Lecture 2: Generalized Pseudo-Orbits (gpos) Symbolic dynamics for surface diffeomorphisms

O. Sarig

Weizmann Institute of Science, Israel

Moscow 2012

Setup

 $C^{1+\beta}$ —surface diffeo with positive topological entropy

Aim

Construct a countable Markov partition

Strategy

Define generalized pseudo-orbits (gpos).....

Setup

 $C^{1+\beta}$ —surface diffeo with positive topological entropy

Aim

Construct a countable Markov partition

Strategy

Define generalized pseudo-orbits (gpos).....

Setup

 $C^{1+\beta}$ —surface diffeo with positive topological entropy

Aim

Construct a countable Markov partition

Strategy

Define generalized pseudo-orbits (gpos).....

Setup

 $C^{1+\beta}$ —surface diffeo with positive topological entropy

Aim

Construct a countable Markov partition

Strategy

Define generalized pseudo-orbits (gpos).....

Setup

 $C^{1+\beta}$ —surface diffeo with positive topological entropy

Aim

Construct a countable Markov partition

Strategy

Define generalized pseudo-orbits (gpos).....

- nearest neighbor conditions
- Every gpo "shadows" a real orbit
- Countable alphabet suffices
- Inverse problem: Suppose a p.o. $(v_k)_{k \in \mathbb{Z}}$ shadows the orbit of x. Then we can "read" v_k from x "approximately".

- nearest neighbor conditions
- Every gpo "shadows" a real orbit
- Countable alphabet suffices
- **Inverse problem:** Suppose a p.o. $(v_k)_{k \in \mathbb{Z}}$ shadows the orbit of x. Then we can "read" v_k from x "approximately".

- nearest neighbor conditions
- Every gpo "shadows" a real orbit
- Ountable alphabet suffices
- Inverse problem: Suppose a p.o. $(v_k)_{k \in \mathbb{Z}}$ shadows the orbit of x. Then we can "read" v_k from x "approximately".

- nearest neighbor conditions
- Every gpo "shadows" a real orbit
- Ountable alphabet suffices
- 4 Inverse problem: Suppose a p.o. $(v_k)_{k \in \mathbb{Z}}$ shadows the orbit of x. Then we can "read" v_k from x "approximately". *

- nearest neighbor conditions
- Every gpo "shadows" a real orbit
- Ountable alphabet suffices
- 4 Inverse problem: Suppose a p.o. $(v_k)_{k \in \mathbb{Z}}$ shadows the orbit of x. Then we can "read" v_k from x "approximately". *

- nearest neighbor conditions
- Every gpo "shadows" a real orbit
- Ountable alphabet suffices
- Inverse problem: Suppose a p.o. $(v_k)_{k \in \mathbb{Z}}$ shadows the orbit of x. Then we can "read" v_k from x "approximately". *

Today: describe a definition which works.

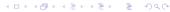
Preparations——Review of Pesin Theory

Today: describe a definition which works. Preparations—Review of Pesin Theory

Today: describe a definition which works. Preparations—Review of Pesin Theory

Pesin charts

Setup: $f: M \to M$ is a $C^{1+\beta}$ surface diffeomorphism with positive entropy



Pesin charts

Setup: $f:M\to M$ is a $C^{1+\beta}$ surface diffeomorphism with positive entropy

Theorem (Pesin)

"Almost every" x has a neighborhood with a system of coordinates $\Psi_x : [-Q(x), Q(x)]^2 \to M$ s.t.

$$\Psi_{f(x)}^{-1} \circ f \circ \Psi_{x} : [-Q,Q]^{2} \to \mathbb{R}^{2} \simeq \textit{linear hyperbolic map}$$

Fix $0 < \chi < h_{top}(f)$ (as small as you wish)

```
The following invariant set NUH_{\chi}(f) has full measure w.r.t. any ergodic invariant \mu s.t. h_{\mu}(f) > \chi: The set of x \in M s.t. T_{\nu}M = F^{s}(x) \oplus F^{u}(x) where
```

- \blacksquare $E^{u/s}(x)$ are one-dimensional
- \blacksquare $\lim_{n \to \infty} \frac{1}{n} \log \|df_X^{-n} \underline{v}\|_{f^{-n}(X)} < -\chi \text{ on } E^u(X) \setminus \{\underline{0}\}$
- $df_X E^{u/s}(x) = E^{u/s}(f(x))$

Fix $0 < \chi < h_{top}(f)$ (as small as you wish)

Theorem (Oseledets Ergodic Theorem, Ruelle Inequality)

The following invariant set $NUH_{\chi}(f)$ has full measure w.r.t. any ergodic invariant μ s.t. $h_{\mu}(f) > \chi$: The set of $\chi \in M$ s.t.

 $T_x M = E^s(x) \oplus E^u(x)$ where

Fix $0 < \chi < h_{top}(f)$ (as small as you wish)

Theorem (Oseledets Ergodic Theorem, Ruelle Inequality)

O. Sariq

Fix $0 < \chi < h_{top}(f)$ (as small as you wish)

Theorem (Oseledets Ergodic Theorem, Ruelle Inequality)

$$T_xM = E^s(x) \oplus E^u(x)$$
 where

- \bullet $E^{u/s}(x)$ are one-dimensional
- $\lim_{n\to\infty} \frac{1}{n} \log \|df_x^n \underline{v}\|_{f^n(X)} < -\chi \text{ on } E^s(X) \setminus \{\underline{0}\}$
- $\lim_{n \to \infty} \frac{1}{n} \log |\angle(E^s(f^n(x)), E^u(f^n(x)))| = 0$

Fix $0 < \chi < h_{top}(f)$ (as small as you wish)

Theorem (Oseledets Ergodic Theorem, Ruelle Inequality)

$$T_xM = E^s(x) \oplus E^u(x)$$
 where

- $E^{u/s}(x)$ are one-dimensional

- $\lim_{n \to \infty} \frac{1}{n} \log |\angle(E^s(f^n(x)), E^u(f^n(x)))| = 0$

Fix $0 < \chi < h_{top}(f)$ (as small as you wish)

Theorem (Oseledets Ergodic Theorem, Ruelle Inequality)

$$T_xM = E^s(x) \oplus E^u(x)$$
 where

- $E^{u/s}(x)$ are one-dimensional

- $\lim_{n \to \infty} \frac{1}{n} \log |\angle(E^s(f^n(x)), E^u(f^n(x)))| = 0$

Fix $0 < \chi < h_{top}(f)$ (as small as you wish)

Theorem (Oseledets Ergodic Theorem, Ruelle Inequality)

$$T_xM = E^s(x) \oplus E^u(x)$$
 where

- $E^{u/s}(x)$ are one-dimensional

- $\lim_{n\to\infty} \frac{1}{n} \log |\angle(E^s(f^n(x)), E^u(f^n(x)))| = 0$

Fix $0 < \chi < h_{top}(f)$ (as small as you wish)

Theorem (Oseledets Ergodic Theorem, Ruelle Inequality)

$$T_xM = E^s(x) \oplus E^u(x)$$
 where

- \bullet $E^{u/s}(x)$ are one-dimensional

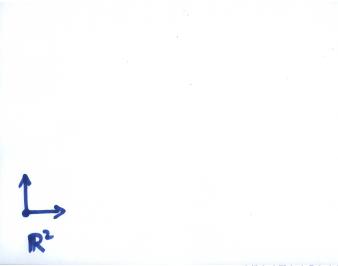
- $\lim_{n\to\infty}\frac{1}{n}\log|\measuredangle(E^s(f^n(x)),E^u(f^n(x)))|=0$

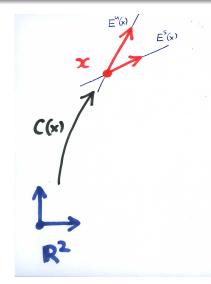
Diagonalizing the differential $df: TM \rightarrow TM$

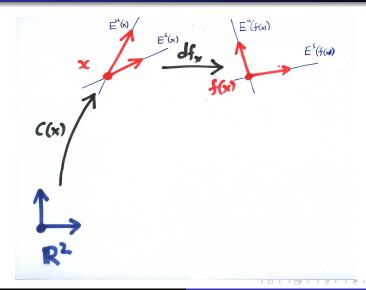
Choose unit vectors $e^s(x) \in E^s(x)$, $e^u(x) \in E^u(x)$ and scalars $s(x), u(x) \ge \sqrt{2}$

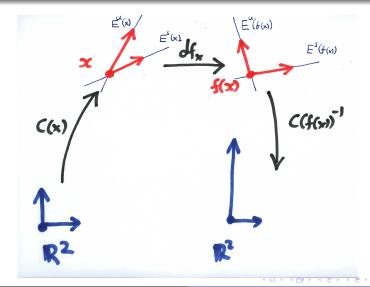
Oseledets-Pesin transformation

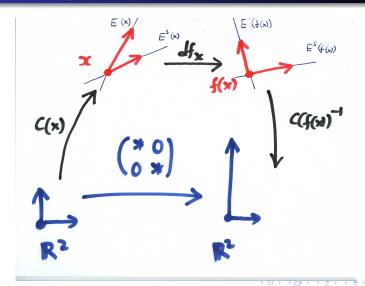
Linear $C(x): \mathbb{R}^2 \to T_x M$ which maps the standard basis (e^1, e^2) to $(s(x)^{-1}e^s(x), u(x)^{-1}e^u(x))$

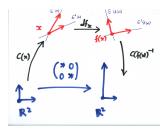










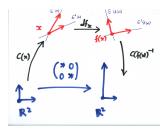


Choice of s(x), u(x)

There is a choice of s(x), u(x) s.t. $||C(x)|| \le 1$ and

$$C(f(x))^{-1}df_xC(x) = \begin{pmatrix} \lambda(x) & 0 \\ 0 & \mu(x) \end{pmatrix}$$

where $|\lambda(x)| < e^{-\chi}$, $|\mu(x)| > e^{\chi}$ are bounded away from $0, \infty$



Choice of s(x), u(x)

There is a choice of s(x), u(x) s.t. $||C(x)|| \le 1$ and

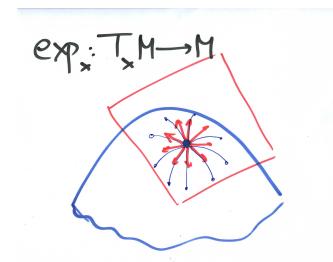
$$C(f(x))^{-1}df_xC(x) = \begin{pmatrix} \lambda(x) & 0 \\ 0 & \mu(x) \end{pmatrix}$$

where $|\lambda(x)| < e^{-\chi}$, $|\mu(x)| > e^{\chi}$ are bounded away from $0, \infty$

$$s(x) := \sqrt{2} \left(1 + \sum_{n=1}^{\infty} e^{2n\chi} \| df_x^n e^s(x) \|^2 \right)^{\frac{1}{2}}$$
$$u(x) := \sqrt{2} \left(1 + \sum_{n=1}^{\infty} e^{2n\chi} \| df_x^{-n} e^u(x) \|^2 \right)^{\frac{1}{2}}$$

Diagonalizing the map $f: M \to M$

Reminder: the exponential map



Fix constants

- $0 < \chi < h_{top}(f)$ ("hyperbolicity bound")
- $0 < \epsilon \ll \chi$ ("closeness bound")

Fix constants

• $0 < \chi < h_{top}(f)$ ("hyperbolicity bound")

• $0 < \epsilon \ll \chi$ ("closeness bound")

Fix constants

- $0 < \chi < h_{top}(f)$ ("hyperbolicity bound")
- $0 < \epsilon \ll \chi$ ("closeness bound")

$$\Psi_{\mathsf{X}}: \mathbb{R}^2 o \mathsf{M}, \, \Psi_{\mathsf{X}}: inom{\xi}{\eta} \mapsto \exp_{\mathsf{X}} ig[\mathit{C}(\mathsf{X}) inom{\xi}{\eta} ig]$$

- $\bullet \ \Psi_{f(x)}^{-1} \circ f \circ \Psi_X : \mathbb{R}^2 \to \mathbb{R}^2$
- lacksquare $0\mapsto 0$
- Derivative at the origin: $C(f(x))^{-1} \circ df_x \circ C(x) = \begin{pmatrix} \lambda & 0 \\ 0 & \mu \end{pmatrix}$
- So $\Psi_{f(x)}^{-1} \circ f \circ \Psi_X \approx$ linear hyperbolic map near the origin

$$\Psi_{\mathsf{X}}: \mathbb{R}^2 o \mathsf{M}, \, \Psi_{\mathsf{X}}: inom{\xi}{\eta} \mapsto \exp_{\mathsf{X}} ig[\mathit{C}(\mathsf{X}) inom{\xi}{\eta} ig]$$

- $\bullet \ \Psi_{f(x)}^{-1} \circ f \circ \Psi_{x} : \mathbb{R}^{2} \to \mathbb{R}^{2}$
- lacksquare $0\mapsto 0$
- Derivative at the origin: $C(f(x))^{-1} \circ df_x \circ C(x) = \begin{pmatrix} \lambda & 0 \\ 0 & \mu \end{pmatrix}$
- So $\Psi_{f(x)}^{-1} \circ f \circ \Psi_X \approx$ linear hyperbolic map near the origin

$$\Psi_{\mathsf{X}}: \mathbb{R}^2 o \mathsf{M}, \, \Psi_{\mathsf{X}}: inom{\xi}{\eta} \mapsto \exp_{\mathsf{X}} ig[\mathit{C}(\mathsf{X}) inom{\xi}{\eta} ig]$$

- $\bullet \ \Psi_{f(x)}^{-1} \circ f \circ \Psi_{x} : \mathbb{R}^{2} \to \mathbb{R}^{2}$
- $lackbox{0}\mapsto 0$
- Derivative at the origin: $C(f(x))^{-1} \circ df_x \circ C(x) = \begin{pmatrix} \lambda & 0 \\ 0 & \mu \end{pmatrix}$
- So $\Psi_{f(x)}^{-1} \circ f \circ \Psi_X \approx$ linear hyperbolic map near the origin

$$\Psi_{\scriptscriptstyle X}: \mathbb{R}^2 \to \textit{M}, \, \Psi_{\scriptscriptstyle X}: {\xi \choose \eta} \mapsto \exp_{\scriptscriptstyle X} \bigl[\textit{C}(x) {\xi \choose \eta}\bigr]$$

- $\bullet \ \Psi_{f(x)}^{-1} \circ f \circ \Psi_{x} : \mathbb{R}^{2} \to \mathbb{R}^{2}$
- \bullet $\underline{0} \mapsto \underline{0}$
- Derivative at the origin: $C(f(x))^{-1} \circ df_x \circ C(x) = \begin{pmatrix} \lambda & 0 \\ 0 & \mu \end{pmatrix}$
- So $\Psi_{f(x)}^{-1} \circ f \circ \Psi_X \approx$ linear hyperbolic map near the origin

$$\Psi_{\scriptscriptstyle X}: \mathbb{R}^2 o M, \, \Psi_{\scriptscriptstyle X}: {\xi \choose \eta} \mapsto \exp_{\scriptscriptstyle X} \bigl[{\it C}(x) {\xi \choose \eta} \bigr]$$

- $\bullet \ \Psi_{f(x)}^{-1} \circ f \circ \Psi_{x} : \mathbb{R}^{2} \to \mathbb{R}^{2}$
- lacksquare $0\mapsto 0$
- Derivative at the origin: $C(f(x))^{-1} \circ df_x \circ C(x) = \begin{pmatrix} \lambda & 0 \\ 0 & \mu \end{pmatrix}$
- So $\Psi_{f(x)}^{-1} \circ f \circ \Psi_X \approx$ linear hyperbolic map near the origin

 $f: M \to M$ is a $C^{1+\beta}$ surface diffeomorphism

Theorem (Pesin)

Every $x \in NUH_{\chi}(f)$ has a neighborhood with a system of coordinates $\Psi_x : [-Q(x), Q(x)]^2 \to M$ s.t.

$$\Psi_{f(x)}^{-1}\circ f\circ \Psi_{x}:[-Q,Q]^{2} o \mathbb{R}^{2}pprox \textit{uniformly hyperbolic linear map}$$

$$pprox$$
 means ϵ -close in $C^{1+rac{eta}{2}}$

- Ψ_X is called a **Pesin chart**
- Q(x) is called the **size** of the chart

 $f: M \to M$ is a $C^{1+\beta}$ surface diffeomorphism

Theorem (Pesin)

Every $x \in NUH_{\chi}(f)$ has a neighborhood with a system of coordinates $\Psi_x : [-Q(x), Q(x)]^2 \to M$ s.t.

$$\Psi_{f(x)}^{-1}\circ f\circ \Psi_{x}:[-Q,Q]^{2} o \mathbb{R}^{2}pprox \textit{uniformly hyperbolic linear map}$$

$$pprox$$
 means ϵ -close in $C^{1+rac{eta}{2}}$

- Ψ_X is called a **Pesin chart**
- Q(x) is called the **size** of the chart

 $f: M \to M$ is a $C^{1+\beta}$ surface diffeomorphism

Theorem (Pesin)

Every $x \in NUH_{\chi}(f)$ has a neighborhood with a system of coordinates $\Psi_x : [-Q(x), Q(x)]^2 \to M$ s.t.

$$\Psi_{f(x)}^{-1}\circ f\circ \Psi_{x}:[-Q,Q]^{2} o \mathbb{R}^{2}pprox ext{uniformly hyperbolic linear map}$$

$$pprox$$
 means ϵ -close in $C^{1+rac{eta}{2}}$

- Ψ_{x} is called a **Pesin chart**
- Q(x) is called the **size** of the chart

f is $C^{1+\beta}$

$$Q(x) = \epsilon^{3/\beta} \left(\frac{\sqrt{u(x)^2 + s(x)^2}}{|\sin \alpha(x)|} \right)^{-\frac{12}{\beta}}$$

•
$$s(x) = \sqrt{2} \left(1 + \sum_{n=1}^{\infty} e^{2n\chi} \|df_x^n e^s(x)\|^2 \right)^{\frac{1}{2}}$$

•
$$u(x) = \sqrt{2} \left(1 + \sum_{n=1}^{\infty} e^{2n\chi} \| df_x^{-n} e^u(x) \|^2 \right)^{\frac{1}{2}}$$

f is $C^{1+\beta}$

$$Q(x) = \epsilon^{3/\beta} \left(\frac{\sqrt{u(x)^2 + s(x)^2}}{|\sin \alpha(x)|} \right)^{-\frac{12}{\beta}}$$

•
$$s(x) = \sqrt{2} \left(1 + \sum_{n=1}^{\infty} e^{2n\chi} \|df_x^n e^s(x)\|^2 \right)^{\frac{1}{2}}$$

•
$$u(x) = \sqrt{2} \left(1 + \sum_{n=1}^{\infty} e^{2n\chi} \|df_{\chi}^{-n} e^{u}(x)\|^{2} \right)^{\frac{1}{2}}$$

f is $C^{1+\beta}$

$$Q(x) = \epsilon^{3/\beta} \left(\frac{\sqrt{u(x)^2 + s(x)^2}}{|\sin \alpha(x)|} \right)^{-\frac{12}{\beta}}$$

•
$$\alpha(\mathbf{x}) = \measuredangle(\mathbf{E}^{\mathbf{s}}(\mathbf{x}), \mathbf{E}^{\mathbf{u}}(\mathbf{x}))$$

•
$$s(x) = \sqrt{2} \left(1 + \sum_{n=1}^{\infty} e^{2n\chi} \|df_x^n e^s(x)\|^2 \right)^{\frac{1}{2}}$$

•
$$u(x) = \sqrt{2} \left(1 + \sum_{n=1}^{\infty} e^{2n\chi} \| df_x^{-n} e^u(x) \|^2 \right)^{\frac{1}{2}}$$

f is $C^{1+\beta}$

$$Q(x) = \epsilon^{3/\beta} \left(\frac{\sqrt{u(x)^2 + s(x)^2}}{|\sin \alpha(x)|} \right)^{-\frac{12}{\beta}}$$

•
$$\alpha(\mathbf{x}) = \measuredangle(\mathbf{E}^{\mathbf{s}}(\mathbf{x}), \mathbf{E}^{\mathbf{u}}(\mathbf{x}))$$

•
$$s(x) = \sqrt{2} \left(1 + \sum_{n=1}^{\infty} e^{2n\chi} \|df_x^n e^s(x)\|^2 \right)^{\frac{1}{2}}$$

•
$$u(x) = \sqrt{2} \left(1 + \sum_{n=1}^{\infty} e^{2n\chi} ||df_x^{-n} e^u(x)||^2 \right)^{\frac{1}{2}}$$

f is $C^{1+\beta}$

The size of the chart

$$Q(x) = \epsilon^{3/\beta} \left(\frac{\sqrt{u(x)^2 + s(x)^2}}{|\sin \alpha(x)|} \right)^{-\frac{i\alpha}{\beta}}$$

Theorem (Pesi

 $rac{1}{n}\log \mathcal{Q}(f^n(x)) \xrightarrow[n o \pm \infty]{} 0$ a.e. w.r.t. any ergodic invariant measure with entropy $> \chi$.

 $Q(x) \geq q(x)$ where $e^{-\frac{1}{3}\epsilon} \leq rac{q(f(x))}{q(x)} \leq e^{\frac{1}{3}\epsilon}$

f is $C^{1+\beta}$

The size of the chart

$$Q(x) = \epsilon^{3/\beta} \left(\frac{\sqrt{u(x)^2 + s(x)^2}}{|\sin \alpha(x)|} \right)^{-\frac{i\alpha}{\beta}}$$

Theorem (Pesi

 $rac{1}{n}\log \mathcal{Q}(f^n(x)) \xrightarrow[n o \pm \infty]{} 0$ a.e. w.r.t. any ergodic invariant measure with entropy $> \chi$.

 $Q(x) \geq q(x)$ where $e^{-\frac{1}{3}\epsilon} \leq rac{q(f(x))}{q(x)} \leq e^{\frac{1}{3}\epsilon}$

f is $C^{1+\beta}$

The size of the chart

$$Q(x) = \epsilon^{3/\beta} \left(\frac{\sqrt{u(x)^2 + s(x)^2}}{|\sin \alpha(x)|} \right)^{-\frac{i\alpha}{\beta}}$$

Theorem (Pesin)

 $\frac{1}{n} \log Q(f^n(x)) \xrightarrow[n \to \pm \infty]{} 0$ a.e. w.r.t. any ergodic invariant measure with entropy $> \chi$.

 $Q(x) \geq q(x)$ where $e^{-\frac{1}{3}\epsilon} \leq \frac{q(t(x))}{q(x)} \leq e^{\frac{1}{3}\epsilon}$

f is $C^{1+\beta}$

The size of the chart

$$Q(x) = \epsilon^{3/\beta} \left(\frac{\sqrt{u(x)^2 + s(x)^2}}{|\sin \alpha(x)|} \right)^{-\frac{i\alpha}{\beta}}$$

Theorem (Pesin)

 $\frac{1}{n} \log Q(f^n(x)) \xrightarrow[n \to \pm \infty]{} 0$ a.e. w.r.t. any ergodic invariant measure with entropy $> \chi$.

 $Q(x) \geq q(x)$ where $e^{-\frac{1}{3}\epsilon} \leq \frac{q(t(x))}{q(x)} \leq e^{\frac{1}{3}\epsilon}$

f is $C^{1+\beta}$

The size of the chart

$$Q(x) = \epsilon^{3/\beta} \left(\frac{\sqrt{u(x)^2 + s(x)^2}}{|\sin \alpha(x)|} \right)^{-\frac{1}{\beta}}$$

Theorem (Pesin)

 $\frac{1}{n} \log Q(f^n(x)) \xrightarrow[n \to \pm \infty]{} 0$ a.e. w.r.t. any ergodic invariant measure with entropy $> \chi$.

Corollary (Pesin's Temperdness Lemma)

$$Q(x) \geq q(x)$$
 where $e^{-\frac{1}{3}\epsilon} \leq \frac{q(f(x))}{q(x)} \leq e^{\frac{1}{3}\epsilon}$

A silly modification

$$Q(x) = \epsilon^{3/\beta} \left(\frac{\sqrt{u(x)^2 + s(x)^2}}{|\sin \alpha(x)|} \right)^{-\frac{12}{\beta}}$$

A silly modification

$$Q(x) = \left[e^{3/\beta} \left(\frac{\sqrt{u(x)^2 + s(x)^2}}{|\sin \alpha(x)|} \right)^{-\frac{12}{\beta}} \right]_{\epsilon} \in I_{\epsilon}$$

where $\lfloor Q \rfloor_{\epsilon} := \max\{q \in I_{\epsilon} : q \leq Q\}$ and $I_{\epsilon} = \{e^{-\frac{1}{3}\ell\epsilon} : \ell \geq 1\}$

--overlap Generalized pseudo-orbits Meaning

The definition of "generalized pseudo-orbits"

	exact	
Orbits	$(x_i)_{i\in\mathbb{Z}}$ s.t. for all i $x_{i+1} = f(x_i)$	

	exact	pseudo
Orbits	$(x_i)_{i\in\mathbb{Z}}$ s.t. for all i $x_{i+1} = f(x_i)$	$(x_i)_{i\in\mathbb{Z}}$ s.t. for all i $x_{i+1}\approx f(x_i)$

	exact	pseudo
Orbits	$(x_i)_{i\in\mathbb{Z}}$ s.t. for all i $x_{i+1}=f(x_i)$	$(x_i)_{i\in\mathbb{Z}}$ s.t. for all i $x_{i+1}\approx f(x_i)$
Sequence of charts	$(\Psi_{x_i})_{i\in\mathbb{Z}}$ s.t. for all i $\Psi_{x_{i+1}} = \Psi_{f(x_i)}$	

	exact	pseudo
Orbits	$(x_i)_{i\in\mathbb{Z}}$ s.t. for all i $x_{i+1} = f(x_i)$	$(x_i)_{i\in\mathbb{Z}}$ s.t. for all i $x_{i+1}\approx f(x_i)$
Sequence of charts	$(\Psi_{x_i})_{i\in\mathbb{Z}}$ s.t. for all i $\Psi_{x_{i+1}} = \Psi_{f(x_i)}$	$(\Psi_{x_i})_{i \in \mathbb{Z}}$ s.t. for all i $\Psi_{x_{i+1}} \approx \Psi_{f(x_i)}$

$$\Psi_X: [-\mathit{Q}(x), \mathit{Q}(x)]^2 o \mathit{M} ext{ is a Pesin chart, } \mathit{Q}(x) = \mathsf{size}$$

- Notation: Ψ_x^p denotes $\Psi_x : [-p, p]^2 \to M \ (0$
- $\Psi_{x}^{p} \stackrel{\epsilon}{\approx} \Psi_{y}^{q}$ (ϵ -overlap): Intuitive definition

$$\Psi_X: [-Q(x), Q(x)]^2 \to M$$
 is a Pesin chart, $Q(x) =$ size

- Notation: Ψ_x^p denotes $\Psi_x : [-p, p]^2 \to M \ (0$
- $\Psi_{x}^{p} \stackrel{\epsilon}{\approx} \Psi_{y}^{q}$ (ϵ -overlap): Intuitive definition

$$\Psi_X([-p,p]^2) \approx \Psi_V([-q,q]^2)$$

- \bullet $\Psi_{v}^{-1} \circ \Psi_{v} \approx Id$
- $\bullet \ \Psi_{v}^{-1} \circ \Psi_{x} \approx Id$
- ϵ measures the quality of approximation

$$\Psi_X: [-Q(x), Q(x)]^2 \to M$$
 is a Pesin chart, $Q(x) =$ size

- Notation: Ψ_x^p denotes $\Psi_x : [-p, p]^2 \to M \ (0$
- $\Psi_{x}^{p} \stackrel{\epsilon}{\approx} \Psi_{y}^{q}$ (ϵ -overlap): Intuitive definition

$$\Psi_X([-p,p]^2) \approx \Psi_V([-q,q]^2)$$

- $\Psi_{\nu}^{-1} \circ \Psi_{\nu} \approx Id$
- \bullet $\Psi_{v}^{-1} \circ \Psi_{v} \approx Id$
- ϵ measures the quality of approximation

$$\Psi_X: [-Q(x), Q(x)]^2 \to M$$
 is a Pesin chart, $Q(x) =$ size

- Notation: Ψ_x^p denotes $\Psi_x : [-p, p]^2 \to M \ (0$
- $\Psi_X^p \stackrel{\epsilon}{\approx} \Psi_Y^q$ (ϵ -overlap): Intuitive definition

•
$$\Psi_x([-p,p]^2) \approx \Psi_y([-q,q]^2)$$

•
$$\Psi_X^{-1} \circ \Psi_V \approx Id$$

•
$$\Psi_V^{-1} \circ \Psi_X \approx Id$$

 ϵ measures the quality of approximation

$$\Psi_X: [-Q(x), Q(x)]^2 \to M$$
 is a Pesin chart, $Q(x) =$ size

- Notation: Ψ_x^p denotes $\Psi_x : [-p, p]^2 \to M \ (0$
- $\Psi_X^p \stackrel{\epsilon}{\approx} \Psi_Y^q$ (ϵ -overlap): Intuitive definition

•
$$\Psi_{x}([-p,p]^{2}) \approx \Psi_{y}([-q,q]^{2})$$

•
$$\Psi_{\nu}^{-1} \circ \Psi_{\nu} \approx Id$$

•
$$\Psi_V^{-1} \circ \Psi_X \approx Id$$

 ϵ measures the quality of approximation

$$\Psi_X: [-\mathit{Q}(x), \mathit{Q}(x)]^2 o \mathit{M} ext{ is a Pesin chart, } \mathit{Q}(x) = \mathsf{size}$$

- Notation: Ψ_x^p denotes $\Psi_x : [-p, p]^2 \to M \ (0$
- $\Psi_X^p \stackrel{\epsilon}{\approx} \Psi_y^q$ (ϵ -overlap): Intuitive definition

•
$$\Psi_{x}([-p,p]^{2}) \approx \Psi_{y}([-q,q]^{2})$$

•
$$\Psi_X^{-1} \circ \Psi_V \approx Id$$

•
$$\Psi_y^{-1} \circ \Psi_x \approx Id$$

 ϵ measures the quality of approximation

$$\Psi_X: [-\mathit{Q}(x), \mathit{Q}(x)]^2 o \mathit{M} ext{ is a Pesin chart, } \mathit{Q}(x) = \mathsf{size}$$

- Notation: Ψ_x^p denotes $\Psi_x : [-p, p]^2 \to M \ (0$
- $\Psi_X^p \stackrel{\epsilon}{\approx} \Psi_y^q$ (ϵ -overlap): Intuitive definition

•
$$\Psi_{x}([-p,p]^{2}) \approx \Psi_{y}([-q,q]^{2})$$

•
$$\Psi_x^{-1} \circ \Psi_v \approx Id$$

•
$$\Psi_y^{-1} \circ \Psi_x \approx Id$$

 ϵ measures the quality of approximation.

Defining $\Psi_x \approx \Psi_y$ (formal definition)

$\Psi_x^p \stackrel{\epsilon}{\approx} \Psi_y^q \ (\epsilon - \text{overlap})$

- $\bullet e^{-\epsilon} < \frac{p}{q} < e^{\epsilon}$
- ② Similar charted areas: $\Psi_X \left(e^{-2\epsilon} \cdot [-p,p]^2 \right) \subset \Psi_Y \left([-q,q]^2 \right)$ $\Psi_Y \left(e^{-2\epsilon} \cdot [-q,q]^2 \right) \subset \Psi_X \left([-p,p]^2 \right)$
- **3 Similar chart maps:** $\Psi_x^{-1} \circ \Psi_y$, $\Psi_y^{-1} \circ \Psi_x$ are $\epsilon p^2 q^2$ —close to *id* in $C^{1+\frac{\beta}{2}}$.

Designed to achieve:

If $\Psi_y^q \stackrel{\epsilon}{\sim} \Psi_{f(x)}^q$, then $\Psi_y^{-1} \circ f \circ \Psi_x \approx$ linear hyperbolic map where \approx is ϵ -closeness in $C^{1+\frac{\beta}{3}}$.

$\Psi_{x}^{p} \stackrel{\epsilon}{\approx} \Psi_{y}^{q} (\epsilon - \text{overlap})$

- left $e^{-\epsilon} < rac{p}{q} < e^{\epsilon}$
- **Similar charted areas:** $\Psi_X(e^{-2\epsilon} \cdot [-p, p]^2) \subset \Psi_Y([-q, q]^2) \Psi_Y(e^{-2\epsilon} \cdot [-q, q]^2) \subset \Psi_X([-p, p]^2)$
- **3 Similar chart maps:** $\Psi_x^{-1} \circ \Psi_y$, $\Psi_y^{-1} \circ \Psi_x$ are $\epsilon p^2 q^2$ —close to *id* in $C^{1+\frac{\beta}{2}}$.

Designed to achieve:

If $\Psi_y^q \stackrel{<}{\sim} \Psi_{f(x)}^q$, then $\Psi_y^{-1} \circ f \circ \Psi_x \approx$ linear hyperbolic map where \approx is \leftarrow closeness in $C^{1+\frac{\beta}{3}}$

$\Psi_x^p \stackrel{\epsilon}{\approx} \Psi_y^q \ (\epsilon - \text{overlap})$

- $left e^{-\epsilon} < rac{p}{q} < e^{\epsilon}$
- Similar charted areas: $\Psi_X(e^{-2\epsilon} \cdot [-p,p]^2) \subset \Psi_Y([-q,q]^2)$ $\Psi_Y(e^{-2\epsilon} \cdot [-q,q]^2) \subset \Psi_X([-p,p]^2)$
- **3 Similar chart maps:** $\Psi_x^{-1} \circ \Psi_y$, $\Psi_y^{-1} \circ \Psi_x$ are $\epsilon p^2 q^2$ —close to *id* in $C^{1+\frac{\beta}{2}}$.

Designed to achieve:

If $\Psi_y^q \stackrel{\epsilon}{\sim} \Psi_{f(x)}^q$, then $\Psi_y^{-1} \circ f \circ \Psi_x \approx$ linear hyperbolic map where

$\Psi_x^p \stackrel{\epsilon}{\approx} \Psi_y^q \ (\epsilon - \text{overlap})$

- $left e^{-\epsilon} < rac{p}{q} < e^{\epsilon}$
- Similar charted areas: $\Psi_X(e^{-2\epsilon} \cdot [-p,p]^2) \subset \Psi_Y([-q,q]^2)$ $\Psi_Y(e^{-2\epsilon} \cdot [-q,q]^2) \subset \Psi_X([-p,p]^2)$
- **Similar chart maps:** $\Psi_x^{-1} \circ \Psi_y$, $\Psi_y^{-1} \circ \Psi_x$ are $\epsilon p^2 q^2$ —close to *id* in $C^{1+\frac{\beta}{2}}$.

If $\Psi_y^q \stackrel{<}{pprox} \Psi_{f(x)}^q,$ then $\Psi_y^{-1} \circ f \circ \Psi_X pprox$ linear hyperbolic map where

pprox is ϵ –closeness in $\mathit{C}^{1+rac{\epsilon}{3}}$.

$\Psi_x^p \stackrel{\epsilon}{\approx} \Psi_y^q \ (\epsilon - \text{overlap})$

- $left e^{-\epsilon} < rac{p}{q} < e^{\epsilon}$
- Similar charted areas: $\Psi_X(e^{-2\epsilon} \cdot [-p,p]^2) \subset \Psi_Y([-q,q]^2)$ $\Psi_Y(e^{-2\epsilon} \cdot [-q,q]^2) \subset \Psi_X([-p,p]^2)$
- **Similar chart maps:** $\Psi_x^{-1} \circ \Psi_y$, $\Psi_y^{-1} \circ \Psi_x$ are $\epsilon p^2 q^2$ —close to *id* in $C^{1+\frac{\beta}{2}}$.

If $\Psi_y^q \stackrel{<}{pprox} \Psi_{f(x)}^q,$ then $\Psi_y^{-1} \circ f \circ \Psi_X pprox$ linear hyperbolic map where

pprox is ϵ –closeness in $\mathit{C}^{1+rac{\epsilon}{3}}$.

$\Psi_x^p \stackrel{\epsilon}{\approx} \Psi_y^q \ (\epsilon - \text{overlap})$

- \bullet $e^{-\epsilon} < \frac{p}{a} < e^{\epsilon}$
- Similar charted areas: $\Psi_X(e^{-2\epsilon} \cdot [-p, p]^2) \subset \Psi_Y([-q, q]^2) \Psi_Y(e^{-2\epsilon} \cdot [-q, q]^2) \subset \Psi_X([-p, p]^2)$
- **Similar chart maps:** $\Psi_x^{-1} \circ \Psi_y$, $\Psi_y^{-1} \circ \Psi_x$ are $\epsilon p^2 q^2$ —close to *id* in $C^{1+\frac{\beta}{2}}$.

Designed to achieve:

If $\Psi_y^q \stackrel{\epsilon}{\approx} \Psi_{f(x)}^q$, then $\Psi_y^{-1} \circ f \circ \Psi_x \approx$ linear hyperbolic map where \approx is ϵ -closeness in $C^{1+\frac{\beta}{3}}$.

```
\Psi_X^{\boldsymbol{\rho}} denotes \Psi_X : [-\boldsymbol{\rho}, \boldsymbol{\rho}]^2 \to M (0 < \boldsymbol{\rho} \le Q(X))
```

Symbols

Double charts $\Psi_{X}^{\rho^{\omega}, \rho^{\omega}} := (\Psi_{X}^{\rho^{\omega}}, \Psi_{X}^{\rho^{\omega}})$, where $0 < p^{u}, p^{s} \leq Q(x)$ $p^{u}, p^{s} \in I_{\epsilon} = \{e^{-\frac{1}{3}\ell\epsilon} : \ell \geq 1\}.$

$$\Psi_{\scriptscriptstyle X}^{{oldsymbol p}^u,{oldsymbol p}^s}
ightarrow \Psi_{\scriptscriptstyle Y}^{{oldsymbol q}^u,{oldsymbol q}^s}$$
 if

```
\Psi_X^{\boldsymbol{\rho}} denotes \Psi_X : [-\boldsymbol{\rho}, \boldsymbol{\rho}]^2 \to M \, (0 < \boldsymbol{\rho} \le Q(X))
```

Symbols

Double charts
$$\Psi_X^{p^u,p^s} := (\Psi_X^{p^u}, \Psi_X^{p^s})$$
, where $0 < p^u, p^s \le Q(x)$, $p^u, p^s \in I_{\epsilon} = \{e^{-\frac{1}{3}\ell_{\epsilon}} : \ell \ge 1\}$.

Nearest neighbor conditions

$$\Psi^{p^u,p^s}_{\scriptscriptstyle X} o \Psi^{q^u,q^s}_{\scriptscriptstyle Y}$$
 if

 $\bigoplus \Psi_{f(x)}^{q^a \wedge q^a} \stackrel{\sim}{pprox} \Psi_Y^{q^a \wedge q^a} ext{ and } \Psi_{f^{-1}(Y)}^{p^a \wedge p^a} \stackrel{\sim}{pprox} \Psi_X^{p^a \wedge p^a} ext{ where } (a \wedge b := \min\{a, b\})$

$$(\rightarrow)$$

$$\Psi_X^p$$
 denotes $\Psi_X : [-p, p]^2 \to M (0$

Symbols

Double charts
$$\Psi_X^{p^u,p^s} := (\Psi_X^{p^u}, \Psi_X^{p^s})$$
, where $0 < p^u, p^s \le Q(x)$, $p^u, p^s \in I_{\epsilon} = \{e^{-\frac{1}{3}\ell\epsilon} : \ell \ge 1\}$.

$$\Psi_{\scriptscriptstyle X}^{{\it p}^u,{\it p}^s}
ightarrow \Psi_{\scriptscriptstyle Y}^{{\it q}^u,{\it q}^s}$$
 if

$$\Psi_X^{\boldsymbol{\rho}}$$
 denotes $\Psi_X : [-\boldsymbol{\rho}, \boldsymbol{\rho}]^2 \to M \, (0 < \boldsymbol{\rho} \le Q(X))$

Symbols

Double charts
$$\Psi_X^{p^u,p^s} := (\Psi_X^{p^u}, \Psi_X^{p^s})$$
, where $0 < p^u, p^s \le Q(x)$, $p^u, p^s \in I_{\epsilon} = \{e^{-\frac{1}{3}\ell\epsilon} : \ell \ge 1\}$.

$$\Psi_{x}^{p^{u},p^{s}}
ightarrow \Psi_{y}^{q^{u},q^{s}}$$
 if

$$\Psi_X^{\boldsymbol{\rho}}$$
 denotes $\Psi_X : [-\boldsymbol{\rho}, \boldsymbol{\rho}]^2 \to M \, (0 < \boldsymbol{\rho} \le Q(X))$

Symbols

Double charts
$$\Psi_X^{p^u,p^s} := (\Psi_X^{p^u}, \Psi_X^{p^s})$$
, where $0 < p^u, p^s \le Q(x)$, $p^u, p^s \in I_{\epsilon} = \{e^{-\frac{1}{3}\ell\epsilon} : \ell \ge 1\}$.

$$\Psi_{x}^{p^{u},p^{s}}
ightarrow \Psi_{y}^{q^{u},q^{s}}$$
 if

$$\Psi_X^p$$
 denotes $\Psi_X : [-p, p]^2 \to M (0$

Symbols

Double charts
$$\Psi_X^{p^u,p^s} := (\Psi_X^{p^u}, \Psi_X^{p^s})$$
, where $0 < p^u, p^s \le Q(x)$, $p^u, p^s \in I_{\epsilon} = \{e^{-\frac{1}{3}\ell\epsilon} : \ell \ge 1\}$.

$$\Psi_{x}^{p^{u},p^{s}}
ightarrow \Psi_{y}^{q^{u},q^{s}}$$
 if

Generalized pseudo-orbits

$$\{\Psi_{x_i}^{p_i^u,p_i^s}\}_{i\in\mathbb{Z}}$$
 s.t. $\Psi_{x_i}^{p_i^u,p_i^s}\to \Psi_{x_{i+1}}^{p_{i+1}^u,p_{i+1}^s}$ for all $i\in\mathbb{Z}$.

Shadows a real orbit $\{f^i(x)\}_{i\in\mathbb{Z}}$ if

$$f^i(x) \in \Psi_{x_i}([-Q(x_i),Q(x_i)]^2)$$
 for all $i \in \mathbb{Z}$.

Generalized pseudo-orbits

$$\{\Psi_{x_i}^{\rho_i^u,\rho_i^s}\}_{i\in\mathbb{Z}} \text{ s.t. } \Psi_{x_i}^{\rho_i^u,\rho_i^s} \to \Psi_{x_{i+1}}^{\rho_{i+1}^u,\rho_{i+1}^s} \text{ for all } i\in\mathbb{Z}.$$

Shadows a real orbit $\{f^i(x)\}_{i\in\mathbb{Z}}$ if

$$f^i(x) \in \Psi_{x_i}([-Q(x_i), Q(x_i)]^2)$$
 for all $i \in \mathbb{Z}$.

Question

When are there p_i^u, q_i^s s.t. $\{\Psi_{f^i(x)}^{p_i^u, p_i^s}\}_{i \in \mathbb{Z}}$ is a gpo?

•
$$0 < p_i^{u/s} \le Q(f^i(x))$$

•
$$p_{i+1}^{u} = \min\{e^{\epsilon}p_{i}^{u}, Q(f^{i+1}(x))\}$$

•
$$p_{i-1}^s = \min\{e^{\epsilon}p_i^u, Q(f^{i-1}(x))\}$$

Whenever
$$\frac{1}{n} \log Q_n(x) \xrightarrow[|n| \to \infty]{} 0$$
.

Question

When are there p_i^u, q_i^s s.t. $\{\Psi_{f^i(x)}^{p_i^u, p_i^s}\}_{i \in \mathbb{Z}}$ is a gpo?

$$\bullet \ 0 < p_i^{u/s} \le Q(f^i(x))$$

•
$$p_{i+1}^u = \min\{e^{\epsilon}p_i^u, Q(f^{i+1}(x))\}$$

•
$$p_{i-1}^s = \min\{e^{\epsilon}p_i^u, Q(f^{i-1}(x))\}$$

Whenever
$$\frac{1}{n} \log Q_n(x) \xrightarrow[|n| \to \infty]{} 0$$

Question

When are there p_i^u, q_i^s s.t. $\{\Psi_{f^i(x)}^{p_i^u, p_i^s}\}_{i \in \mathbb{Z}}$ is a gpo?

- $\bullet \ 0 < p_i^{u/s} \le Q(f^i(x))$
- $p_{i+1}^u = \min\{e^{\epsilon}p_i^u, Q(f^{i+1}(x))\}$
- $p_{i-1}^s = \min\{e^{\epsilon}p_i^u, Q(f^{i-1}(x))\}$

Whenever
$$\frac{1}{n} \log Q_n(x) \xrightarrow[|n| \to \infty]{} 0$$

Question

When are there p_i^u, q_i^s s.t. $\{\Psi_{f^i(x)}^{p_i^u, p_i^s}\}_{i \in \mathbb{Z}}$ is a gpo?

- $0 < p_i^{u/s} \le Q(f^i(x))$
- $p_{i+1}^u = \min\{e^{\epsilon}p_i^u, Q(f^{i+1}(x))\}$
- $p_{i-1}^s = \min\{e^{\epsilon}p_i^u, Q(f^{i-1}(x))\}$

Whenever
$$\frac{1}{n} \log Q_n(x) \xrightarrow[|n| \to \infty]{} 0$$
.

Question

When are there p_i^u, q_i^s s.t. $\{\Psi_{f^i(x)}^{p_i^u, p_i^s}\}_{i \in \mathbb{Z}}$ is a gpo?

- $\bullet \ 0 < p_i^{u/s} \leq Q(f^i(x))$
- $p_{i+1}^u = \min\{e^{\epsilon}p_i^u, Q(f^{i+1}(x))\}$
- $p_{i-1}^s = \min\{e^{\epsilon}p_i^u, Q(f^{i-1}(x))\}$

Whenever
$$\frac{1}{n} \log Q_n(x) \xrightarrow[|n| \to \infty]{} 0$$
.

Pesin's Temperdness Lemma: $\frac{1}{n} \log Q(f^n(x)) \xrightarrow[n \to \infty]{} 0$ a.e. for every ergodic μ s.t. $h_{\mu}(f) > \chi$

Pesin Temperdness Lemma

There is a function $0 < q \le Q$ on $\{x : \frac{1}{n} \log Q \circ f^n \to 0\}$ s.t.

$$e^{-\epsilon} < \frac{q \circ f}{q} < e^{\epsilon}$$

Construction

 $p^{\mu} := \max\{t \in I_{\epsilon} : Q(f^{i-k}(x)) > e^{-k\epsilon}t \text{ for all } k > 0\}$

Pesin's Temperdness Lemma: $\frac{1}{n}\log Q(f^n(x)) \xrightarrow[n \to \infty]{} 0$ a.e. for every ergodic μ s.t. $h_{\mu}(f) > \chi$

Pesin Temperdness Lemma

There is a function $0 < q \le Q$ on $\{x : \frac{1}{n} \log Q \circ f^n \to 0\}$ s.t.

$$e^{-\epsilon} < \frac{q \circ f}{q} < e^{\epsilon}$$

Construction

- $p_i^u := \max\{t \in I_{\epsilon} : Q(t^{i-k}(x)) \ge e^{-k\epsilon}t \text{ for all } k \ge 0\}$

Pesin's Temperdness Lemma: $\frac{1}{n}\log Q(f^n(x)) \xrightarrow[n \to \infty]{} 0$ a.e. for every ergodic μ s.t. $h_{\mu}(f) > \chi$

Pesin Temperdness Lemma

There is a function $0 < q \le Q$ on $\{x : \frac{1}{n} \log Q \circ f^n \to 0\}$ s.t.

$$e^{-\epsilon} < \frac{q \circ f}{q} < e^{\epsilon}$$

Construction

Pesin's Temperdness Lemma: $\frac{1}{n}\log Q(f^n(x)) \xrightarrow[n \to \infty]{} 0$ a.e. for every ergodic μ s.t. $h_{\mu}(f) > \chi$

Pesin Temperdness Lemma

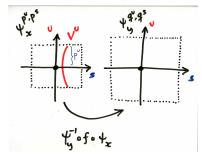
There is a function $0 < q \le Q$ on $\{x : \frac{1}{n} \log Q \circ f^n \to 0\}$ s.t.

$$e^{-\epsilon} < \frac{q \circ f}{q} < e^{\epsilon}$$

Construction

If
$$\Psi_{x}^{p^{u},p^{s}} \rightarrow \Psi_{y}^{q^{u},q^{s}}$$
, then

- $\Psi_y^{-1} \circ f \circ \Psi_x \approx \Psi_{f(x)}^{-1} \circ f \circ \Psi_x \approx \begin{pmatrix} \lambda & 0 \\ 0 & \mu \end{pmatrix}$ where $|\lambda| < e^{-\chi}, |\mu| > e^{\chi}$.
- $q^u = \min\{e^{\epsilon}p^u, Q(y)\} \le e^{\epsilon}p^u < \text{expansion} \times p^u$

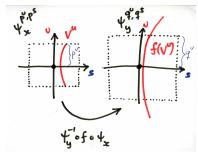


If
$$\Psi_{x}^{p^{u},p^{s}} \rightarrow \Psi_{y}^{q^{u},q^{s}}$$
, then

•
$$\Psi_y^{-1} \circ f \circ \Psi_x \approx \Psi_{f(x)}^{-1} \circ f \circ \Psi_x \approx \begin{pmatrix} \lambda & 0 \\ 0 & \mu \end{pmatrix}$$

where $|\lambda| < e^{-\chi}$, $|\mu| > e^{\chi}$.

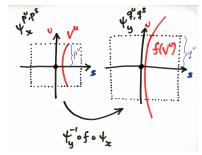
• $q^u = \min\{e^{\epsilon}p^u, Q(y)\} \le e^{\epsilon}p^u < \text{expansion} \times p^u$



If
$$\Psi_{x}^{p^{u},p^{s}} \rightarrow \Psi_{y}^{q^{u},q^{s}}$$
, then

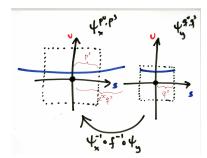
•
$$\Psi_y^{-1} \circ f \circ \Psi_x \approx \Psi_{f(x)}^{-1} \circ f \circ \Psi_x \approx \begin{pmatrix} \lambda & 0 \\ 0 & \mu \end{pmatrix}$$

• $q^u = \min\{e^{\epsilon}p^u, Q(y)\} \le e^{\epsilon}p^u < \text{expansion} \times p^u$

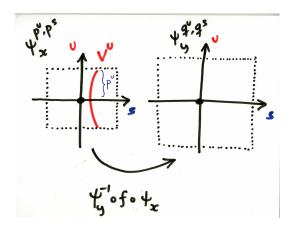


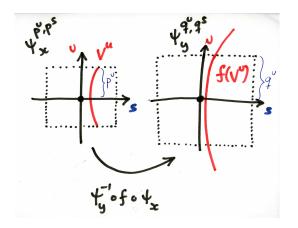
If
$$\Psi_{x}^{p^{u},p^{s}} \rightarrow \Psi_{y}^{q^{u},q^{s}}$$
, then

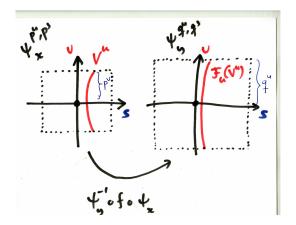
- $\Psi_y^{-1} \circ f \circ \Psi_x \approx \Psi_{f(x)}^{-1} \circ f \circ \Psi_x \approx \begin{pmatrix} \lambda & 0 \\ 0 & \mu \end{pmatrix}$ where $|\lambda| < e^{-\chi}$, $|\mu| > e^{\chi}$.
- $q^u = \min\{e^{\epsilon}p^u, Q(y)\} \le e^{\epsilon}p^u < \text{expansion} \times p^u$



←-overlapGeneralized pseudo-orbitsMeaning



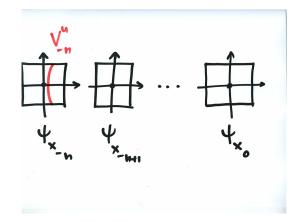




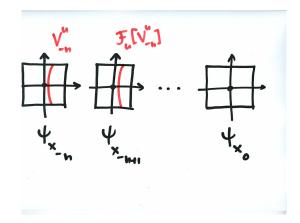
Pesin theory
Definition of generalized pseudo orbits
Unstable manifolds

Application: Pesin's Unstable Manifold Theorem

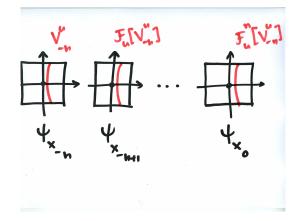
$$\{\Psi_{x_i}^{
ho_i^u,
ho_i^s}\}_{i\in\mathbb{Z}}$$
 is a gpo



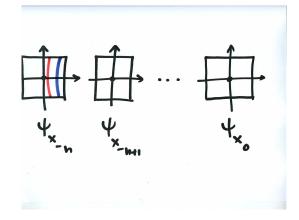
$$\{\Psi_{x_i}^{
ho_i^u,
ho_i^s}\}_{i\in\mathbb{Z}}$$
 is a gpo



$$\{\Psi_{x_i}^{
ho_i^u,
ho_i^s}\}_{i\in\mathbb{Z}}$$
 is a gpo

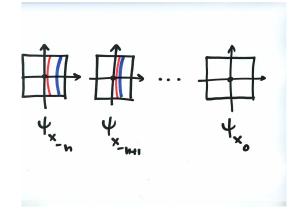


$$\{\Psi_{x_i}^{
ho_i^u,
ho_i^s}\}_{i\in\mathbb{Z}}$$
 is a gpo



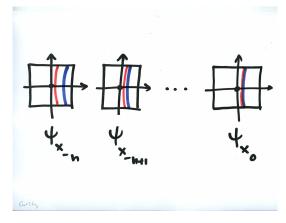
The unstable manifold of a gpo

$$\{\Psi_{x_i}^{
ho_i^u,
ho_i^s}\}_{i\in\mathbb{Z}}$$
 is a gpo



The unstable manifold of a gpo

$$\{\Psi_{x_i}^{\mathcal{p}_i^u,\mathcal{p}_i^s}\}_{i\in\mathbb{Z}}$$
 is a gpo



The unstable manifold of a gpo

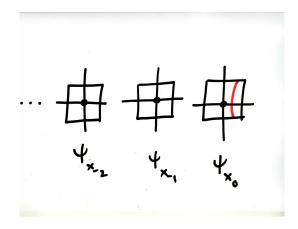
$$\{\Psi_{x_i}^{p_i^u,p_i^s}\}_{i\in\mathbb{Z}}$$
 is a gpo

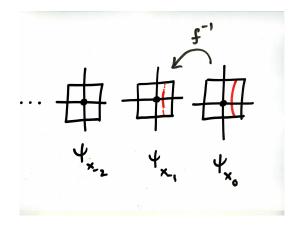
Unstable manifold of a gpo

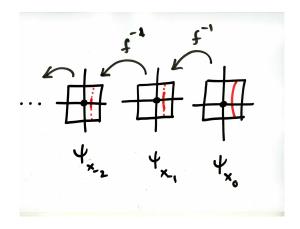
The following limit exists:

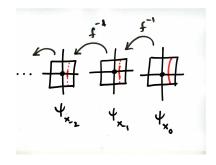
$$V^{u}[\{\Psi_{x_{i}}^{p_{i}^{u},p_{i}^{s}}\}_{i\leq0}]=\lim_{n\to\infty}\mathcal{F}_{u}^{n}[V_{-n}^{u}]$$

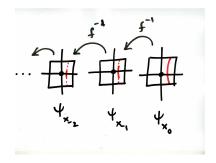
for some (any) choice of "u-manifolds" V_{-n}^u in $\Psi_{X_{-n}}^{p_n^u,p_n^s}$.





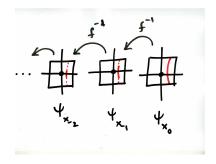






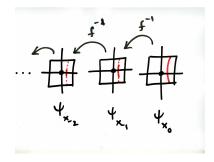
Corollary: $V^{u}[\{\Psi_{X_{i}}^{p_{i}^{u},p_{i}^{s}}]$ is a local unstable manifold

- \bigcirc it is tangent to E^u
- ② f^{-n} contracts exponentially on $V^{u}[\{\Psi_{x_{i}}^{p_{i}^{u},p_{i}^{s}}\}_{i\leq 0}]$



Corollary: $V^{u}[\{\Psi_{X_{i}}^{p_{i}^{u},p_{i}^{s}}]$ is a local unstable manifold

- \odot it is tangent to E^u
- ② f^{-n} contracts exponentially on $V^u[\{\Psi_{x_i}^{p_i^u,p_i^s}\}_{i\leq 0}]$



Corollary: $V^u[\{\Psi_{X_i}^{p_i^u,p_i^s}\}]$ is a local unstable manifold

- \odot it is tangent to E^u
- ② f^{-n} contracts exponentially on $V^{u}[\{\Psi_{x_{i}}^{p_{i}^{u},p_{i}^{s}}\}_{i\leq0}]$

Pesin's Unstable Manifold Theorem

Suppose μ is an ergodic measure with positive entropy for a $C^{1+\beta}$ -surface diffeo.

Pesin's Unstable Manifold Theorem

A.e. $x \in M$ lies on a one dimensional manifold $V^u(x)$ s.t.

- $V^{u}(x)$ is tangent to $E^{u}(\cdot)$ where defined
- f^n contracts exponentially on $V^u(x)$

Pesin's Unstable Manifold Theorem

Suppose μ is an ergodic measure with positive entropy for a $C^{1+\beta}$ -surface diffeo.

Pesin's Unstable Manifold Theorem

- A.e. $x \in M$ lies on a one dimensional manifold $V^u(x)$ s.t.
 - $V^{u}(x)$ is tangent to $E^{u}(\cdot)$ where defined
 - f^n contracts exponentially on $V^u(x)$

Pesin's Unstable Manifold Theorem

Suppose μ is an ergodic measure with positive entropy for a $C^{1+\beta}$ -surface diffeo.

Pesin's Unstable Manifold Theorem

- A.e. $x \in M$ lies on a one dimensional manifold $V^u(x)$ s.t.
 - $V^{u}(x)$ is tangent to $E^{u}(\cdot)$ where defined
 - f^n contracts exponentially on $V^u(x)$