Optical Manipulation of Polariton Condensates

Pavlos G. Savvidis
University of Crete, FORTH-IESL

Peterhoff
21.06.13

Phase Locked

Trapped
Acknowledgements

Department of Materials Science / IESL-FORTH

Dr. Simos Tsintzos
Dr. Peter Eldridge
PhD Panos Tsotsis
PhD Tingge Gao

Z. Hatzopoulos MBE

Collaboration

J. Baumberg
N. Berloff
G. Christmann
G. Tosi
P. Cristofolini
Strong Coupling Regime in Semiconductor Microcavity

- Polaritons directly accessible by shining light on MC
- Strongly modified dispersion relations
 - reduced density of states near $k_\parallel=0$
- Small polariton mass $m_{\text{pol}} \approx 10^{-4}m_e$
- Strong non-linearities $\rightarrow \chi^3$ (exciton component)

Strong Coupling Regime

$$E_{\text{photon}} = \frac{\hbar c}{n_c} \sqrt{\left(\frac{2\pi}{L_c}\right)^2 + k_\parallel^2}$$

$$E_{\text{ex}}(k_\parallel) = E(0) + \frac{\hbar^2 k_\parallel^2}{2M_{\text{exciton}}}$$

FORTH Microelectronics Research Group
Univ. of Crete
High finesse GaAs microcavity

Linewidth = 90μeV
T = 6K

Experimental
Q factor ~ 16000

Modeled Q factor ~ 20000
Setup

Sample:
- High quality $5/2 \lambda$ microcavity ($Q < 16.000, \tau > 7\text{ps}$)
- 4×3 GaAs quantum wells, 9 meV Rabi splitting
- Cryogenics: kept at $T \approx 10\text{ K}$

Excitation:
- Single mode Ti-Sapphire laser, $\lambda = 755\text{ nm}$ (non-res.)
- Shaped by Phase modulation with spatial light modulator

Detection:
- Real & k-space imaging
- Energy-resolved tomography
- Interferometric phase measurement
Blueshift Potential

- Condensate
- Blueshift Potential
- Radially Accelerated Polariton Flow

- High Density of Excitons
- Repulsive Interaction "Blueshift Hill"
- Radially Accelerated Polariton Flow

Excitons $\varnothing \approx 1\mu m$

Blueshift 2 meV

Condensate $8\mu m$
Ballistic Condensate Ejection

- Blue shift at pump: $V_{\text{max}} = g|\psi|^2$
- Polaritons expand along the ridge.

- Condensate fed by relaxing reservoir polaritons.
- Condensate remains at same energy --> fully coherent.

Phase Locked Condensates

\[\psi = \sqrt{\rho} \cdot e^{-i\left(\frac{E}{\hbar} + \varphi\right)} \]

\[\theta = \frac{(E_2 - E_1)t}{\hbar} \to 0 \]

\[\ddot{\theta} + 2\alpha\dot{\theta} = 4\tilde{g}J\frac{\alpha}{\sigma} \sin(\theta) \]

Damped Pendulum

Trapping Transition: PRL 110, 186403 (2013)
Buildup of Coherence and Phase Locking

Time resolved measurement & interferometry

Pulsed excitation, interference of one condensate with the other

Sample 10K

Pump laser

BS

Streak
N = 2: Cooperative Effect

Trapping Transition: PRL 110, 186403 (2013)

Polariton Condensates

Lower Threshold
Smaller ejection wavevector
Larger Interference fringes
N=2: 2D Quantum Oscillator

\[\psi = \sqrt{\rho} \cdot e^{-\frac{iEt}{\hbar}} + \varphi \]

Multi-spot Excitation: N=2

Polariton Condensates
Condensate theory

- complex Ginzburg-Landau equation (cGL)

\[i\hbar \partial_t \psi = [E(i\nabla) + g |\psi|^2 + \hbar R_R N(r, t)]\psi + i\left[\frac{\hbar}{2} R_R N(r, t) - \frac{i\hbar \eta N}{\partial_t} - \Gamma_C \right] \psi \]

- reservoir dynamics

\[\partial_t N(x, t) = -\left[\Gamma_R + \beta R_R |\psi(x, t)|^2\right]N(x, t) + P(x) + D \nabla^2 N \]

N. Berloff

[Nature Physics 8, 190 (2012)](http://dx.doi.org/10.1038/nphys1968)
Simulation results

Resembles oscillating dark-solitons

How to measure?
Condensate dynamics

- Modelocking condensates

Nonlinear optics

cf: ultrafast lasers, supercontinuum generation

Visibility (%)

Self-interference every round trip time (exact match)

All the simple harmonic oscillator levels are phase coherent

Nature Physics 8, 190–194 (2012)
Tuneable oscillator

Wavepacket frequency (THz)

temporal width $\Delta t \approx t_r/n_{SHO}$

set by number of SHO states ($n_{SHO}=10$)

$$t_r = \pi L \sqrt{\frac{m^*}{2(g|\psi|^2 + \hbar R_R N)}}$$

wavepacket revival is not perfect
decays over 40ps

due to coherent wavepacket
- dispersion (SHO spacings)
- decay
- dephasing
- diffusion
Interference of Condensates

Dark Wavepacket

Bright Wavepacket

Time resolved phase locking of polariton cond. In prep.

Multi-spot Excitation: N=2

Polariton Condensates
Multiple spot excitation
Vortex lattices

- honeycomb lattice of up to 100 vortices and anti-vortices
Stretching the lattice

- Vortices formed by a linear superposition of 3 waves outflowing from each spot.
- Average distance between neighbouring vortices: \(A = \frac{4\pi}{3k\sqrt{3}} \)
- Outflow momentum dependent on power: \(k(r) = K[\omega_c - \Delta(r)] \)

G. Tosi, Nature Comm., accepted (2012)
Setup

Ti:Sapphire CW
755nm

Chopper

1st order

Diff. Order Selection

Sample

Fourier Lens

Phase Modulation

SLM

Laser Image

Display & Phase

Fourier Transform

Laser Image:
Phase Modulation +
Fourier Transformation

Sample Illumination:
4x Telescope +
50x Microscope Objective

Real & k-space
Interferometry

Dispersion Space - Energy

Spectrometer

Photoluminescence 805nm

Phase Reference Arm, magnified

Variable Density Filter

100x IR
NA=0.7

Cryostat

Variable

Fourier Lens

Ti: Sapphire CW
755nm

Chopper

1st order

Diff. Order Selection

Sample

Fourier Lens

Phase Modulation

SLM

Laser Image

Display & Phase

Fourier Transform

Laser Image:
Phase Modulation +
Fourier Transformation

Sample Illumination:
4x Telescope +
50x Microscope Objective

Real & k-space
Interferometry

Dispersion Space - Energy

Spectrometer

Photoluminescence 805nm

Phase Reference Arm, magnified

Variable Density Filter

100x IR
NA=0.7

Cryostat
Flow Control

- Design optical potential by non-resonant laser excitation
- Blueshift gradient <-> main flow direction
- Very non-linear system: condensate shapes its own potential

$$i\hbar \partial_t \psi = \cdots + V(r)\psi + g|\psi|^2\psi$$
Phase Transition

Phase Locked
Pumps far apart

\leftrightarrow

Trapped
Pumps Close Together

Single Energy

Physics:
Vortex Lattice Q. Oscillator

Condensation:
At pump Centre

Condensation Threshold?

Trapping Transition: PRL 110, 186403 (2013)
Condensation Threshold

Below Threshold

Above Threshold
N ≥ 4: Opt. Trapped Condensates
N = 4: Optical Trapping

Trapping Transition: PRL 110, 186403 (2013)
N = 4, 6, 8, ...

Trapping Transition: PRL 110, 186403 (2013)

Polariton Condensates
Ring Condensates

Change Excitation geometry

Excitation power

Real Space

Energy

10µm

Laser

Polariton Condensates

Ring Excitation

19/22
Conclusion

• **Phase-Locking**: Cooperative Effect

• **Phase Transition**: Locked --> Trapped

• **Direct Optical Flow Control + Trapping**: SLM + Blueshift

Future: Explore new exciting pump geometries!
Indirect polaritons: Dipolaritons
Indirect polaritons: Dipolaritons

Dipolariton approach:
weakly-coupled double quantum wells

direct control of polariton dipole

\[H_{PP}^{eff} = \frac{1}{2} \sum_{k,k',q} \frac{a_B^2}{A} V_{k,k',q} \hat{P}_{k+q}^+ \hat{P}_{k'-q}^+ \hat{P}_k \hat{P}_{k'} \]

dipole-dipole

- reduction of lasing threshold
- electrically-pumped polariton lasers and BECs

Dipolaritons

“tunnelling off”

direct excitons
DX

“tunnelling on”
mixed excitons
DX±IX,
static dipole moment

Dipolaritons

Combining tunnel coupling (J) and Rabi splitting (Ω)

\[
H = \begin{pmatrix}
E_C & \Omega/2 & 0 \\
\Omega/2 & E_{DX} & J/2 \\
0 & J/2 & E_{IX}
\end{pmatrix}
\]
Observation of dipolaritons

Photoluminescence of the system versus increasing bias for detuned and resonant cavity

PL is lost because electron tunnel out of the system

tunnel-split excitons, uncoupled cavity
dipolaritons, strong coupling of J and Ω

"Coupling Quantum Tunneling with Cavity Photons"
Science 336, 704 (2012)
Dipolaritons at resonance

H = \begin{pmatrix} E_C & \Omega/2 & 0 \\ \Omega/2 & E_{DX} & J/2 \\ 0 & J/2 & E_{IX} \end{pmatrix}

MP state: no DX!

\begin{align*}
|\text{MP}\rangle &= \frac{\Omega|\text{IX}\rangle - J|\text{C}\rangle}{\mathcal{S}}
\end{align*}
Barrier width dependence

Influence of the tunnelling barrier thickness (4, 7, 20 nm) on the bare tunnelling rate J

Excellent agreement with solution of the Schrödinger equation for tunnel coupling

ADQW simulation from solving Schrödinger equation
Summary

- Low threshold polariton lasing at 25K and RT in GaN

- Electrical and optical manipulation of polariton condensates on a chip
 polariton condensate transistor
 polariton condensate pendulum

 interactions between condensated in confining potentials

- Dipolaritons: Oriented polaritons
 new possibilities for enhancing nonlinear Interactions
 threshold reduction, control of parametric scattering
Thank you