Optical Manipulation of Polariton Condensates

Pavlos G. Savvidis University of Crete, FORTH-IESL

Peterhoff 21.06.13

Acknowledgements

Department of Materials Science / IESL-FORTH

Dr. Simos Tsintzos Dr. Peter Eldridge PhD Panos Tsotsis PhD Tingge Gao

IESL-FORTH

Z. Hatzopoulos

MBE

Collaboration

J. Baumberg N. Berloff G. Christmann G. Tosi P. Cristofolini

Strong Coupling Regime in Semiconductor Microcavity

- Polaritons directly accessible by shining light on MC
 - Strongly modified dispersion relations reduced density of states near k_{//}=0
- small polariton mass m_{pol} ≈ 10⁻⁴m_e
 - strong non-linearities $\rightarrow \chi^3$ (exciton component)

High finesse GaAs microcavity

Setup

Sample:

- High quality $5/2 \lambda$ microcavity (Q < 16.000, τ > 7ps)
- 4 x 3 GaAs quantum wells, 9 meV Rabi splitting
- Cryogenics: kept at $T \approx 10 \text{ K}$

Excitation:

- Single mode Ti-Sapphire laser, $\lambda = 755$ nm (non-res.)
- Shaped by Phase modulation with spatial light modulator

Detection:

- Real & k-space imaging
- Energy-resolved tomography
- Interferometric phase measurement

Blueshift Potential

Ballistic Condensate Ejection

- blue shift at pump $V_{max} = g |\psi|^2$
- polaritons expand along the ridge

Condensate remains at same energy --> fully coherent

G. Christmann et al., Phys. Rev. B 85, 235303 (2012)

Phase Locked Condensates

Trapping Transition: PRL **110**, 186403 (2013)

Buildup of Coherence and Phase Locking

Time resolved measurement & interferometry

Pulsed excitation, interference of one condensate with the other

N = 2: Cooperative Effect

N=2: 2D Quantum Oscillator

2D Polariton Oscillator: Nature Physics 8, 190–194 (2012)

Condensate theory

- complex Ginzburg-Landau equation (cGL) polariton potential $i\hbar\partial_t\psi = [E(i\nabla) + g|\psi|^2 + \hbar R_R N(\mathbf{r}, t)]\psi + i[\frac{\hbar}{2}R_R N(\mathbf{r}, t) - \frac{i\hbar\eta N\partial_t}{relaxation} - \Gamma_C]\psi$
- reservoir dynamics condensate feed diffusion $\partial_t N(x,t) = -[\Gamma_R + \beta R_R |\psi(x,t)|^2] N(x,t) + P(x) + D\nabla^2 N$ decay laser pump

Nature Physics 8, 190 (2012)

N. Berloff

Simulation results

Resembles oscillating dark-solitons How to measure?

Condensate dynamics

- self-interference every round trip time (exact match)
- all the simple harmonic oscillator levels are phase coherent

Tuneable oscillator

temporal width $\Delta t \simeq t_r / n_{SHO}$ set by number of SHO states (n_{SHO} =10)

$$t_r = \pi L \sqrt{\frac{m^*}{2(g|\psi|^2 + \hbar R_R N)}}$$

wavepacket revival is not perfect decays over 40ps

due to coherent wavepacket

- dispersion (SHO spacings)
- decay
- dephasing
- diffusion

N=2: Ultrafast dynamics

Multiple spot excitation

Vortex lattices

• honeycomb lattice of up to 100 vortices and anti-vortices

Stretching the lattice

- Vortices formed by a linear superposition of 3 waves outflowing from each spot.
- Average distance between neighbouring vortices: $A = 4\pi/(3k\sqrt{3})$
- Outflow momentum dependent on power: $k(r) = K[\omega_c \Delta(r)]$

Setup

Flow Control

- Design optical potential by non-resonant laser excitation
- Blueshift gradient <--> main flow direction
- Very non-linear system: condensate shapes its own potential

$$i\hbar\partial_t\psi = \cdots + V(\mathbf{r})\psi + g|\psi|^2\psi$$

Blueshift

Phase Transition

Trapped Pumps Close Together

Single Energy

<-->

Physics: Vortex Lattice Q. Oscillator

Condensation:

Centre

At pump

Condensation Threshold?

Trapping Transition: PRL **110**, 186403 (2013) Vortex Lattice: Nature Comm. 3, 1243 (2012)

Condensation Threshold

$N \ge 4$: Opt. Trapped Condensates

N = 4: Optical Trapping

Trapping Transition: PRL **110**, 186403 (2013)

8/11

N = 4, 6, 8, ...

Trapping Transition: PRL **110**, 186403 (2013)

Ring Condensates

Change Excitation geometry

Laser

Ring Excitation

19/22

Excitation power

Conclusion

- Phase-Locking: Cooperative Effect
- Phase Transition: Locked --> Trapped
- Direct Optical Flow Control + Trapping: SLM + Blueshift

Future: Explore new exciting pump geometries!

Indirect polaritons: Dipolaritons

Indirect polaritons: Dipolaritons

weakly-coupled double quantum wells

direct control of polariton dipole

$$H_{PP}^{eff} = \frac{1}{2} \sum_{k,k',q} \frac{a_B^2}{A} V_{k,k',q}^{PP} \hat{p}_{k+q}^+ \hat{p}_{k'-q}^+ \hat{p}_k \hat{p}_{k'}$$

dipole-dipole

P. Cristofolini *et al.*, Science 336, 704 (2012) G. Christmann APL 98, 081111 (2011)

Dipolaritons

Dipolaritons

Observation of dipolaritons

Dipolaritons at resonance

Barrier width dependence

Influence of the tunnelling barrier thickness (4,7,20nm) on the bare tunnelling rate *J*

Excellent agreement with solution of the Schrödinger equation for tunnel coupling

Summary

- Low threshold polariton lasing at 25K and RT in GaN
- Electrical and optical manipulation of polariton condensates on a chip polariton condensate transistor

polariton condensate pendulum

interactions between condensated in confining potentials

Dipolaritons: Oriented polaritons new possibilities for enhancing nonlinear Interactions threshold reduction, control of parametric scattering

Thank you

FORTH Microelectronics Research Group Univ. of Crete