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Symbolic coding

Setup: surface diffeomorphism f : M → M
Orbits: f n(x) := (f ◦ · · · ◦ f )(x)

Fundamental difficulty: Direct calculation is difficult

Symbolic coding

A change of coordinates which transforms f : M → M to the
action of the left shift on a space of sequences.

Easy to iterate!

O. Sarig Symbolic dynamics for surface diffeomorphisms



The result
Applications
Idea of proof

Symbolic coding
Markov partitions
The result

Symbolic coding

Setup: surface diffeomorphism f : M → M
Orbits: f n(x) := (f ◦ · · · ◦ f )(x)

Fundamental difficulty: Direct calculation is difficult

Symbolic coding

A change of coordinates which transforms f : M → M to the
action of the left shift on a space of sequences.

Easy to iterate!

O. Sarig Symbolic dynamics for surface diffeomorphisms



The result
Applications
Idea of proof

Symbolic coding
Markov partitions
The result

Symbolic coding

Setup: surface diffeomorphism f : M → M
Orbits: f n(x) := (f ◦ · · · ◦ f )(x)

Fundamental difficulty: Direct calculation is difficult

Symbolic coding

A change of coordinates which transforms f : M → M to the
action of the left shift on a space of sequences.

Easy to iterate!

O. Sarig Symbolic dynamics for surface diffeomorphisms



The result
Applications
Idea of proof

Symbolic coding
Markov partitions
The result

Symbolic coding

Setup: surface diffeomorphism f : M → M
Orbits: f n(x) := (f ◦ · · · ◦ f )(x)

Fundamental difficulty: Direct calculation is difficult

Symbolic coding

A change of coordinates which transforms f : M → M to the
action of the left shift on a space of sequences.

Easy to iterate!

O. Sarig Symbolic dynamics for surface diffeomorphisms



The result
Applications
Idea of proof

Symbolic coding
Markov partitions
The result

Symbolic coding

Setup: surface diffeomorphism f : M → M
Orbits: f n(x) := (f ◦ · · · ◦ f )(x)

Fundamental difficulty: Direct calculation is difficult

Symbolic coding

A change of coordinates which transforms f : M → M to the
action of the left shift on a space of sequences.

Easy to iterate!

O. Sarig Symbolic dynamics for surface diffeomorphisms



The result
Applications
Idea of proof

Symbolic coding
Markov partitions
The result

Symbolic coding

Setup: surface diffeomorphism f : M → M
Orbits: f n(x) := (f ◦ · · · ◦ f )(x)

Fundamental difficulty: Direct calculation is difficult

Symbolic coding

A change of coordinates which transforms f : M → M to the
action of the left shift on a space of sequences.

Easy to iterate!

O. Sarig Symbolic dynamics for surface diffeomorphisms



The result
Applications
Idea of proof

Symbolic coding
Markov partitions
The result

Symbolic coding

Setup: surface diffeomorphism f : M → M
Orbits: f n(x) := (f ◦ · · · ◦ f )(x)

Fundamental difficulty: Direct calculation is difficult

Symbolic coding

A change of coordinates which transforms f : M → M to the
action of the left shift on a space of sequences.

Easy to iterate!

O. Sarig Symbolic dynamics for surface diffeomorphisms



The result
Applications
Idea of proof

Symbolic coding
Markov partitions
The result

Itineraries

R a partition of M.

Itinerary of x ∈ M:

(Ri)i∈Z ∈ RZ s.t. f i(x) ∈ Ri for all i

Why this is useful:
f acts on itineraries by the left shift. Easy to iterate!
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What sequences arise as itineraries?

R is a partition

Every R–itinerary is a walk on the dynamical graph of R:
Vertices: partition elements
Edges: R1 → R2 when ∃x ∈ R1 s.t. f (x) ∈ R2

But some paths on the graph may not be itineraries!
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Markov partitions

Special partitions s.t. every path is "almost" an itinerary

A Markov partition:
Product structure
Markov property
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The definition of a Markov partition
Product structure

For every partition element R
R =

⋃
x∈R W u(x ,R) and R =

⋃
x∈R W s(x ,R)

W u(·,R) are equal or disjoint. Same for W s(·,R)

W u(x ,R) ∩W s(x ,R) = {x}
W u(x ,R) ∩W s(y ,R) = {z}, z ∈ R
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The definition of a Markov partition
Markov property

For any two partition elements Ri ,Rj , if x ∈ Ri , f (x) ∈ Rj then
f [W s(x ,Ri)] ⊂W s(f (x),Rj)

f−1[W u(f (x),Rj)] ⊂W u(x ,Rj)
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Markov partitions: All paths are (almost) itineraries
Statement

f : M → M homeo, M compact.
R is a Markov partition
G: dynamical graph of R

Theorem

For every path (Ri)i∈Z on G, ∃x ∈ M s.t. f i(x) ∈ Ri (k ∈ Z).
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Markov partitions: All paths are (almost) itineraries
Proof

Cylinders:

m[Rm,Rm+1, . . . ,Rn] := {x : f i(x) ∈ Ri (m ≤ i ≤ n)}

Must show: for infinite paths (Rk )k∈Z,

∞⋂
n=1

−n[R−n, . . . ,Rn] 6= ∅

Enough to show: −n[R−n, . . . ,Rn] 6= ∅
Equivalently, 0[R0, . . . ,R2n] 6= ∅
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Markov partitions: All paths are (almost) itineraries

Induction hypothesis: 0[R0, . . . ,Rn−1] 6= ∅, and Rn−1 → Rn
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Existence of Markov partition?
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When does f admit a Markov partition?
What’s known

Special cases

Adler & Weiss, Berg: Hyperbolic automorphisms of T2

Sinai: Anosov diffeos
Bowen: Axiom A diffeos
Fathi & Shub: pseudo Anosov
Berger: Hénon

General C1+ε surface diffeos
A. Katok: ∃ “large" invariant sets K s.t. f |K has a finite MP.

“Large": htop(f |K ) arbitrarily close to htop(f ).

Our result: Same as Katok, but “large"=of full measure.
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The result

Setup: f : M → M is a diffeomorphism on a compact smooth
orientable surface M

f is C1+ε

htop(f ) > 0
dim M = 2

Theorem
For every 0 < δ < htop(f ) there is an invariant Borel set E s.t.

1 f |E has a countable Markov partition
2 µ(E) = 1 for every ergodic invariant µ s.t. hµ(f ) > δ.
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What’s this good for: symbolic dynamics

Let G :=dynamical graph of the Markov partition
Σ(G) := {paths on G} = {(Ri )i∈Z : Ri → Ri+1 (i ∈ Z)}

Metric: d(v,w) := exp[−min{|i| : vi 6= wi}]

Left shift map: σ : (vi )i∈Z 7→ (vi+1)i∈Z.

Theorem
There is a Hölder continuous π : Σ(G)→ M s.t.

1 π ◦ σ = f ◦ π
2 π[Σ(G)] is δ–large
3 {x ∈ M : finitely many preimages} is δ–large

“δ-large": full measure w.r.t. any ergodic µ s.t. hµ(f ) > δ.
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Other results in the literature

Representation as a factor of a symbolic system
Tower constructions: Takahashi, Hofbauer, Keller,
Young, Buzzi, Pesin & Senti
Symbolic extensions: Buzzi; Boyle, Fiebig & Fiebig,
Boyle & Downarowicz, Burguet

Advantage of our coding: finiteness-to-one
Principal extension property
Lifting property for ergodic µ s.t. hµ(f ) > δ
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Periodic point counting
Measure of maximal entropy
Equilibrium measures

Application I: Counting periodic points

Pn(f ) := #{x ∈ M : f n(x) = x}

Theorem (Katok’s conjecture)
Suppose f is a C∞ surface diffeo with positive entropy, then
∃p ∈ N,C > 0 s.t. for all n� 1 divisible by p, Pn(f ) ≥ Cenhtop(f ).

Katok’s Theorem: Pn(f ) ≥ Cen(htop (f )−ε) along a subsequence

Key tools

Newhouse: C∞ diffeos have measures of maximal entropy

B.M. Gurevich: Necessary & sufficient condition for the existence of measures of maximal entropy for
countable Markov shifts
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Application II: The measure of maximal entropy

Theorem (Buzzi’s Conjecture)

A C1+ε–surface diffeo can have at most countably many
different ergodic measures of maximal entropy.

Buzzi’s Theorem: Finitely many for piecewise monotonic interval maps, piecewise linear affine homeos

Key tool

Gurevich’s Theorem: Topologically transitive countable Markov shifts possess at most one measure of maximal
entropy.
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Application III: Equilibrium measures

Data: φ : M → R Hölder continuous
Equilibrium measure of φ: Ergodic f–invariant measure µ
which maximizes hµ(f ) +

∫
φdµ

Theorem
If hµ(f ) > 0, then f equipped with µ is isomorphic to
Bernoulli scheme× finite rotation.
Earlier related results: Pesin, Ledrappier, Ornstein & Weiss

Key tool

Buzzi & S.: Structure of equilibrium measures for countable Markov shifts

Ornstein, Ornstein & Friedman: Sufficient conditions for the Bernoulli theory
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Bowen’s proof in the Anosov case

Setup: f : T2 → T2 hyperbolic toral automorphism

Pseudo-orbits (Alexeev):
Sequences (xi)i∈Z s.t. ∀i , d(f (xi), xi+1) < ε

Anosov Shadowing Lemma
Finite alphabet suffices: ∃V finite s.t. every orbit is
shadowed by some p.o. in VZ

Nearest neighbor property

Directed graph representation:
Let G denote the graph with vertices V and edges
x → y ⇔ d(f (x), y) < ε, then Σ(G) = {ε–pseudo orbits in VZ}
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Bowen’s construction of MP

Setup: f : T2 → T2 hyperbolic toral automorphism

Σ(G) = {pseudo-orbits in VZ}
π : pseudo-orbit 7→ real orbit defines a map π : Σ(G)→ M
s.t. π ◦ shift = f ◦ π.
Markov Partition for Σ(G): [v ] = {v : v0 = v} (v ∈ V)

Project this partition to M: π[v ] (v ∈ V). Markov, but has
overlaps.

Main Step (Bowen–Sinai Refinement)
A procedure which refines a finite Markov collection with
overlaps into a Markov partition.
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The non-uniformly hyperbolic case

What’s easy to do:
To give a definition of “pseudo–orbits" in this context. But, we’ll
need an infinite alphabet.

Let’s try Bowen’s approach:

Σ(G) = {“generalized p.o."}, where G is an infinite graph
Σ(G) has a countable Markov partition
projects to countable Markov collection in M

The difficulty
∃ countable collections of sets without a countable refining
partitions.
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Must have local finiteness!
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Strategy of proof: Apriori local finiteness

Strategy of proof:

Come up with a definition of “pseudo–orbits" such that the
Markov partition on Σ(G) projects to a locally finite Markov
collection in M. Then apply Bowen’s construction.

What we need from the definition:
Shadowing Lemma
Countable alphabet suffices
Nearest neighbor constraints

→ Inverse problem: Suppose a p.o. (vi )i∈Z shadows the orbit
of x .Then we can “read" v0 from x up to “bounded error".
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Plan

Lecture 2: definition of "generalized pseudo-orbits"
Lecture 3: shadowing lemma and inverse problem
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