traffic 
• Timing attacks 

How much detail in underlying data types? 
• Plaintext, ciphertext and keys 

– atomic data or bit sequences 

• Encryption and hash functions 
– “perfect” cryptography 
– algebraic properties:  encr(x*y) = encr(x) * encr(y) for  
                                     RSA encrypt(k,msg) = msgk mod N 



Common Intruder Model  

 Derived from positions taken in Needham-Schroeder [1978]  
and Dolev-Yao [1983] 

 Idealization that makes protocol analysis palatable 
• Adversary is nondeterministic process 
• Adversary can 

– Block network traffic 
– Read any message, decompose into parts 
– Decrypt if key is known to adversary 
– Insert new message from data it has observed 

• Adversary cannot 
– Gain partial knowledge 
– Guess part of a key 
– Perform statistical tests… 



Protocol Analysis Methods 

Non-formal approaches    
• Some crypto-based proofs  [Bellare, Rogaway] 

• Communicating Turing Machines        [Canetti]  

  BAN and related logics  
• Axiomatic semantics of protocol steps  

  Methods based on operational semantics 
• Intruder model derived from Dolev-Yao 
• Protocol gives rise to set of traces 

– Denotation of protocol = set of runs involving arbitrary number of 
principals plus intruder 

  Protocol composition logic     [Datta, Derek, Mitchell, Pavlovic] 

  Cryptographic Library     [Backes, Pfitzmann, Waidner] 



Example projects and tools 

Prove protocol correct  
• Paulson’s “Inductive method”, others in HOL, PVS, 

• MITRE - Strand spaces 

• Process calculus: Abadi-Gordon, Gordon-Jeffrey 

Search using symbolic representation of states 
• Meadows: NRL Analyzer, Millen: CAPSL   

Exhaustive finite-state analysis 
• FDR, based on CSP       [Lowe, Roscoe, Schneider, …] 

• Murphi, CASPER, CAPSL, … 

All depend on behavior of protocol in presence of attack 



Multiset Rewriting Method 

 
• A form of rewriting with  

– One associative, commutative operator 

       (Banatre, LeMetayer; Chem Abs Machine) 

–  to generate fresh data  

• Conventions for modeling protocols, 
adversary using rewriting 



A notation for inf-state systems 

• Many previous models are buried in tools 
• Define common model in tool-independent formalism 

Logical Proof 
(      ) 

Process  

Calculus 
Finite Automata 

Proof search 
(Horn clause) 

Multiset 

rewriting 



Modeling Requirements 

Express properties of protocols 
• Initialization 

– Principals and their private/shared data 

• Nonces 
– Generate fresh random data 

Model attacker 
• Characterize possible messages by attacker 

• Cryptography 

Set of runs of protocol under attack 



Notation commonly found in literature 

• The notation describes protocol traces 

• Does not  
– specify initial conditions 

– define response to arbitrary messages 

– characterize possible behaviors of attacker 

A  B : { A, Noncea }Kb 

B  A : { Noncea, Nonceb }Ka 

A  B : { Nonceb }Kb   



Rewriting Notation 

Non-deterministic infinite-state systems 

Facts 
   F ::=  P(t1, …, tn) 

   t  ::=  x  |  c  |  f(t1, …, tn) 

States   { F1, ..., Fn } 
• Multiset of facts 

– Includes network messages, private state 

– Intruder will see messages, not private state 

Multi-sorted  
first-order  
atomic formulas 

[Cervesato, Durgin, Lincoln, Mitchell, Scedrov] 

 



Rewrite rules 

Transition 
•  F1, …, Fk    x1 … xm.  G1, … , Gn 

What this means 
• If F1, …, Fk in state , then a next state ’ has 

– Facts F1, …, Fk removed 

– G1, … , Gn  added, with x1 … xm replaced by new symbols 

– Other facts in state  carry over to ’ 

• Free variables in rule universally quantified 

Note 
• Pattern matching in F1, …, Fk can invert functions 

• Linear Logic:  F1…Fk    x1 … xm(G1…Gn) 

[Cervesato, Durgin, Lincoln, Mitchell, Scedrov] 

 



Simplified Needham-Schroeder 

 Predicates 

A1(na) 

      -- Alice in state 1 with nonce 
na 

B1(na ,nb) 

      -- Bob in state 1 with na , nb 

N1(na) 

      -- Network contains message 
1 with data  na 

 Transitions 

x. A1(x) 

A1(x)  N1(x), A2(x) 

N1(x)  y. B1(x,y)  … 

A  B:  {na, A}Kb 

B  A:  {na, nb}Ka 

A  B:  {nb}Kb 

 

 

 



Sample Trace 
A  B:  {na, A}Kb 

B  A:  {na, nb}Ka 

A  B:  {nb}Kb 

A2(na)  

A1(na)  

A2(na)  

A2(na)  

A3(na, nb)  

A4(na, nb)  

A4(na, nb)  

B2(na, nb) 

B1(na, nb)  

B2(na, nb) 

B3(na, nb) 

B2(na, nb) 

N1(na) 

N2(na, nb) 

N3( nb) 

x. A1(x) 

A1(x)  A2(x), N1(x)  

N1(x)  y. B1(x,y) 

B1(x,y)  N2(x,y), B2(x,y)  

A2(x), N2(x,y)  A3(x,y) 

A3(x,y)  N3(y), A4(x,y) 

B (x,y), N (y)  B (x,y) 



Formalize Intruder Model 

Intercept, decompose and remember messages 
         N1(x)  M(x)            N2(x,y)  M(x), M(y)       

         N3(x)  M(x) 

Decrypt if key is known 
          M(enc(k,x)), M(k)  M(x) 

Compose and send messages from “known” data 
         M(x)  N1(x), M(x)    

M(x), M(y)  N2(x,y), M(x), M(y)  

         M(x)  N3(x), M(x)  

Generate new data as needed 

           x. M(x) 

   Highly nondeterministic, same for any protocol 



Protocol theory 

Initialization theory 
• Bounded theory that “precedes” protocol run 
• Example:      key. Principal(key) 

Role generation theory 
• Principal(key)  A0(key), Principal(key) 
• Principal(key)  B0(key), Principal(key) 

Role theory 
• Finite ordered list of rules  
          Ai(…), Nj(…)  … Ak(…), Nl(x)    where i<k, j<l 

• Can also have persistent predicates on left/right 



Two-phase intruder theory 

Avoid pointless looping by intruder 
• M(x), M(y)  N(x,y), M(x), M(y)  

• N (x,y)  M(x), M(y)  

Phase 1: Decomposition 

Phase 2: Composition 



Thesis: MSR Model is accurate 

Captures “Dolev-Yao-Needham-Millen-Meadows- …” model 
• MSR defines set of traces protocol and attacker 

• Connections with approach in other formalisms 

Useful for protocol analysis 
• Errors shown by model are errors in protocol 

• If no error appears, then no attack can be carried 
out using only the actions allowed by the model 



Attack on Simplified Protocol 

A2(na)  

A1(na)  

A2(na)  

A2(na)  

B1(na’, nb)  

N1(na) 

x. A1(x) 

A1(x)  A2(x), N1(x) 

N1(x)  M(x)  

   x. M(x) 

M(x)  N1(x), M(x)  

N1(x)  y. B1(x,y) 

M(na)  

M(na), M(na’)  

N1(na’) A2(na)  M(na), M(na’)  

A2(na)  M(na), M(na’)  

Continue “man-in-the-middle” to violate 
specification 



Modeling Perfect Encryption 

 Encryption functions and keys 

• For public-key encryption 

– two key sorts: e_key, d_key 

– predicate  Key_pair(e_key, d_key) 

• Functions  

     enc : e_key  msg -> msg 

      dec : d_key  msg -> msg    (implicit in pattern-matching) 

 Properties of this model 

• Encrypt, decrypt only with appropriate keys 

• Only produce enc(key, msg) from key and msg   

– This is not true for some encryption functions 
 



Steps in public-key protocol 

Bob generates key pair and publishes  

• e_key u. d_key v. Bob1(u,v) 

• Bob1(u,v)  NAnnounce(u), Bob2(u,v) 

Alice sends encrypted message to Bob 
• Alice1(e,d,x), NAnnounce(e’)  Alice2(e,d,x,e’) 

• Alice2(e,d,x,e’)  N1(enc(e’,x,e)), Alice3(e,d,x,e’) 

Bob decrypts message and generates nonce 
• Bob1(u,v), N1(enc(u, x,y))  z. Bob2(u,v,x,y,z) 



Intruder Encryption Capabilities 

Intruder can encrypt with encryption key 

• Me(k), Mdata(x)  Ni(enc(k,x)), Me(k), Mdata(x)  

Intruder can decrypt with decryption key 

• Nj(enc(k,x)),Key_pair(k,k’), Md(k’),  Mdata(x), ... 

Add to previous intruder model 

 Assumes sorts data, e_key, d_key with typed 

 predicates Mdata(data),  Me(e_key), Md(d_key)  



Connections with logic and tools 

 Search can find protocol errors 
• Backward search:  

– Interrogator [Millen] 
– NRL analyzer [Meadows] 
– ProVerif [Blanchet] 

• Forward search (model checking) 
– FDR [Roscoe], Casper [Lowe], Murphi [Mitchell2 & Stern] 
– SMV [Marrero, Clarke, & Jha] 
– Athena [Song], TIPE [Denker, Meseguer, Talcott & Millen] 

 Prove protocol properties 
• Poly-time prob. process calculus  [Lincoln, Mitchell, Ramanathan, Scedrov,Teague] 

– CryptoVerif [Blanchet] 

• Inductive proof: 
– InaJo [Kemmerer], Coq [Bolignano]  
– Isabelle [Paulson, Basin], PVS[Dutertre, Schneider, Millen] 



Conventional wisdom 

Find protocol errors 

• Model checking 

• Exhaustive search of finite-state system 

Prove protocol correct 

• Use theorem-proving system 

• Exhausting development of formal proof 

Are there decidable protocol cases? 

• Many are short programs with simple data 

• Ping-Pong protocols (D&Y: Ptime) too restrictive 

• What causes intractability for interesting 
protocols? 



General protocols are undecidable 

Even and Goldreich 1983,  Heintze and Tygar 1996, 
… 

 

Idea: Post Correspondence Problem 

• Given an indexed finite set of pairs of strings 
(Ui,Vi)  , is there a sequence of indices  i1, …, in  

    so that   Ui1 … Uin  =  Vi1 … Vin   

  Security: Intruder never learns SECRET 

• Unreachability of state including M(SECRET) 



General protocols are undecidable 

 Post Correspondence Problem as a 
protocol: 
• Good guy appends pair (Ui,Vi) to end of 

sequence 

• If top and bottom read the same, spill 
secret 

–A -> B:  {empty, empty}k 

–B -> A:  {X,Y}k     {(X  Ui), (Y  Vi)}k 

–A -> B:  {X,X}k     if  X  empty, send 

SECRET 

 



Protocols vs Rewrite rules 

Can axiomatize any computational system 

But -- protocols are not arbitrary programs 

 

Initial data 

Client 

Select roles 

Client TGS Server 



Bounded message size 

 Prohibit arithmetic 

• Some  protocols use successor: 

– A -> B: {Nonce}k 

– B -> A: {Nonce + 1}k 

• Successor and equality test lead to undecidability 

 Prohibit nested encryption 

• Some protocols use nested encryption: 

– A -> B: {{m}k, Nonce}k’ 

• Arbitrary depth encryption allows undecidability 

– A -> B: {{m}k, {{{m}k}k}k, Q}k 

• State is Q, two counters are 1 and 3.  



What about a “realistic” 
restricted class of protocols ? 

Finite number of principals 

Each role has finite number of steps  

• But a principal may repeat any number of roles 

Bounded message size 

• Fixed number of fields in message 

• Fixed set of message constants 

• Fixed depth encryption   

• Allow nonces (but only “create new nonce”, and = ) 

Everything constant, except number of roles and 
number of new nonces 



Protocol theory 

Initialization theory 
• Describes initial conditions such as key 

generation or other shared information  

Role generation theory 
• Designates possibly multiple roles that 

each participant may play (such as 
initiator, responder, client, or server) 

Agent theory   
• Disjoint union of bounded subtheories 

that each characterize a possible role 



Protocol theory 

Initialization theory 
• Bounded theory that “precedes” protocol run 
• Example:      key. Principal(key) 

Role generation theory 
• Principal(key)  A0(key), Principal(key) 
• Principal(key)  B0(key), Principal(key) 

Role theory 
• Finite ordered list of rules  
          Ai(…), Nj(…)  … Ak(…), Nl(x)    where i<k, j<l 

• Can also have persistent predicates on left/right 



Two-phase intruder theory 

Avoid pointless looping by intruder 
• M(x), M(y)  N(x,y), M(x), M(y)  

• N (x,y)  M(x), M(y)  

Phase 1: Decomposition 

Phase 2: Composition 



Thesis: MSR Model is accurate 

Captures “Dolev-Yao-Needham-Millen-Meadows- …” model 
• MSR defines set of traces protocol and attacker 

• Connections with approach in other formalisms 

Useful for protocol analysis 
• Errors shown by model are errors in protocol 

• If no error appears, then no attack can be carried 
out using only the actions allowed by the model 



Secrecy still undecidable 

There is no algorithm for deciding 
whether a  given protocol in 
restricted form, run in combination 
with the standard intruder, allows the 
intruder to gain access to a given 
initial secret.   
• Represent existential Horn theories as 

protocol  theories 

• Existential Horn theories w/o function 
symbols are undecidable: Vardi ICALP'81, 
Chandra, Lewis, and Makowsky STOC’81   



Direct encoding  

Turing machines,  Cook’s Theorem 
• but use nonces instead of propositional 

variables 

Start | 0 | 0 | 1 | q20 | 0 | 1 | 1 | 0 | End 

Start | 0 | 0 | q51 | 1 | 0 | 1 | 1 | 0 | End 

Start | 0 | 0 | 0 | q61 | 0 | 1 | 1 | 0 | End 



Start | 0 | 0 | q51 | 1 | 0 | 1 | 1 | 0 | End 

Start | 0 | 0 | 1 | q20 | 0 | 1 | 1 | 0 | End 

Start | 0 | 0 | 0 | q61 | 0 | 1 | 1 | 0 | End 

Turing machine  

1 | q0 | 0  

1 

Constant (3) piece of state at time N 

determines state of cell at  time N+1 



Turing machine  

 Predicates 

• Cell(name, symbol, right)           -- contents of tape cell 

• Below(cell, cell)                         -- next row of tableau 

 Rules 

• Cell(a,0,b), Cell(b, q20,c), Cell(c,1,…) 

   d.  Below(b,d), Cell(d,1,…),... 

 

q20 0 1 

1 

  a        b        c 

  d 



Turing machine    

• Cell(a,da, b), Cell(b,db, c), Cell(c,dc, d), Below(b,b’)            

 c’. Below(c,c’), Cell(b’,F(da,db,dc),c’) 

• Below(a,a’), Cell(a,Start,b)                                                              

 a’’,b’: Below(a’,a’’), Cell(a’,Start, b’) 

• Below(a,a’), Cell(a,End,b)                                                               

 b’, c’: Cell(a’,0, b’), Cell(b’, End, c’) 

 

•  a,a’,b,c,d,e: Cell(a,Start,b), Cell(b,Qinit,c),             

Cell(c,  0, d), Cell(d,End,e), Below(a,a’) 

• Cell(a,Qfinal,b)   Broadcast(Secret) 

Turing   
machine 
 move 

Start  
and 
End 

Copy to 
Next Time 

Extend  
Tape 



Turing machine discussion 

Each move is a protocol role 

• Finite length protocol 

Attacker replays and routes messages 

• To prevent malicious alteration, encrypt all 
messages will shared private key: 

    { Cell(a,da, b) }k 

Machine steps in standard protocol form 

   Ai(…), Nm(…)    Ak(…), Nl(…) 

 Role reads hypotheses one at a time, saving data in 
internal state. 



Undecidability 

Finite length protocols with  

• bounded number of principals  

• bounded message size  

   have undecidable behavior if  

• principals can repeat roles arbitrarily many 
times 

• runs can generate new atomic data 

 

What happens if we 

• Bound ability to generate new data? 

• Restrict number of roles ? 



Attack requires exponential run 

Sender role broadcasts initial message 

• A: Broadcast {0, 0, 0, 0}k 

n responder roles modify secret messages 

• B1: {x,  y,  z,  0 }k      {x, y, z, 1 }k 

• B2: {x,  y,  0,  1 }k      {x, y, 1, 0 }k 

• B3: {x,  0,  1,  1 }k      {x, 1, 0, 0 }k 

• B4: {0,  1,  1,  1 }k      {1, 0, 0, 0 }k 

Server broadcasts key on specific message 

• C : {1, 1, 1, 1, 1 }k     Broadcast( k )  

Attack requires 2n steps and 2n messages. 



Security DEXP-time complete 

No new data, but repeat roles arbitrarily 

Same encoding of Horn clauses (DATALOG) 

• Axiomatize bounded Turing machine tableau 

Use counters instead of nonces to name cells 

• Cell(name, data, neighbor)   as before 

• Represent name by pair of numbers 

–    Cell( 0,1,0,...,0,  0,0,1,…,1,    data,  neighbor),  

 

 

• 2n  2n tableau using messages of size 4n 
n bits n bits 



Testing for  a = b ,  c  d  

 x  y   atomic  

 Conditional transition rule 

    a1=b1, … , ai=bi, c1  d1 , … , cj  dj ;  F1, …, Fk    

                                                             x1 … xm.  G1, … , Gn  

 What this means 

• If F1, …, Fk in state , and if  a1=b1, … , ai=bi,  

    c1  d1 , … , cj  dj  are true,  then a next state ’ has 

– Facts F1, …, Fk removed 

– G1, … , Gn  added, with x1 … xm replaced by new symbols 

– Other facts in state  carry over to ’ 

• Free variables in rule universally quantified  

 

 



Complexity results using MSR 

  Key insight: existential quantification () captures cryptographic 
nonce; main source of complexity 

[Durgin, Lincoln, Mitchell, Scedrov] 

 only 

,  

 only 

,  

Intruder 
w/o  

Intruder 
with     

              

Unbounded 
use  of   

Bounded  
use of  

Bounded # 
of roles 

NP –  

complete 
Undecidable 

?? 

DExp –  

time 

 

All: Finite number of different roles, each role of finite length, bounded message size 



Lower bounds  from Horn clauses 

  Need to show that hard instances of Horn clause inference can be 
be represented in the restricted form of a security protocol 

[Durgin, Lincoln, Mitchell, Scedrov] 

 only 

,  

 only 

,  

Intruder 
w/o  

Intruder 
with     

              

Unbounded 
#  of   

Bounded  
# of  

Bounded # 
of roles 

NP-complete: 

Provable by 
bounded-

length proof 

Undecidable: 

Datalog +   

?? 

Dexptime: 

Datalog 

 

All: Finite number of different roles, each role of finite length, bounded message size 



Additional decidable cases 

Bounded role instances, unbounded msg size 
• Huima 99: decidable 

• Amadio, Lugiez: NP w/ atomic keys 

• Rusinowitch, Turuani: NP-complete, composite keys 

• Other studies, e.g., Kusters: unbounded # data fields 

Constraint systems 
• Cortier, Comon: Limited equality test 

• Millen, Shmatikov: Finite-length runs 

 

    All:  bound number of role instances 



Lessons  

Symbolic notation for unrestricted protocols 

• Nonce becomes existentially quantified variable 

• Translations to process calculus, strands, HOL, ...  

• Fragment of linear logic 

– Protocol search is proof search  

– Formal proofs using linear-logic proof theory, 
tools 

Study decision problems  (secrecy, authenticity) 

• Undecidable if protocols generate new data 

• DEXP-time complete with bounded new data 

• NP-complete if bounded number of roles          



Intruder: power and limitations 

Can find some attacks 

• Needham-Schroeder by exhaustive search 

Other attacks are outside model 

• Interaction between protocol and encryption 

Some protocols cannot be modeled 

• Probabilistic protocols 

• Steps that require specific property of 
encryption 

Possible to prove erroneous protocol correct 

• Requires property that crypto does not provide   



Malleability 

 Our idealized assumption 

• If intruder produces  Network(enc(k,x)) then either 
– Network(enc(k,x))  M (enc(k,x))              (replay) 
– M(k), M(x)  M (enc(k,x))                          (knows parts) 

 Not true in general  
• Given only the ciphertext it may be easy to generate a 

different ciphertext so that the respective plaintexts are 
related 

• Attacks may exploit this: adversary computes enc(f(x)) given 
only enc(x) 



Malleability         [Dolev,Dwork,Naor] 

RSA 

• enc(k,msg) = msgk mod N 

• property  enc(xy) = enc(x)  enc(y)  

• trivial to compute enc(2x) given only enc(x) 

Model 

– Network(enc(k,x))  M (…) ...  
Network(enc(k,cx))  

Can send encrypted message without “knowing” 
message 

Non-malleable crypto [Dolev,Dwork,Naor] 

                                



Kerberos 5 Analysis:   Goals 

Give precise statement and formal analysis 
of a real world protocol 
• Find a real world protocol – Kerberos 5 

• Pick favorite formalization method - MSR 

Identify and formalize protocol goals 

Give proofs of achieved protocol goals 
• Gain experience in reasoning with MSR 

Note any anomalous behavior 
• Suggest possible fixes, test these 

[Butler, Cervesato, Jaggard, Scedrov] 



Kerberos 5 

Client C wants ticket for end server S 
• Tickets are encrypted – unreadable by C 

C first obtains long term (e.g., 1 day) 
ticket from a Kerberos Authentication 
Server K 
• Makes use of C’s long term key 

C then obtains short term (e.g., 5 min.) 
ticket from a Ticket Granting Server T 
• Based on long term ticket from K 
• C sends this ticket to S 



Protocol Messages 

  Please give me ticket for T 

  Ticket for C to give to T 
C                                                                 K 

  Ticket from K, one for S? 

  Ticket for C to give to S 
C                                                                 T 

  Ticket from T 

  Confirmation (optional) 
C                                                                 S 

C                                                                 K 

C                                                                 T 

C                                                                 S 



Overview of Results 

Formalized Kerberos 5 at different levels of 
detail 

Observed anomalous behavior 
• Some properties of Kerberos 4 do not hold for 

Kerberos 5 

• Proved authentication properties that do hold for 
Kerberos 5 

Proofs of properties which do hold 
• Methods adapted from Schneider 

Interactions with Kerberos working group 



Related Kerberos Work 

Kerberos 4 - Bella & Paulson 
• Inductive approach using theorem prover 

Isabelle 

• Proofs of authentication and 
confidentiality 

• Incorporated timestamps and temporal 
checks 

Bella & Riccobene 
• Gurevich’s Abstract State Machine 

Kerberos 5 - Mitchell, Mitchell, & Stern 
• Analyzed simplified protocol with state 



Related Formal Work 

MultiSet Rewriting (MSR) formalism 
• Lincoln, Mitchell, Scedrov, Durgin, and 

Cervesato 

• Extended to Typed MSR by Cervesato 

Rank functions 
• Defined by Schneider 

• Our proof methods adapted from this 
idea 



Abstract Formalization 

Contains core protocol 
• Other formalization refines this one 

Exhibits an anomaly 
• This appears to be structural and not due 

to omitted detail 

Allows us to prove authentication 
results 



Messages in Abstract Level 

  C,T,n1 

  C,{kCT,C}kT
, {kCT,n1,T}kC

 

C                                                                 K 

 {kCT,C}kT
,{C}kCT

,C,S,n2 

  C,{kCS,C}kS
,{kCS,n2,S}kCT 

C                                                                 T 

 {kCS,C}kS
,{C,t}kCS 

  {t}kCS 

C                                                                 S 

C                                                                 K 

C                                                                 T 

C                                                                 S 



Detailed Formalization 

Uses richer message structure 

• Adds some fields for options 

– E.g., anonymous tickets 

• Models encryption type 

• Adds checksums 

Exhibits anomalies 

• Encryption type option specific to this level 

• Structural anomaly also seen at abstract level 

– Also variations which use added detail 



Messages in Detailed Level 

  KOpts,C,T,n1,e1 

  C,{Tflags,kCT,C}kT
, {kCT,n1,Tflags,T}e1’

kC 

 {Tflags,kCT,C}kT
,{C,MD,t}kCT

,Topts,C,S,n2,e2 

  C,{Sflags,kCS,C}kS
,{kCS,n2, Sflags,S}e2’

kCT 

 SOpts,{Sflags,kCS,C}kS
,{C,MD’,t’}kCS 

[{t’}e
kCS

] 

C                                                                   K|T|S 
KRB_ERROR,[-|t|t’],terr,ErrCode,C,(K|T|S) 

C                                                                    K 

C                                                                   T 

C                                                                   S 

C                                                                   T 

C                                                                    K 

C                                                                   S 



Encryption Type Anomaly 

Kerberos 5 allows C to specify encryption types that 
she wants used in K’s response 
 

 
 
 

C’s key associated with the etype ebad is kbad 

• Intruder I learns kbad 

• C knows this and attempts to avoid ebad/kbad 

• I can still force kbad to be used 

  Please give me ticket for T using 
etype (sent unencrypted) C                                                                 K 

  Ticket for C to give to T (other 
info encrypted using etype) C                                                                 K 



Ticket Anomaly 

  Ticket for C to give to T 
C                                                                 K 

Kerberos 4: 
• Ticket is enclosed in another encryption 

 
 

Kerberos 5: 
• Ticket is separate from other encryption 

  {Ticket, Other data}kC 

  Ticket, {Other data}kC 



Ticket Anomaly 

  Please give me a ticket for T 

  Ticket for T, {Other data}kC
 

C                                                                 K 

 X, Ticket for S? 

  Ticket for S.
 

T 

I  
X, {Other data}kC

 
I  (cuts Ticket) C                                                                  

I  
 Ticket from K, ticket for S? 

I C                                                                  

C                                                                  

K 

T  



Ticket Anomaly 

T grants the client C a ticket for S 

C has never sent a proper request for a 
ticket 
• C never has the ticket for T 

• C thinks she has sent a proper request 

• C’s view of the world is inaccurate 

• Some properties of Kerberos 4 don’t hold 
here 

Seen in both formalizations 
• Variations possible using added detail 

– Anonymous tickets 



C 

•SKC and SKAnon are service keys generated 
for regular and anonymous tickets. 
•{m}k is the encryption of m with k. 

K 

•C has wrong beliefs about 
data 
•Undesirable, but doesn’t violate 
design goals.  However, … 

KRB-AS-REQ 
 

KRB-AS-REP (TGT, kTC) 

The AS Exchange takes place as usual, producing TGT and kTC: 

The client C requests a regular and an anonymous ticket (both for S) using TGT: 

C T 
KRB-TGS-REQ (Regular, based on TGT) 

C T 
KRB-TGS-REQ (Anonymous, based on TGT) 

The TGS T replies, but the intruder I switches the tickets (undetected by C): 

C T {SKC, C, …}kS, {SKC, …}kTC 

C T {SKAnon, Anon, …}kS, {SKAnon, …}kTC 
I 

{SKAnon, Anon, …}kS, {SKC, …}kTC 

{SKC, C, …}kS, {SKAnon, …}kTC 

Anonymous Ticket Anomaly 



C S 

•C’s name is leaked or she has wrong beliefs about which type of 
request succeeded/failed. 

1. C’s name is leaked when she tries to contact S anonymously: 

2. Alternatively, C sends each type of request.  The request with anonymous 
ticket gives error, but I fixes other request by replaying first authenticator. 

I 

Options for Final Step 

{SKC, C, …}kS, {Anon, t}SKAnon 

Intruder actions required if this message’s integrity is protected [Tom Yu]. 

C S 
{SKAnon, Anon, …}kS, {C, t}SKC 

C S 
{SKC, C, …}kS, {Anon, t}SKAnon {SKC, C, …}kS, {C, t}SKC 

I then tampers with error message so that it names C.  C believes 
anonymous request accepted (no error), regular request failed; reverse is 
true instead. 



Discussion 

No violations of authentication or 
confidentiality, but anomalous behavior 
• Possible to leak C’s name (even if link to S is 

integrity protected) 

• Possible for C to have reversed view of 
which type of request has been accepted 

Are these (or related issues) of 
practical concern? 

We should be aware of possibility for 
these types of problems. 



An Authentication Theorem 

If T processes the message     
  {kCT,C}kT

,{C}kCT
,C,S,n2  

 then some K sent the message   
  C,{kCT,C}kT

, {kCT,n1,T}kC
  

 and C sent some message     
  X,{C}kCT

,C,S’,n’2 

Authenticate data origin using rank 

• Show ticket {kCT,C}kT
 originates with some K 

• Show authenticator {C}kCT
 originates with C 

– This makes use of a corank argument for 
confidentiality 



Comments from Kerberos Designers 

Generally positive response 
• Should look at protocol extensions 

Anomalies 
• These scenarios can occur 

• Practical concern unclear 

• Anonymous ticket variation of interest 
– Status of this option may change 

– Good to highlight possible concerns here 



Rank and Corank 

Inspired by work of Schneider 
Define functions on MSR facts 

• k-Rank – encryptions by k 
– Data origin authentication 

• E-Corank – level of protection by keys in E 
– Secrecy 

Proofs 
• State desired property 
• Find applicable (co)rank functions 
• Determine effect of MSR rules on these functions 

 
(End glimpse of Kerberos 5 analysis) 



A glimpse of contract signing 

Each party enters contract with goal 
• Party who wants contract acts to 

complete the contract 

Correctness is relative to goal 
• Do not want well-intentioned party to 

suffer 

Leads to game-theoretic notions 
• If A follows strategy S, then B cannot 

achieve win over A 

• Or, A follows strategy from some class …  

[Chadha, Kanovich, Scedrov] 



General protocol outline 

Trusted third party can force or abort contract 
• Third party can declare contract binding if 

presented with first two messages. 

B C 

Willing to sell stock at this price 

OK, willing to buy stock at this price 

Here is my signature 

Here is my signature 



Optimism and Advantage 

Once customer commits to the purchase, he cannot 
use the commited funds for other purposes 

Customer likely to wait for some time for broker 
to respond, since contacting TTP to force the 
contract is costly and can cause delays 

Since broker can request abort from TTP, this 
waiting period may give broker a way to profit: see 
if shares are available at a lower price 

The longer the customer is willing to wait, the 
greater chance the broker has to pair trades at a 
profit 



Strategy: example 

• Define execution tree using MSR 

• Prune tree according to assumed strategy 

• Determine correctness 

 S4 

 S7 

  S 

 S1 

 S2 

 S3 

 S8 

 S6 

 S5 



Honest participant 

Principal P (B or C) is said to be 
honest if 
• P moves only according to protocol 

 

 

 

Equivalent: P’s key not known to adversary 



Power to Abort 

tr\E is an abort tree for P if every leaf 
node is labeled by a state which is aborted 
for  P  

Q has the power to abort at   if there is 
an E such that tr\E is an abort tree for P 

Balance for honest P: For any reachable 
configuration , and for all bounds on the 
number of steps the intruder can take, at  
, Q  does not have both the power to 
abort and the power to complete 



Advantage  

Advantage 
• Power to abort and power to complete   

Balance   
• Potentially dishonest Q never has an advantage 

against an honest P  

Reflect natural bias of honest P 
• P is interested in completing a contract, so P is 

likely to wait before asking TTP for an abort or 
for a resolve 

• Formulate properties stronger than balance 



Optimistic participant 

Honest P (B or C) is said to be 
optimistic if 
• Whenever P can choose between 

– waiting for a message from other      
participant Q  

– contacting TTP for any purpose  

   P waits and allows Q to move next 

[Chadha, Mitchell, Scedrov, Shmatikov] 



Advantage 

Q is said to have the power to abort 
against an optimistic P the protocol in S 
• if Q can always drive the protocol to a 

configuration that is aborted for P 

Q is said to have the power to resolve  
against an optimistic P the protocol in S 
• if Q can always drive the protocol to a 

configuration that is complete for P and Q has 
P’s signature 

Q has advantage against an optimistic P if 
Q has both the power to abort and the 
power to complete 



Hierarchy 

          Advantage against honest P                H-adv 
                                   

          Advantage against optimistic P          O-adv 

 

 
MSR model lets us define execution tree 

Define strategies, correctness over execution model 

 



Advantage flow  

B                                                                  C 

  I am willing to sell at this price 

  I am willing to buy at this price 

        Here is my signature 

         Here is my signature 

 O-adv  

  

    O-adv 

     O-adv  



Impossibility Theorem 

In any optimistic, fair, and timely contract-
signing protocol, any potentially dishonest 
participant will have an advantage at some 
point if the other participant is optimistic 

3-valued version of: 
• Even’s impossibility of deterministic two-party 

contract signing 
• Fischer-Lynch-Paterson impossibility of 

consensus in distributed systems 
                                

                 

[Chadha, Mitchell, Scedrov, Shmatikov] 



No evidence of advantage 

 If  
• Q can provide evidence of P’s participation to an 

outside observer X,  

    then  
• Q does not have advantage against an optimistic 

P 

 Evidence: what does  X know 
 X knows  fact    in state      

•   is true in any state consistent with X’s 
observations in  

                (End glimpse of contract signing) 



 



 



Example projects and tools 

Prove protocol correct  
• Paulson’s “Inductive method”, others in HOL, PVS, 

• MITRE - Strand spaces 

• Process calculus: Abadi-Gordon, Gordon-Jeffrey 

Search using symbolic representation of states 
• Meadows: NRL Analyzer, Millen: CAPSL   

Exhaustive finite-state analysis 
• FDR, based on CSP       [Lowe, Roscoe, Schneider, …] 

• Murphi, CASPER, CAPSL, … 

All depend on behavior of protocol in presence of attack 



Example description languages 

First- or Higher-order Logic 
• Define set of traces, prove protocol correct 

Horn-clause Logic     x… (A1A2 …  B)  
• Symbolic search methods 

Process calculus 
• FDR model checker based on CSP 

• Spi-calculus proof methods based on pi-calculus 

Additional formalisms 
• CAPSL protocol description language [Millen] 

• Mur language for finite-state systems 



Paulson’s Inductive Method 

Define set TR of traces of protocol+intruder 

• Similar to traces in our formalism 

• Transition F1, …, Fk    x1 … xm.  G1, … , Gn 
gives one way of extending trace 

Auxiliary functions mapping traces to sets 

• Analz(trace) = data visible to intruder 

• Synth(trace) = messages intruder can 
synthesize 

Definitions and proofs use induction 

• Similar inductive arguments for many protocols 



Symbolic Search Methods 

Examples: NRL Protocol Analyzer, Interrogator, ProVerif 
Main idea 

• Write protocol as set of Horn clauses 
– Transition F1, …, Fk    x1 … xm.  G1, … , Gn  can 

be Skolemized and translated to Prolog clauses 
• Search back from possible error for contradiction 

– This is usual Prolog refutation procedure 
Important pruning technique 

• Prove invariants by forward reasoning 
• Use these to avoid searching unreachable states 

 



Strands [Guttman et al.] 

 Present information about causal interactions    

    among protocol participants 

  Events  

•  message sent, message received 

  Strands 

•  finite sequences of events 

     s1  s2  …  sk     ,   each  sj  an event  

  Parametric strands 

•   messages may contain variables  

     (some marked  “fresh”) 



Sample Trace Strand 
A  B:  {na, A}Kb 

B  A:  {na, nb}Ka 

A  B:  {nb}Kb 

A1(na)  

A2(na)  

A3(na, nb)  

A4(na, nb)  

B2(na, nb) 

B1(na, nb)  

B3(na, nb) 

N1(na) 

N2(na, nb) 

N3( nb) 

x. A1(x) 

A1(x)  A2(x), N1(x)  

N1(x)  y. B1(x,y) 

B1(x,y)  N2(x,y), B2(x,y)  

A2(x), N2(x,y)  A3(x,y) 

A3(x,y)  N3(y), A4(x,y) 

B (x,y), N (y)  B (x,y) 



Process Calculus Description 

 Protocol defined by set of processes 

• Each process gives one step of one principal 

• Can derive by translation from unifying notation 

– F1, …, Fk    x1 … xm.  G1, … , Gn is one process 

– Replace predicates by port names 

– Replace pattern-matching by explicit destructuring 

– In pi-calculus, use  in place of  

• Example 

– B1(x,y)  N2(x,y), B2(x,y)  

– b1(p). let x=fst(p) and y=snd(p) in  n2x,y| b2 x,y end 



Spi-Calculus         [Abadi Gordon 97] 

Write protocol in process calculus 
Express security using observ. equivalence 

• Standard relation from programming language 
theory 

       P  Q iff  for all contexts C[ ], same  
                   observations about C[P] and C[Q] 
• Context (environment) represents adversary 

Use proof rules for  to prove security 
• Protocol is secure if no adversary can 

distinguish it from an idealized version of the 
protocol 



Finite-state methods 

Two sources of infinite behavior 
• Many instances of participants, multiple runs 
• Message space or data space may be infinite 

Finite approximation 
• Transitions: F1, …, Fk    x1 … xm.  G1, … , Gn 

choose fixed number of Skolem constants 
• Terms: restrict repeated functions f(f(f(f(x))))  

Can express finite-state protocol + intruder in 
• CSP : FDR-based model checking projects 
• Other notations: Mur project, Clarke et al., ... 


