Symbolic dynamics for surface diffeomorphisms

O. Sarig

Weizmann Institute of Science

Moscow, 2012

イロト イポト イヨト イヨト

Symbolic coding

• Setup: surface diffeomorphism $f: M \to M$

• **Orbits:** $f^n(x) := (f \circ \cdots \circ f)(x)$

• Fundamental difficulty: Direct calculation is difficult

Symbolic coding

A change of coordinates which transforms $f: M \rightarrow M$ to the action of the left shift on a space of sequences.

Easy to iteratel

Symbolic coding

- Setup: surface diffeomorphism $f: M \to M$
- **Orbits:** $f^n(x) := (f \circ \cdots \circ f)(x)$
- Fundamental difficulty: Direct calculation is difficult

Symbolic coding

A change of coordinates which transforms $f: M \rightarrow M$ to the action of the left shift on a space of sequences.

Easy to iterate!

Symbolic coding

- Setup: surface diffeomorphism $f: M \to M$
- **Orbits:** $f^n(x) := (f \circ \cdots \circ f)(x)$
- Fundamental difficulty: Direct calculation is difficult

Symbolic coding

A change of coordinates which transforms $f: M \rightarrow M$ to the action of the left shift on a space of sequences.

Easy to iteratel

ヘロト ヘ戸ト ヘヨト ヘヨト

Symbolic coding

- Setup: surface diffeomorphism $f: M \to M$
- **Orbits:** $f^n(x) := (f \circ \cdots \circ f)(x)$
- Fundamental difficulty: Direct calculation is difficult

Symbolic coding

A change of coordinates which transforms $f: M \rightarrow M$ to the action of the left shift on a space of sequences.

Easy to iterate!

ヘロト ヘアト ヘビト ヘビト

Symbolic coding

- Setup: surface diffeomorphism $f: M \to M$
- Orbits: $f^n(x) := (f \circ \cdots \circ f)(x)$
- Fundamental difficulty: Direct calculation is difficult

Symbolic coding

A change of coordinates which transforms $f : M \to M$ to the action of the left shift on a space of sequences.

Easy to iterate!

くロト (過) (目) (日)

Symbolic coding

- Setup: surface diffeomorphism $f: M \to M$
- Orbits: $f^n(x) := (f \circ \cdots \circ f)(x)$
- Fundamental difficulty: Direct calculation is difficult

Symbolic coding

A change of coordinates which transforms $f : M \to M$ to the action of the left shift on a space of sequences.

Easy to iterate!

くロト (過) (目) (日)

Symbolic coding

- Setup: surface diffeomorphism $f: M \to M$
- **Orbits:** $f^n(x) := (f \circ \cdots \circ f)(x)$
- Fundamental difficulty: Direct calculation is difficult

Symbolic coding

A change of coordinates which transforms $f : M \to M$ to the action of the left shift on a space of sequences.

Easy to iterate!

ヘロト ヘ戸ト ヘヨト ヘヨト

Symbolic coding
Markov partitions

Itineraries

\mathcal{R} a partition of M.

Itinerary of $x \in M$:

 $(\mathbf{R}_i)_{i\in\mathbb{Z}}\in\mathcal{R}^{\mathbb{Z}}$ s.t. $f^i(\mathbf{x})\in\mathbf{R}_i$ for all i

Why this is useful:

f acts on itineraries by the left shift. Easy to iterate!

イロン 不同 とくほう イヨン

Symbolic coding
Markov partitions

Itineraries

\mathcal{R} a partition of M.

Itinerary of $x \in M$:

 $(\mathbf{R}_i)_{i\in\mathbb{Z}}\in\mathcal{R}^{\mathbb{Z}}$ s.t. $f^i(\mathbf{x})\in\mathbf{R}_i$ for all i

Why this is useful:

f acts on itineraries by the left shift. Easy to iterate!

イロン 不同 とくほ とくほ とう

The result	Symbolic coding
Applications	Markov partitions
ldea of proof	

\mathcal{R} a partition of M.

Itinerary of $x \in M$:

 $(\mathbf{R}_i)_{i\in\mathbb{Z}}\in\mathcal{R}^{\mathbb{Z}}$ s.t. $f^i(\mathbf{x})\in\mathbf{R}_i$ for all i

Why this is useful:

f acts on itineraries by the left shift. Easy to iterate!

ヘロト ヘアト ヘビト ヘビト

The result	Symbolic coding
Applications	Markov partitions
ldea of proof	

\mathcal{R} a partition of M.

Itinerary of $x \in M$:

 $(\mathbf{R}_i)_{i\in\mathbb{Z}}\in\mathcal{R}^{\mathbb{Z}}$ s.t. $f^i(\mathbf{x})\in\mathbf{R}_i$ for all i

Why this is useful:

f acts on itineraries by the left shift. Easy to iterate!

ヘロト ヘアト ヘビト ヘビト

The result	Symbolic coding
Applications	Markov partitions
ldea of proof	

\mathcal{R} a partition of M.

Itinerary of $x \in M$:

 $(\mathbf{R}_i)_{i\in\mathbb{Z}}\in\mathcal{R}^{\mathbb{Z}}$ s.t. $f^i(\mathbf{x})\in\mathbf{R}_i$ for all i

Why this is useful:

f acts on itineraries by the left shift. Easy to iterate!

ヘロト ヘアト ヘビト ヘビト

What sequences arise as itineraries?

 $\ensuremath{\mathcal{R}}$ is a partition

Every \mathcal{R} --itinerary is a walk on the dynamical graph of \mathcal{R} :

- Vertices: partition elements
- Edges: $R_1 \rightarrow R_2$ when $\exists x \in R_1$ s.t. $f(x) \in R_2$

But some paths on the graph may not be itineraries!

What sequences arise as itineraries?

 $\ensuremath{\mathcal{R}}$ is a partition

Every \mathcal{R} --itinerary is a walk on the dynamical graph of \mathcal{R} :

- Vertices: partition elements
- Edges: $R_1 \rightarrow R_2$ when $\exists x \in R_1$ s.t. $f(x) \in R_2$

But some paths on the graph may not be itineraries!

What sequences arise as itineraries?

 $\ensuremath{\mathcal{R}}$ is a partition

Every \mathcal{R} -itinerary is a walk on the dynamical graph of \mathcal{R} :

- Vertices: partition elements
- Edges: $R_1 \rightarrow R_2$ when $\exists x \in R_1$ s.t. $f(x) \in R_2$

But some paths on the graph may not be itineraries!

What sequences arise as itineraries?

 $\ensuremath{\mathcal{R}}$ is a partition

Every \mathcal{R} -itinerary is a walk on the dynamical graph of \mathcal{R} :

- Vertices: partition elements
- Edges: $R_1 \rightarrow R_2$ when $\exists x \in R_1$ s.t. $f(x) \in R_2$

But some paths on the graph may not be itineraries!

What sequences arise as itineraries?

 $\ensuremath{\mathcal{R}}$ is a partition

Every \mathcal{R} -itinerary is a walk on the dynamical graph of \mathcal{R} :

- Vertices: partition elements
- Edges: $R_1 \rightarrow R_2$ when $\exists x \in R_1$ s.t. $f(x) \in R_2$

But some paths on the graph may not be itineraries!

Symbolic coding Markov partitions The result

Markov partitions

Special partitions s.t. every path is "almost" an itinerary

A Markov partition:

- Product structure
- Markov property

イロト イポト イヨト イヨト

Symbolic coding Markov partitions The result

Markov partitions

Special partitions s.t. every path is "almost" an itinerary

A Markov partition:

Product structure

Markov property

イロト イポト イヨト イヨト

Symbolic coding Markov partitions The result

Markov partitions

Special partitions s.t. every path is "almost" an itinerary

A Markov partition:

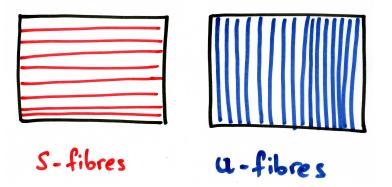
- Product structure
- Markov property

イロト イポト イヨト イヨト

æ

Symbolic coding Markov partitions The result

The definition of a Markov partition Product structure

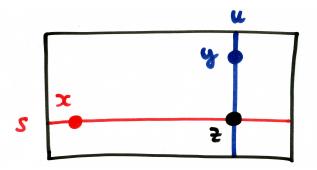


< A

★ E > < E >

Symbolic coding Markov partitions The result

The definition of a Markov partition Product structure

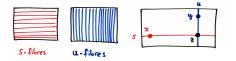


O. Sarig Symbolic dynamics for surface diffeomorphisms

ヨト イヨト

3

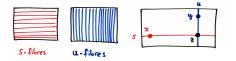
The definition of a Markov partition Product structure



For every partition element R

- $R = \bigcup_{x \in R} W^u(x, R)$ and $R = \bigcup_{x \in R} W^s(x, R)$
- $W^{u}(\cdot, R)$ are equal or disjoint. Same for $W^{s}(\cdot, R)$
- $W^{u}(x,R) \cap W^{s}(x,R) = \{x\}$
- $W^{u}(x, R) \cap W^{s}(y, R) = \{z\}, z \in R$

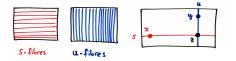
The definition of a Markov partition Product structure



For every partition element R

- $R = \bigcup_{x \in R} W^u(x, R)$ and $R = \bigcup_{x \in R} W^s(x, R)$
- $W^u(\cdot, R)$ are equal or disjoint. Same for $W^s(\cdot, R)$
- $W^u(x,R) \cap W^s(x,R) = \{x\}$
- $W^{u}(x,R) \cap W^{s}(y,R) = \{z\}, z \in R$

The definition of a Markov partition Product structure



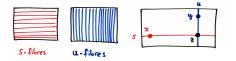
For every partition element R

- $R = \bigcup_{x \in R} W^u(x, R)$ and $R = \bigcup_{x \in R} W^s(x, R)$
- $W^u(\cdot, R)$ are equal or disjoint. Same for $W^s(\cdot, R)$

•
$$W^u(x,R) \cap W^s(x,R) = \{x\}$$

• $W^{u}(x, R) \cap W^{s}(y, R) = \{z\}, z \in R$

The definition of a Markov partition Product structure



For every partition element R

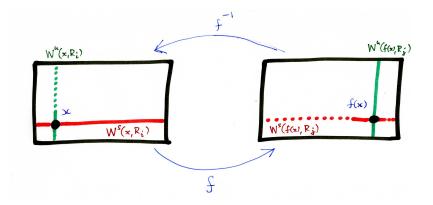
- $R = \bigcup_{x \in R} W^u(x, R)$ and $R = \bigcup_{x \in R} W^s(x, R)$
- $W^u(\cdot, R)$ are equal or disjoint. Same for $W^s(\cdot, R)$

•
$$W^u(x,R) \cap W^s(x,R) = \{x\}$$

• $W^{u}(x,R) \cap W^{s}(y,R) = \{z\}, z \in R$

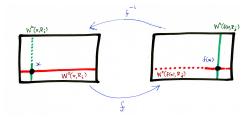
Symbolic coding Markov partitions The result

The definition of a Markov partition Markov property



() < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < ()

The definition of a Markov partition Markov property



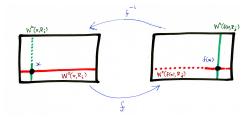
For any two partition elements R_i, R_j , if $x \in R_i, f(x) \in R_j$ then • $f[W^s(x, R_i)] \subset W^s(f(x), R_j)$

• $f^{-1}[W^u(f(x), R_j)] \subset W^u(x, R_j)$

→ Ξ → < Ξ →</p>

< 🗇 🕨

The definition of a Markov partition Markov property



For any two partition elements R_i , R_j , if $x \in R_i$, $f(x) \in R_j$ then

- $f[W^s(x, R_i)] \subset W^s(f(x), R_j)$
- $f^{-1}[W^u(f(x), R_j)] \subset W^u(x, R_j)$

★ E > < E >

Symbolic coding Markov partitions The result

Markov partitions: All paths are (almost) itineraries

• $f: M \to M$ homeo, M compact.

- \mathcal{R} is a Markov partition
- \mathcal{G} : dynamical graph of \mathcal{R}

Theorem

For every path $(R_i)_{i \in \mathbb{Z}}$ on \mathcal{G} , $\exists x \in M \text{ s.t. } f^i(x) \in \overline{R_i} \ (k \in \mathbb{Z})$.

Symbolic coding Markov partitions The result

Markov partitions: All paths are (almost) itineraries

- $f: M \to M$ homeo, M compact.
- *R* is a Markov partition
- \mathcal{G} : dynamical graph of \mathcal{R}

Theorem

For every path $(R_i)_{i \in \mathbb{Z}}$ on \mathcal{G} , $\exists x \in M \text{ s.t. } f^i(x) \in \overline{R_i} \ (k \in \mathbb{Z})$.

Symbolic coding Markov partitions The result

Markov partitions: All paths are (almost) itineraries

- $f: M \to M$ homeo, M compact.
- *R* is a Markov partition
- \mathcal{G} : dynamical graph of \mathcal{R}

Theorem

For every path $(R_i)_{i \in \mathbb{Z}}$ on \mathcal{G} , $\exists x \in M \text{ s.t. } f^i(x) \in \overline{R_i} \ (k \in \mathbb{Z})$.

ヘロト ヘ戸ト ヘヨト ヘヨト

Symbolic coding Markov partitions The result

Markov partitions: All paths are (almost) itineraries

- $f: M \to M$ homeo, M compact.
- *R* is a Markov partition
- \mathcal{G} : dynamical graph of \mathcal{R}

Theorem

For every path $(R_i)_{i\in\mathbb{Z}}$ on \mathcal{G} , $\exists x \in M$ s.t. $f^i(x) \in \overline{R_i}$ $(k \in \mathbb{Z})$.

くロト (過) (目) (日)

Symbolic coding Markov partitions The result

Markov partitions: All paths are (almost) itineraries

Cylinders:

$$m[R_m, R_{m+1}, \ldots, R_n] := \{x : f^i(x) \in R_i \ (m \le i \le n)\}$$

• Must show: for infinite paths $(R_k)_{k \in \mathbb{Z}}$,

$$\bigcap_{n=1}^{\infty} \overline{-n[R_{-n},\ldots,R_n]} \neq \emptyset$$

• Enough to show: $_{-n}[R_{-n}, ..., R_n] \neq \emptyset$ Equivalently, $_0[R_0, ..., R_{2n}] \neq \emptyset$

ヘロン ヘアン ヘビン ヘビン

3

Symbolic coding Markov partitions The result

Markov partitions: All paths are (almost) itineraries

Cylinders:

$$m[R_m, R_{m+1}, \ldots, R_n] := \{x : f^i(x) \in R_i \ (m \le i \le n)\}$$

• Must show: for infinite paths $(R_k)_{k \in \mathbb{Z}}$,

$$\bigcap_{n=1}^{\infty} \overline{-n[R_{-n},\ldots,R_n]} \neq \emptyset$$

• Enough to show: $_{-n}[R_{-n}, ..., R_n] \neq \emptyset$ Equivalently, $_0[R_0, ..., R_{2n}] \neq \emptyset$

ヘロン ヘアン ヘビン ヘビン

3

Markov partitions: All paths are (almost) itineraries

Cylinders:

$${}_{m}[R_{m}, R_{m+1}, \ldots, R_{n}] := \{x : f^{i}(x) \in R_{i} (m \leq i \leq n)\}$$

• Must show: for infinite paths $(R_k)_{k \in \mathbb{Z}}$,

$$\bigcap_{n=1}^{\infty} \overline{-n[R_{-n},\ldots,R_n]} \neq \emptyset$$

• Enough to show: $-n[R_{-n}, \dots, R_n] \neq \emptyset$ Equivalently, $_0[R_0, \dots, R_{2n}] \neq \emptyset$

ヘロト 人間 ト ヘヨト ヘヨト

Markov partitions: All paths are (almost) itineraries

Cylinders:

$${}_{m}[R_{m}, R_{m+1}, \ldots, R_{n}] := \{x : f^{i}(x) \in R_{i} (m \leq i \leq n)\}$$

• Must show: for infinite paths $(R_k)_{k \in \mathbb{Z}}$,

$$\bigcap_{n=1}^{\infty} \overline{-n[R_{-n},\ldots,R_n]} \neq \emptyset$$

 Enough to show: _n[R_n,..., R_n] ≠ Ø Equivalently, ₀[R₀,..., R₂n] ≠ Ø

くロト (過) (目) (日)

Markov partitions: All paths are (almost) itineraries

Cylinders:

$${}_{m}[R_{m}, R_{m+1}, \ldots, R_{n}] := \{x : f^{i}(x) \in R_{i} (m \leq i \leq n)\}$$

• Must show: for infinite paths $(R_k)_{k \in \mathbb{Z}}$,

$$\bigcap_{n=1}^{\infty} \overline{-n[R_{-n},\ldots,R_n]} \neq \emptyset$$

 Enough to show: _n[R_n,..., R_n] ≠ Ø Equivalently, ₀[R₀,..., R₂n] ≠ Ø

くロト (過) (目) (日)

Markov partitions: All paths are (almost) itineraries

Cylinders:

$${}_{m}[R_{m}, R_{m+1}, \ldots, R_{n}] := \{x : f^{i}(x) \in R_{i} (m \leq i \leq n)\}$$

• Must show: for infinite paths $(R_k)_{k \in \mathbb{Z}}$,

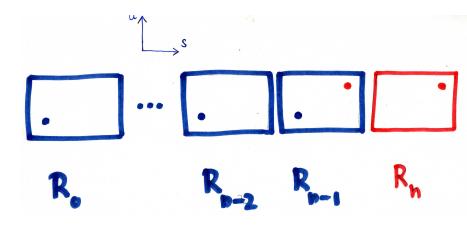
$$\bigcap_{n=1}^{\infty} \overline{-n[R_{-n},\ldots,R_n]} \neq \emptyset$$

• Enough to show: $_{-n}[R_{-n}, ..., R_n] \neq \emptyset$ Equivalently, $_0[R_0, ..., R_{2n}] \neq \emptyset$

くロト (過) (目) (日)

Markov partitions: All paths are (almost) itineraries

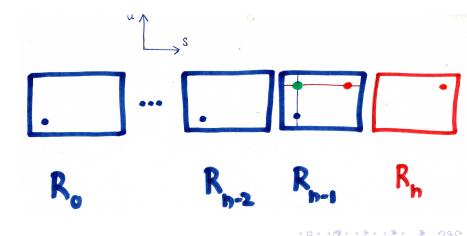
Induction hypothesis: $_0[R_0, \ldots, R_{n-1}] \neq \emptyset$, and $R_{n-1} \rightarrow R_n$



イロト イポト イヨト イヨト

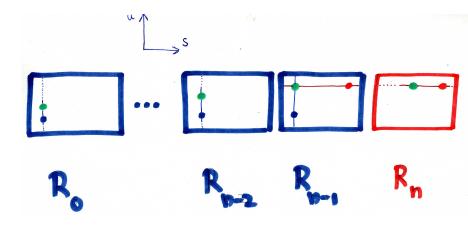
Markov partitions: All paths are (almost) itineraries

Induction hypothesis: $_0[R_0, \ldots, R_{n-1}] \neq \emptyset$, and $R_{n-1} \rightarrow R_n$



Markov partitions: All paths are (almost) itineraries

Induction hypothesis: $_0[R_0, \ldots, R_{n-1}] \neq \emptyset$, and $R_{n-1} \rightarrow R_n$



イロト イポト イヨト イヨト

Applications	Symbolic coding Markov partitions The result
--------------	--

Existence of Markov partition?

<ロト <回 > < 注 > < 注 > 、

The resultSApplicationsNIdea of proofT

Symbolic coding Markov partitions The result

When does *f* admit a Markov partition?

Special cases

- Adler & Weiss, Berg: Hyperbolic automorphisms of T²
- Sinai: Anosov diffeos
- Bowen: Axiom A diffeos
- Fathi & Shub: pseudo Anosov
- Berger: Hénon

General $C^{1+\epsilon}$ surface diffeos

A. Katok: \exists "large" invariant sets K s.t. $f|_K$ has a finite MP.

"Large": $h_{top}(f|_{\mathcal{K}})$ arbitrarily close to $h_{top}(f)$.

Our result: Same as Katok, but "large"=of full measure.

ヘロン ヘアン ヘビン ヘビン

When does *f* admit a Markov partition?

Special cases

- Adler & Weiss, Berg: Hyperbolic automorphisms of T²
- Sinai: Anosov diffeos
- Bowen: Axiom A diffeos
- Fathi & Shub: pseudo Anosov
- Berger: Hénon

General $C^{1+\epsilon}$ surface diffeos

A. Katok: \exists "large" invariant sets K s.t. $f|_K$ has a finite MP.

"Large": $h_{top}(f|_{\mathcal{K}})$ arbitrarily close to $h_{top}(f)$.

Our result: Same as Katok, but "large"=of full measure.

ヘロン ヘアン ヘビン ヘビン

When does *f* admit a Markov partition?

Special cases

- Adler & Weiss, Berg: Hyperbolic automorphisms of T²
- Sinai: Anosov diffeos
- Bowen: Axiom A diffeos
- Fathi & Shub: pseudo Anosov
- Berger: Hénon

General $C^{1+\epsilon}$ surface diffeos

A. Katok: \exists "large" invariant sets K s.t. $f|_K$ has a finite MP.

"Large": $h_{top}(f|_{\mathcal{K}})$ arbitrarily close to $h_{top}(f)$.

Our result: Same as Katok, but "large"=of full measure.

ヘロン ヘアン ヘビン ヘビン

When does *f* admit a Markov partition?

Special cases

- Adler & Weiss, Berg: Hyperbolic automorphisms of T²
- Sinai: Anosov diffeos
- Bowen: Axiom A diffeos
- Fathi & Shub: pseudo Anosov
- Berger: Hénon

General $C^{1+\epsilon}$ surface diffeos

A. Katok: \exists "large" invariant sets K s.t. $f|_K$ has a finite MP.

"Large": $h_{top}(f|_{\mathcal{K}})$ arbitrarily close to $h_{top}(f)$.

Our result: Same as Katok, but "large"=of full measure.

ヘロン ヘアン ヘビン ヘビン

When does *f* admit a Markov partition?

Special cases

- Adler & Weiss, Berg: Hyperbolic automorphisms of \mathbb{T}^2
- Sinai: Anosov diffeos
- Bowen: Axiom A diffeos
- Fathi & Shub: pseudo Anosov
- Berger: Hénon

General $C^{1+\epsilon}$ surface diffeos

A. Katok: \exists "large" invariant sets K s.t. $f|_K$ has a finite MP.

"Large": $h_{top}(f|_{\mathcal{K}})$ arbitrarily close to $h_{top}(f)$.

Our result: Same as Katok, but "large"=of full measure.

ヘロン ヘアン ヘビン ヘビン

When does *f* admit a Markov partition?

Special cases

- Adler & Weiss, Berg: Hyperbolic automorphisms of T²
- Sinai: Anosov diffeos
- Bowen: Axiom A diffeos
- Fathi & Shub: pseudo Anosov
- Berger: Hénon

General $oldsymbol{\mathcal{C}}^{1+\epsilon}$ surface diffeos

A. Katok: \exists "large" invariant sets K s.t. $f|_K$ has a finite MP.

"Large": $h_{top}(f|_{\mathcal{K}})$ arbitrarily close to $h_{top}(f)$.

Our result: Same as Katok, but "large"=of full measure.

ヘロン ヘアン ヘビン ヘビン

When does *f* admit a Markov partition?

Special cases

- Adler & Weiss, Berg: Hyperbolic automorphisms of T²
- Sinai: Anosov diffeos
- Bowen: Axiom A diffeos
- Fathi & Shub: pseudo Anosov
- Berger: Hénon

General $C^{1+\epsilon}$ surface diffeos

A. Katok: \exists "large" invariant sets K s.t. $f|_K$ has a finite MP.

"**Large**": $h_{top}(f|_{\mathcal{K}})$ arbitrarily close to $h_{top}(f)$.

Our result: Same as Katok, but "large"=of full measure.

・ロ・ ・ 四・ ・ ヨ・ ・ ヨ・

When does *f* admit a Markov partition?

Special cases

- Adler & Weiss, Berg: Hyperbolic automorphisms of T²
- Sinai: Anosov diffeos
- Bowen: Axiom A diffeos
- Fathi & Shub: pseudo Anosov
- Berger: Hénon

General $C^{1+\epsilon}$ surface diffeos

A. Katok: \exists "large" invariant sets K s.t. $f|_K$ has a finite MP.

"**Large**": $h_{top}(f|_{\mathcal{K}})$ arbitrarily close to $h_{top}(f)$.

Our result: Same as Katok, but "large"=of full measure.

・ロ・ ・ 四・ ・ ヨ・ ・ ヨ・

When does *f* admit a Markov partition?

Special cases

- Adler & Weiss, Berg: Hyperbolic automorphisms of T²
- Sinai: Anosov diffeos
- Bowen: Axiom A diffeos
- Fathi & Shub: pseudo Anosov
- Berger: Hénon

General $C^{1+\epsilon}$ surface diffeos

A. Katok: \exists "large" invariant sets *K* s.t. $f|_K$ has a finite MP.

"Large": $h_{top}(f|_{\mathcal{K}})$ arbitrarily close to $h_{top}(f)$.

Our result: Same as Katok, but "large"=of full measure.

・ロット (雪) () () () ()

When does *f* admit a Markov partition?

Special cases

- Adler & Weiss, Berg: Hyperbolic automorphisms of \mathbb{T}^2
- Sinai: Anosov diffeos
- Bowen: Axiom A diffeos
- Fathi & Shub: pseudo Anosov
- Berger: Hénon

General $C^{1+\epsilon}$ surface diffeos

A. Katok: \exists "large" invariant sets K s.t. $f|_K$ has a finite MP.

"Large": $h_{top}(f|_{\mathcal{K}})$ arbitrarily close to $h_{top}(f)$.

Our result: Same as Katok, but "large"=of full measure.

・ロン ・雪 と ・ ヨ と

When does *f* admit a Markov partition?

Special cases

- Adler & Weiss, Berg: Hyperbolic automorphisms of \mathbb{T}^2
- Sinai: Anosov diffeos
- Bowen: Axiom A diffeos
- Fathi & Shub: pseudo Anosov
- Berger: Hénon

General $C^{1+\epsilon}$ surface diffeos

A. Katok: \exists "large" invariant sets K s.t. $f|_K$ has a finite MP.

"Large": $h_{top}(f|_{\mathcal{K}})$ arbitrarily close to $h_{top}(f)$.

Our result: Same as Katok, but "large"=of full measure.

・ 同 ト ・ ヨ ト ・ ヨ ト ・

	The result Applications Idea of proof	Symbolic coding Markov partitions The result	
The result			

- *f* is C^{1+ϵ}
 *h*_{top}(*f*) > 0
- dim M = 2

Theorem

For every $0 < \delta < h_{top}(f)$ there is an invariant Borel set E s.t.

- I ∈ has a countable Markov partition
- \oplus $\mu(E)$ = 1 for every ergodic invariant μ s.t. $h_{\mu}(t)$ > δ .

・ロト ・ 理 ト ・ ヨ ト ・

- f is $C^{1+\epsilon}$
- $h_{top}(f) > 0$
- dim *M* = 2

Theorem

For every $0 < \delta < h_{top}(f)$ there is an invariant Borel set E s.t.

f|_E has a countable Markov partition

• $\mu(E) = 1$ for every ergodic invariant μ s.t. $h_{\mu}(f) > \delta$.

イロト イポト イヨト イヨト

- f is $C^{1+\epsilon}$
- $h_{top}(f) > 0$
- dim *M* = 2

Theorem

For every $0 < \delta < h_{top}(f)$ there is an invariant Borel set E s.t.

f|_E has a countable Markov partition

• $\mu(E) = 1$ for every ergodic invariant μ s.t. $h_{\mu}(f) > \delta$.

イロト イポト イヨト イヨト

- f is $C^{1+\epsilon}$
- $h_{top}(f) > 0$
- dim *M* = 2

Theorem

For every $0 < \delta < h_{top}(f)$ there is an invariant Borel set E s.t.

f|_E has a countable Markov partition

• $\mu(E) = 1$ for every ergodic invariant μ s.t. $h_{\mu}(f) > \delta$.

イロト イポト イヨト イヨト

- f is $C^{1+\epsilon}$
- $h_{top}(f) > 0$
- dim *M* = 2

Theorem

For every $0 < \delta < h_{top}(f)$ there is an invariant Borel set E s.t.

f|*E* has a countable Markov partition

2) $\mu(E) = 1$ for every ergodic invariant μ s.t. $h_{\mu}(f) > \delta$.

ヘロト 人間 ト ヘヨト ヘヨト

- f is $C^{1+\epsilon}$
- $h_{top}(f) > 0$
- dim *M* = 2

Theorem

For every $0 < \delta < h_{top}(f)$ there is an invariant Borel set E s.t.

• $f|_E$ has a countable Markov partition

 $\mu(E) = 1$ for every ergodic invariant μ s.t. $h_{\mu}(f) > \delta$.

ヘロト ヘアト ヘビト ヘビト

- f is $C^{1+\epsilon}$
- $h_{top}(f) > 0$
- dim *M* = 2

Theorem

For every $0 < \delta < h_{top}(f)$ there is an invariant Borel set E s.t.

• $f|_E$ has a countable Markov partition

2 $\mu(E) = 1$ for every ergodic invariant μ s.t. $h_{\mu}(f) > \delta$.

イロト イポト イヨト イヨト

Let $\mathcal{G} :=$ dynamical graph of the Markov partition

- $\Sigma(\mathcal{G}) := \{ \text{paths on } \mathcal{G} \} = \{ (R_i)_{i \in \mathbb{Z}} : R_i \to R_{i+1} \ (i \in \mathbb{Z}) \}$
- Metric: $d(\underline{v}, \underline{w}) := \exp[-\min\{|i| : v_i \neq w_i\}]$
- Left shift map: $\sigma : (v_i)_{i \in \mathbb{Z}} \mapsto (v_{i+1})_{i \in \mathbb{Z}}$.

Theorem

There is a Hölder continuous $\pi : \Sigma(\mathcal{G}) \to M$ s.t.

- $\bigcirc \pi \circ \sigma = f \circ \pi$
- $\bigcirc \pi[\Sigma(\mathcal{G})]$ is δ -large
- $\{x \in M : \text{ finitely many preimages}\}$ is δ -large

" δ -large": full measure w.r.t. any ergodic μ s.t. $h_{\mu}(f) > \delta$.

イロト イポト イヨト イヨト 一臣

Let $\mathcal{G} :=$ dynamical graph of the Markov partition

- $\Sigma(\mathcal{G}) := \{ \text{paths on } \mathcal{G} \} = \{ (R_i)_{i \in \mathbb{Z}} : R_i \to R_{i+1} \ (i \in \mathbb{Z}) \}$
- Metric: $d(\underline{v}, \underline{w}) := \exp[-\min\{|i| : v_i \neq w_i\}]$
- Left shift map: $\sigma : (v_i)_{i \in \mathbb{Z}} \mapsto (v_{i+1})_{i \in \mathbb{Z}}$.

Theorem

There is a Hölder continuous $\pi : \Sigma(\mathcal{G}) \to M$ s.t.

 $\bigcirc \pi \circ \sigma = f \circ \pi$

 $\bigcirc \pi[\Sigma(\mathcal{G})]$ is δ -large

• $\{x \in M : \text{ finitely many preimages} \}$ is δ -large

" δ -large": full measure w.r.t. any ergodic μ s.t. $h_{\mu}(f) > \delta$.

イロト イポト イヨト イヨト 一臣

Let $\mathcal{G} :=$ dynamical graph of the Markov partition

- $\Sigma(\mathcal{G}) := \{ \text{paths on } \mathcal{G} \} = \{ (R_i)_{i \in \mathbb{Z}} : R_i \to R_{i+1} \ (i \in \mathbb{Z}) \}$
- Metric: $d(\underline{v}, \underline{w}) := \exp[-\min\{|i| : v_i \neq w_i\}]$
- Left shift map: $\sigma : (v_i)_{i \in \mathbb{Z}} \mapsto (v_{i+1})_{i \in \mathbb{Z}}$.

Theorem

There is a Hölder continuous $\pi : \Sigma(\mathcal{G}) \to M$ s.t.

 $\bigcirc \pi \circ \sigma = f \circ \pi$

• $\pi[\Sigma(\mathcal{G})]$ is δ -large

• $\{x \in M : \text{ finitely many preimages} \}$ is δ -large

" δ -large": full measure w.r.t. any ergodic μ s.t. $h_{\mu}(f) > \delta$.

イロト イポト イヨト イヨト 一臣

Let $\mathcal{G} :=$ dynamical graph of the Markov partition

- $\Sigma(\mathcal{G}) := \{ \text{paths on } \mathcal{G} \} = \{ (R_i)_{i \in \mathbb{Z}} : R_i \to R_{i+1} \ (i \in \mathbb{Z}) \}$
- Metric: $d(\underline{v}, \underline{w}) := \exp[-\min\{|i| : v_i \neq w_i\}]$
- Left shift map: $\sigma : (v_i)_{i \in \mathbb{Z}} \mapsto (v_{i+1})_{i \in \mathbb{Z}}$.

Theorem

There is a Hölder continuous $\pi : \Sigma(\mathcal{G}) \to M$ s.t.

 $\mathbf{D} \ \pi \circ \sigma = \mathbf{f} \circ \pi$

2 $\pi[\Sigma(\mathcal{G})]$ is δ -large

③ {*x* ∈ *M* : finitely many preimages} is δ−large

" δ -large": full measure w.r.t. any ergodic μ s.t. $h_{\mu}(f) > \delta$.

イロト イポト イヨト イヨト

Let $\mathcal{G} :=$ dynamical graph of the Markov partition

- $\Sigma(\mathcal{G}) := \{ \text{paths on } \mathcal{G} \} = \{ (R_i)_{i \in \mathbb{Z}} : R_i \to R_{i+1} \ (i \in \mathbb{Z}) \}$
- Metric: $d(\underline{v}, \underline{w}) := \exp[-\min\{|i| : v_i \neq w_i\}]$
- Left shift map: $\sigma : (v_i)_{i \in \mathbb{Z}} \mapsto (v_{i+1})_{i \in \mathbb{Z}}$.

Theorem

There is a Hölder continuous $\pi : \Sigma(\mathcal{G}) \to M$ s.t.

$$\mathbf{D} \ \pi \circ \sigma = \mathbf{f} \circ \pi$$

2 $\pi[\Sigma(\mathcal{G})]$ is δ -large

● { $x \in M$: finitely many preimages} is δ–large

" δ -large": full measure w.r.t. any ergodic μ s.t. $h_{\mu}(f) > \delta$.

イロト イポト イヨト イヨト

Let $\mathcal{G} :=$ dynamical graph of the Markov partition

- $\Sigma(\mathcal{G}) := \{ \text{paths on } \mathcal{G} \} = \{ (R_i)_{i \in \mathbb{Z}} : R_i \to R_{i+1} \ (i \in \mathbb{Z}) \}$
- Metric: $d(\underline{v}, \underline{w}) := \exp[-\min\{|i| : v_i \neq w_i\}]$
- Left shift map: $\sigma : (v_i)_{i \in \mathbb{Z}} \mapsto (v_{i+1})_{i \in \mathbb{Z}}$.

Theorem

There is a Hölder continuous $\pi : \Sigma(\mathcal{G}) \to M$ s.t.

$$\mathbf{1} \quad \pi \circ \sigma = \mathbf{f} \circ \pi$$

2 $\pi[\Sigma(\mathcal{G})]$ is δ -large

() $\{x \in M : finitely many preimages\}$ is δ -large

" δ -large": full measure w.r.t. any ergodic μ s.t. $h_{\mu}(f) > \delta$.

イロト イポト イヨト イヨト

Let $\mathcal{G} :=$ dynamical graph of the Markov partition

- $\Sigma(\mathcal{G}) := \{ \text{paths on } \mathcal{G} \} = \{ (R_i)_{i \in \mathbb{Z}} : R_i \to R_{i+1} \ (i \in \mathbb{Z}) \}$
- Metric: $d(\underline{v}, \underline{w}) := \exp[-\min\{|i| : v_i \neq w_i\}]$
- Left shift map: $\sigma : (v_i)_{i \in \mathbb{Z}} \mapsto (v_{i+1})_{i \in \mathbb{Z}}$.

Theorem

There is a Hölder continuous $\pi : \Sigma(\mathcal{G}) \to M$ s.t.

$$\mathbf{1} \ \pi \circ \sigma = \mathbf{f} \circ \pi$$

2 $\pi[\Sigma(\mathcal{G})]$ is δ -large

3 $\{x \in M : \text{ finitely many preimages}\}$ is δ -large

" δ -large": full measure w.r.t. any ergodic μ s.t. $h_{\mu}(f) > \delta$.

イロト イポト イヨト イヨト

Let $\mathcal{G} :=$ dynamical graph of the Markov partition

- $\Sigma(\mathcal{G}) := \{ \text{paths on } \mathcal{G} \} = \{ (R_i)_{i \in \mathbb{Z}} : R_i \to R_{i+1} \ (i \in \mathbb{Z}) \}$
- Metric: $d(\underline{v}, \underline{w}) := \exp[-\min\{|i| : v_i \neq w_i\}]$
- Left shift map: $\sigma : (v_i)_{i \in \mathbb{Z}} \mapsto (v_{i+1})_{i \in \mathbb{Z}}$.

Theorem

There is a Hölder continuous $\pi : \Sigma(\mathcal{G}) \to M$ s.t.

$$1 \quad \pi \circ \sigma = f \circ \pi$$

2 $\pi[\Sigma(\mathcal{G})]$ is δ -large

• $\{x \in M : \text{ finitely many preimages}\}$ is δ -large

" δ -large": full measure w.r.t. any ergodic μ s.t. $h_{\mu}(f) > \delta$.

イロト イポト イヨト イヨト

The result Applications Idea of proof Symbolic coding Markov partition The result

Other results in the literature

Representation as a factor of a symbolic system

- **Tower constructions:** Takahashi, Hofbauer, Keller, Young, Buzzi, Pesin & Senti
- **Symbolic extensions:** Buzzi; Boyle, Fiebig & Fiebig, Boyle & Downarowicz, Burguet

Advantage of our coding: finiteness-to-one

- Principal extension property
- Lifting property for ergodic μ s.t. $h_{\mu}(f) > \delta$

ヘロト ヘアト ヘビト ヘビト

The resultSyApplicationsMaIdea of proofTh

Markov partition

Other results in the literature

Representation as a factor of a symbolic system

- Tower constructions: Takahashi, Hofbauer, Keller, Young, Buzzi, Pesin & Senti
- **Symbolic extensions:** Buzzi; Boyle, Fiebig & Fiebig, Boyle & Downarowicz, Burguet

Advantage of our coding: finiteness-to-one

- Principal extension property
- Lifting property for ergodic μ s.t. $h_{\mu}(f) > \delta$

ヘロン 人間 とくほ とくほ とう

Other results in the literature

Representation as a factor of a symbolic system

- **Tower constructions:** Takahashi, Hofbauer, Keller, Young, Buzzi, Pesin & Senti
- **Symbolic extensions:** Buzzi; Boyle, Fiebig & Fiebig, Boyle & Downarowicz, Burguet

Advantage of our coding: finiteness-to-one

- Principal extension property
- Lifting property for ergodic μ s.t. $h_{\mu}(f) > \delta$

ヘロン 人間 とくほ とくほ とう

Other results in the literature

Representation as a factor of a symbolic system

- **Tower constructions:** Takahashi, Hofbauer, Keller, Young, Buzzi, Pesin & Senti
- Symbolic extensions: Buzzi; Boyle, Fiebig & Fiebig, Boyle & Downarowicz, Burguet

Advantage of our coding: finiteness-to-one

- Principal extension property
- Lifting property for ergodic μ s.t. $h_{\mu}(f) > \delta$

ヘロト 人間 ト ヘヨト ヘヨト

Other results in the literature

Representation as a factor of a symbolic system

- **Tower constructions:** Takahashi, Hofbauer, Keller, Young, Buzzi, Pesin & Senti
- Symbolic extensions: Buzzi; Boyle, Fiebig & Fiebig, Boyle & Downarowicz, Burguet

Advantage of our coding: finiteness-to-one

Principal extension property

• Lifting property for ergodic μ s.t. $h_{\mu}(f) > \delta$

ヘロト 人間 ト ヘヨト ヘヨト

Other results in the literature

Representation as a factor of a symbolic system

- **Tower constructions:** Takahashi, Hofbauer, Keller, Young, Buzzi, Pesin & Senti
- **Symbolic extensions:** Buzzi; Boyle, Fiebig & Fiebig, Boyle & Downarowicz, Burguet

Advantage of our coding: finiteness-to-one

- Principal extension property
- Lifting property for ergodic μ s.t. $h_{\mu}(f) > \delta$

くロト (過) (目) (日)

The result	Symbolic coding
Applications	Markov partitions
Idea of proof	The result

Applications

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三目 - 釣A@

Application I: Counting periodic points

$\mathsf{P}_n(f) := \#\{x \in M : f^n(x) = x\}$

Theorem (Katok's conjecture)

Suppose *f* is a C^{∞} surface diffeo with positive entropy, then $\exists p \in \mathbb{N}, C > 0 \text{ s.t. for all } n \gg 1$ divisible by $p, P_n(f) \ge Ce^{nh_{top}(f)}$.

Katok's Theorem: $P_n(f) \ge Ce^{n(h_{top}(f) - \epsilon)}$ along a subsequence

Key tools

- $igodoldsymbol{0}$: Membourse: $G^{(n)}$ diffeos have measures of maximal entropy (
- 8 B.H. Guenelek: Nacionary & sufficient condition for the existence of measuring of machinel entropy for countable Markov al-file.

ヘロト ヘ戸ト ヘヨト ヘヨト

Application I: Counting periodic points

$\mathsf{P}_n(f) := \#\{x \in M : f^n(x) = x\}$

Theorem (Katok's conjecture)

Suppose *f* is a C^{∞} surface diffeo with positive entropy, then $\exists p \in \mathbb{N}, C > 0 \text{ s.t. for all } n \gg 1$ divisible by $p, P_n(f) \ge Ce^{nh_{top}(f)}$.

Katok's Theorem: $P_n(f) \ge Ce^{n(h_{top}(f) - \epsilon)}$ along a subsequence

Key tools

- $igodoldsymbol{0}$. Nonhouse: $G^{(n)}$ diffeos have measures of maximal entropy (
- 8 B.H. Guenelek: Nacionary & sufficient condition for the existence of measuring of machinel entropy for countable Markov al-file.

ヘロト ヘ戸ト ヘヨト ヘヨト

Application I: Counting periodic points

$\mathsf{P}_n(f) := \#\{x \in M : f^n(x) = x\}$

Theorem (Katok's conjecture)

Suppose *f* is a C^{∞} surface diffeo with positive entropy, then $\exists p \in \mathbb{N}, C > 0 \text{ s.t. for all } n \gg 1$ divisible by $p, P_n(f) \ge Ce^{nh_{top}(f)}$.

Katok's Theorem: $P_n(f) \ge Ce^{n(h_{top}(f) - \epsilon)}$ along a subsequence

Key tools

- Newhouse: C^{∞} diffeos have measures of maximal entropy
- **B.M. Gurevich:** Necessary & sufficient condition for the existence of measures of maximal entropy for countable Markov shifts

イロト イポト イヨト イヨト

1

Application I: Counting periodic points

$\mathsf{P}_n(f) := \#\{x \in M : f^n(x) = x\}$

Theorem (Katok's conjecture)

Suppose *f* is a C^{∞} surface diffeo with positive entropy, then $\exists p \in \mathbb{N}, C > 0$ s.t. for all $n \gg 1$ divisible by $p, P_n(f) \ge Ce^{nh_{top}(f)}$.

Katok's Theorem: $P_n(f) \ge Ce^{n(h_{top}(f) - \epsilon)}$ along a subsequence

Key tools

• Newhouse: C^{∞} diffeos have measures of maximal entropy

B.M. Gurevich: Necessary & sufficient condition for the existence of measures of maximal entropy for countable Markov shifts

イロト イポト イヨト イヨト 一臣

Application I: Counting periodic points

$\mathsf{P}_n(f) := \#\{x \in M : f^n(x) = x\}$

Theorem (Katok's conjecture)

Suppose *f* is a C^{∞} surface diffeo with positive entropy, then $\exists p \in \mathbb{N}, C > 0$ s.t. for all $n \gg 1$ divisible by $p, P_n(f) \ge Ce^{nh_{top}(f)}$.

Katok's Theorem: $P_n(f) \ge Ce^{n(h_{top}(f) - \epsilon)}$ along a subsequence

Key tools

- Newhouse: C^{∞} diffeos have measures of maximal entropy
- B.M. Gurevich: Necessary & sufficient condition for the existence of measures of maximal entropy for countable Markov shifts

イロト イポト イヨト イヨト 一臣

Application II: The measure of maximal entropy

Theorem (Buzzi's Conjecture)

A $C^{1+\epsilon}$ -surface diffeo can have at most countably many different ergodic measures of maximal entropy.

Buzzi's Theorem: Finitely many for piecewise monotonic interval maps, piecewise linear affine homeos

Key tool

Gurevich's Theorem: Topologically transitive countable Markov shifts possess at most one measure of maximal entropy.

ヘロト 人間 ト ヘヨト ヘヨト

Application II: The measure of maximal entropy

Theorem (Buzzi's Conjecture)

A $C^{1+\epsilon}$ -surface diffeo can have at most countably many different ergodic measures of maximal entropy.

Buzzi's Theorem: Finitely many for piecewise monotonic interval maps, piecewise linear affine homeos

Key tool

Gurevich's Theorem: Topologically transitive countable Markov shifts possess at most one measure of maximal entropy.

ヘロト ヘアト ヘビト ヘビト

• **Data:** $\phi : M \to \mathbb{R}$ Hölder continuous

• Equilibrium measure of ϕ : Ergodic *f*-invariant measure μ which maximizes $h_{\mu}(f) + \int \phi d\mu$

Theorem

If $h_{\mu}(f) > 0$, then f equipped with μ is isomorphic to Bernoulli scheme \times finite rotation.

Earlier related results: Pesin, Ledrappier, Ornstein & Weiss

Key tool

- Buzzi & S.² Structure of equilibrium measures for countable Markov shifts
- 🖗 Grandelin Grandelin & Erlectment: Stilliclent conditions for the Gerneral Theor

ヘロト 人間 ト 人 ヨ ト 人 ヨ ト

- **Data:** $\phi : M \to \mathbb{R}$ Hölder continuous
- Equilibrium measure of ϕ : Ergodic *f*-invariant measure μ which maximizes $h_{\mu}(f) + \int \phi d\mu$

Theorem

If $h_{\mu}(f) > 0$, then f equipped with μ is isomorphic to Bernoulli scheme × finite rotation.

Earlier related results: Pesin, Ledrappier, Ornstein & Weiss

Key tool

- Buzzi & S.² Structure of equilibrium measures for countable Markov shifts
- 🔮 Smalain, Smalain & Friedman: Sufficient conditions for the Berneull theor

ヘロト ヘ戸ト ヘヨト ヘヨト

- **Data:** $\phi : M \to \mathbb{R}$ Hölder continuous
- Equilibrium measure of ϕ : Ergodic *f*-invariant measure μ which maximizes $h_{\mu}(f) + \int \phi d\mu$

Theorem

If $h_{\mu}(f) > 0$, then f equipped with μ is isomorphic to Bernoulli scheme × finite rotation.

Earlier related results: Pesin, Ledrappier, Ornstein & Weiss

Key tool

- Description of equilibrium measures for countable Markov shifts and the second seco
- 9 Grantein-Grantein & Eriedmen: Sufficient conditions for the Berrouth theory

イロト イポト イヨト イヨト

- **Data:** $\phi : M \to \mathbb{R}$ Hölder continuous
- Equilibrium measure of ϕ : Ergodic *f*-invariant measure μ which maximizes $h_{\mu}(f) + \int \phi d\mu$

Theorem

If $h_{\mu}(f) > 0$, then f equipped with μ is isomorphic to Bernoulli scheme × finite rotation.

Earlier related results: Pesin, Ledrappier, Ornstein & Weiss

Key tool

- Description of equilibrium measures for countable Markov shifts and the second seco
- 9 Grantein-Grantein & Eriedmen: Sufficient conditions for the Berrouth theory

イロト イポト イヨト イヨト

- **Data:** $\phi : M \to \mathbb{R}$ Hölder continuous
- Equilibrium measure of ϕ : Ergodic *f*-invariant measure μ which maximizes $h_{\mu}(f) + \int \phi d\mu$

Theorem

If $h_{\mu}(f) > 0$, then f equipped with μ is isomorphic to Bernoulli scheme × finite rotation.

Earlier related results: Pesin, Ledrappier, Ornstein & Weiss

Key tool

- Buzzi & S.: Structure of equilibrium measures for countable Markov shifts
- Ornstein, Ornstein & Friedman: Sufficient conditions for the Bernoulli theory

ヘロト ヘ戸ト ヘヨト ヘヨト

- **Data:** $\phi : M \to \mathbb{R}$ Hölder continuous
- Equilibrium measure of ϕ : Ergodic *f*-invariant measure μ which maximizes $h_{\mu}(f) + \int \phi d\mu$

Theorem

If $h_{\mu}(f) > 0$, then f equipped with μ is isomorphic to Bernoulli scheme × finite rotation.

Earlier related results: Pesin, Ledrappier, Ornstein & Weiss

Key tool

Buzzi & S.: Structure of equilibrium measures for countable Markov shifts

Ornstein, Ornstein & Friedman: Sufficient conditions for the Bernoulli theory

ヘロト ヘ戸ト ヘヨト ヘヨト

- **Data:** $\phi : M \to \mathbb{R}$ Hölder continuous
- Equilibrium measure of ϕ : Ergodic *f*-invariant measure μ which maximizes $h_{\mu}(f) + \int \phi d\mu$

Theorem

If $h_{\mu}(f) > 0$, then f equipped with μ is isomorphic to Bernoulli scheme × finite rotation.

Earlier related results: Pesin, Ledrappier, Ornstein & Weiss

Key tool

- Buzzi & S.: Structure of equilibrium measures for countable Markov shifts
- Ornstein, Ornstein & Friedman: Sufficient conditions for the Bernoulli theory

くロト (過) (目) (日)

The result	Bowen's construction in the UH case
Applications	The difficulty in the NUH case
Idea of proof	Strategy of proof

How to construct Markov partitions

ヘロト 人間 とくほとくほとう

The result	Bowen's construction in the UH case
Applications	The difficulty in the NUH case
dea of proof	Strategy of proof

Setup: $f: \mathbb{T}^2 \to \mathbb{T}^2$ hyperbolic toral automorphism

Pseudo-orbits (Alexee

Sequences $(x_i)_{i \in \mathbb{Z}}$ s.t. $\forall i, d(f(x_i), x_{i+1}) < \epsilon$

- Anosov Shadowing Lemma
- Finite alphabet suffices: ∃V finite s.t. every orbit is shadowed by some p.o. in V^Z
- Nearest neighbor property

Directed graph representation:

Let \mathcal{G} denote the graph with vertices \mathcal{V} and edges $x \to y \Leftrightarrow d(f(x), y) < \epsilon$, then $\Sigma(\mathcal{G}) = \{\epsilon \text{-pseudo orbits in } \mathcal{V}^{\mathbb{Z}}\}$

イロト 不得 とくほ とくほ とうほ

The result	Bowen's construction in the UH case
Applications	The difficulty in the NUH case
dea of proof	Strategy of proof

Setup: $f : \mathbb{T}^2 \to \mathbb{T}^2$ hyperbolic toral automorphism

Pseudo-orbits (Alexeev):

Sequences $(x_i)_{i \in \mathbb{Z}}$ s.t. $\forall i, d(f(x_i), x_{i+1}) < \epsilon$

- Anosov Shadowing Lemma
- Finite alphabet suffices: ∃V finite s.t. every orbit is shadowed by some p.o. in V^Z
- Nearest neighbor property

Directed graph representation:

Let \mathcal{G} denote the graph with vertices \mathcal{V} and edges $x \to y \Leftrightarrow d(f(x), y) < \epsilon$, then $\Sigma(\mathcal{G}) = \{\epsilon \text{-pseudo orbits in } \mathcal{V}^{\mathbb{Z}}\}$

・ロト ・回ト ・ヨト ・ヨト

The result	Bowen's construction in the UH case
Applications	The difficulty in the NUH case
dea of proof	Strategy of proof

Setup: $f : \mathbb{T}^2 \to \mathbb{T}^2$ hyperbolic toral automorphism

Pseudo-orbits (Alexeev):

Sequences $(x_i)_{i \in \mathbb{Z}}$ s.t. $\forall i, d(f(x_i), x_{i+1}) < \epsilon$

Anosov Shadowing Lemma

- Finite alphabet suffices: ∃V finite s.t. every orbit is shadowed by some p.o. in V^Z
- Nearest neighbor property

Directed graph representation:

Let \mathcal{G} denote the graph with vertices \mathcal{V} and edges $x \to y \Leftrightarrow d(f(x), y) < \epsilon$, then $\Sigma(\mathcal{G}) = \{\epsilon \text{-pseudo orbits in } \mathcal{V}^{\mathbb{Z}}\}$

(4回) (日) (日)

The result	Bowen's construction in the UH case
Applications	The difficulty in the NUH case
dea of proof	Strategy of proof

Setup: $f : \mathbb{T}^2 \to \mathbb{T}^2$ hyperbolic toral automorphism

Pseudo-orbits (Alexeev):

Sequences $(x_i)_{i \in \mathbb{Z}}$ s.t. $\forall i, d(f(x_i), x_{i+1}) < \epsilon$

Anosov Shadowing Lemma

- Finite alphabet suffices: ∃V finite s.t. every orbit is shadowed by some p.o. in V^Z
- Nearest neighbor property

Directed graph representation:

Let \mathcal{G} denote the graph with vertices \mathcal{V} and edges $x \to y \Leftrightarrow d(f(x), y) < \epsilon$, then $\Sigma(\mathcal{G}) = \{\epsilon \text{-pseudo orbits in } \mathcal{V}^{\mathbb{Z}}\}$

・ 同 ト ・ ヨ ト ・ ヨ ト ・

The result	Bowen's construction in the UH case
Applications	The difficulty in the NUH case
dea of proof	Strategy of proof

Setup: $f : \mathbb{T}^2 \to \mathbb{T}^2$ hyperbolic toral automorphism

Pseudo-orbits (Alexeev):

Sequences $(x_i)_{i \in \mathbb{Z}}$ s.t. $\forall i, d(f(x_i), x_{i+1}) < \epsilon$

Anosov Shadowing Lemma

- Finite alphabet suffices: ∃V finite s.t. every orbit is shadowed by some p.o. in V^Z
- Nearest neighbor property

Directed graph representation:

Let \mathcal{G} denote the graph with vertices \mathcal{V} and edges $x \to y \Leftrightarrow d(f(x), y) < \epsilon$, then $\Sigma(\mathcal{G}) = \{\epsilon \text{-pseudo orbits in } \mathcal{V}^{\mathbb{Z}}\}$

・ 同 ト ・ ヨ ト ・ ヨ ト ・

The result	Bowen's construction in the UH case
Applications	The difficulty in the NUH case
dea of proof	Strategy of proof

Setup: $f: \mathbb{T}^2 \to \mathbb{T}^2$ hyperbolic toral automorphism

Pseudo-orbits (Alexeev):

Sequences $(x_i)_{i \in \mathbb{Z}}$ s.t. $\forall i, d(f(x_i), x_{i+1}) < \epsilon$

- Anosov Shadowing Lemma
- Finite alphabet suffices: ∃V finite s.t. every orbit is shadowed by some p.o. in V^Z
- Nearest neighbor property

Directed graph representation:

Let \mathcal{G} denote the graph with vertices \mathcal{V} and edges $x \to y \Leftrightarrow d(f(x), y) < \epsilon$, then $\Sigma(\mathcal{G}) = \{\epsilon$ -pseudo orbits in $\mathcal{V}^{\mathbb{Z}}\}$

・ 回 ト ・ ヨ ト ・ ヨ ト

The result	Bowen's constru
plications	The difficulty in t
a of proof	Strategy of proo

ction in the UH case

Bowen's construction of MP

Setup: $f : \mathbb{T}^2 \to \mathbb{T}^2$ hyperbolic toral automorphism

- $\Sigma(\mathcal{G}) = \{ \text{pseudo-orbits in } \mathcal{V}^{\mathbb{Z}} \}$
- π : pseudo-orbit → real orbit defines a map π : Σ(G) → M
 s.t. π ∘ shift = f ∘ π.
- Markov Partition for $\Sigma(\mathcal{G})$: $[v] = \{\underline{v} : v_0 = v\} \ (v \in \mathcal{V})$
- Project this partition to M: π[ν] (ν ∈ V). Markov, but has overlaps.

A procedure which refines a finite Markov collection with overlaps into a Markov parition.

くロト (過) (目) (日)

he result	Bowen's construction in the UI
olications	The difficulty in the NUH case
a of proof	Strategy of proof

H case

Bowen's construction of MP

Setup: $f : \mathbb{T}^2 \to \mathbb{T}^2$ hyperbolic toral automorphism

- $\Sigma(\mathcal{G}) = \{ \text{pseudo-orbits in } \mathcal{V}^{\mathbb{Z}} \}$
- π : pseudo-orbit → real orbit defines a map π : Σ(G) → M
 s.t. π ∘ shift = f ∘ π.
- Markov Partition for $\Sigma(\mathcal{G})$: $[v] = \{\underline{v} : v_0 = v\} \ (v \in \mathcal{V})$
- Project this partition to M: π[ν] (ν ∈ V). Markov, but has overlaps.

The result	Bowen's construction in the UH c
plications	The difficulty in the NUH case
a of proof	Strategy of proof

ase

Bowen's construction of MP

Setup: $f : \mathbb{T}^2 \to \mathbb{T}^2$ hyperbolic toral automorphism

- $\Sigma(\mathcal{G}) = \{ \text{pseudo-orbits in } \mathcal{V}^{\mathbb{Z}} \}$
- π : pseudo-orbit → real orbit defines a map π : Σ(G) → M
 s.t. π ∘ shift = f ∘ π.
- Markov Partition for $\Sigma(\mathcal{G})$: $[v] = \{\underline{v} : v_0 = v\} \ (v \in \mathcal{V})$
- Project this partition to M: π[ν] (ν ∈ V). Markov, but has overlaps.

The result	Bowen's construction in the UH ca
plications	The difficulty in the NUH case
a of proof	Strategy of proof

ase

Bowen's construction of MP

Setup: $f : \mathbb{T}^2 \to \mathbb{T}^2$ hyperbolic toral automorphism

- $\Sigma(\mathcal{G}) = \{ \text{pseudo-orbits in } \mathcal{V}^{\mathbb{Z}} \}$
- π : pseudo-orbit → real orbit defines a map π : Σ(G) → M
 s.t. π ∘ shift = f ∘ π.
- Markov Partition for $\Sigma(\mathcal{G})$: $[v] = \{\underline{v} : v_0 = v\} \ (v \in \mathcal{V})$
- Project this partition to M: π[ν] (ν ∈ V). Markov, but has overlaps.

The result	Bowen's construction in the UH ca
plications	The difficulty in the NUH case
a of proof	Strategy of proof

ase

Bowen's construction of MP

Setup: $f : \mathbb{T}^2 \to \mathbb{T}^2$ hyperbolic toral automorphism

- $\Sigma(\mathcal{G}) = \{ \text{pseudo-orbits in } \mathcal{V}^{\mathbb{Z}} \}$
- π : pseudo-orbit → real orbit defines a map π : Σ(G) → M
 s.t. π ∘ shift = f ∘ π.
- Markov Partition for $\Sigma(\mathcal{G})$: $[v] = \{\underline{v} : v_0 = v\} \ (v \in \mathcal{V})$
- Project this partition to M: π[ν] (ν ∈ V). Markov, but has overlaps.

The result	Bowen's construction in the UH ca
plications	The difficulty in the NUH case
a of proof	Strategy of proof

ise

Bowen's construction of MP

Setup: $f : \mathbb{T}^2 \to \mathbb{T}^2$ hyperbolic toral automorphism

- $\Sigma(\mathcal{G}) = \{ \text{pseudo-orbits in } \mathcal{V}^{\mathbb{Z}} \}$
- π : pseudo-orbit → real orbit defines a map π : Σ(G) → M
 s.t. π ∘ shift = f ∘ π.
- Markov Partition for $\Sigma(\mathcal{G})$: $[v] = \{\underline{v} : v_0 = v\} \ (v \in \mathcal{V})$
- Project this partition to M: π[v] (v ∈ V). Markov, but has overlaps.

Main Step (Bowen–Sinai Refinement)

A procedure which refines a finite Markov collection with overlaps into a Markov partition.

ヘロト 人間 ト ヘヨト ヘヨト

he result	Bowen's construction in the UH ca
olications	The difficulty in the NUH case
a of proof	Strategy of proof

ise

Bowen's construction of MP

Setup: $f : \mathbb{T}^2 \to \mathbb{T}^2$ hyperbolic toral automorphism

- $\Sigma(\mathcal{G}) = \{ \text{pseudo-orbits in } \mathcal{V}^{\mathbb{Z}} \}$
- π : pseudo-orbit → real orbit defines a map π : Σ(G) → M
 s.t. π ∘ shift = f ∘ π.
- Markov Partition for $\Sigma(\mathcal{G})$: $[v] = \{\underline{v} : v_0 = v\} \ (v \in \mathcal{V})$
- Project this partition to M: π[v] (v ∈ V). Markov, but has overlaps.

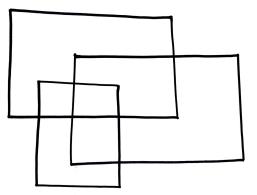
Main Step (Bowen–Sinai Refinement)

A procedure which refines a finite Markov collection with overlaps into a Markov partition.

ヘロト ヘ戸ト ヘヨト ヘヨト

The result Applications Idea of proof Bowen's construction in the UH case The difficulty in the NUH case Strategy of proof

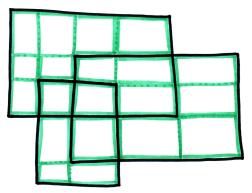
Bowen Sinai Refinement



ヘロト 人間 とくほとくほとう

The result Applications Idea of proof Bowen's construction in the UH case The difficulty in the NUH case Strategy of proof

Bowen Sinai Refinement



ヘロト 人間 とくほとくほとう

∃ <2 <</p>

 The result
 Bowen's construction in the UH case

 Applications
 The difficulty in the NUH case

 Idea of proof
 Strategy of proof

The non-uniformly hyperbolic case

What's easy to do:

To give a definition of "pseudo-orbits" in this context. But, we'll need an infinite alphabet.

Let's try Bowen's approach

- $\mathbb{Z}(\mathcal{G}) = \{$ "generalized p.o." $\}$, where \mathcal{G} is an infinite graph.
- Σ(G) has a countable Markov partition
- projects to countable Markov collection in M.

The difficulty

∃ countable collections of sets without a countable refining partitions.

イロト イポト イヨト イヨト

э

The non-uniformly hyperbolic case

What's easy to do:

To give a definition of "pseudo-orbits" in this context. But, we'll need an infinite alphabet.

Let's try Bowen's approach

- $\mathbb{Z}(\mathcal{G}) = \{$ "generalized p.o." $\}$, where \mathcal{G} is an infinite graph.
- Σ(G) has a countable Markov partition
- projects to countable Markov collection in M.

The difficulty

∃ countable collections of sets without a countable refining partitions.

イロト イポト イヨト イヨト

The non-uniformly hyperbolic case

What's easy to do:

To give a definition of "pseudo-orbits" in this context. But, we'll need an infinite alphabet.

Let's try Bowen's approach

- $\mathbb{P} = \{ g \in \mathcal{D}, g \in \mathcal{D} \}$, where \mathcal{G} is an infinite graph
- Σ(G) has a countable Markov partition
- projects to countable Markov collection in M.

The difficulty

∃ countable collections of sets without a countable refining partitions.

イロト イポト イヨト イヨト

The non-uniformly hyperbolic case

What's easy to do:

To give a definition of "pseudo-orbits" in this context. But, we'll need an infinite alphabet.

Let's try Bowen's approach:

- $\Sigma(\mathcal{G}) = \{$ "generalized p.o." $\}$, where \mathcal{G} is an infinite graph
- $\Sigma(G)$ has a countable Markov partition
- projects to countable Markov collection in M

The difficulty

∃ countable collections of sets without a countable refining partitions.

ヘロト ヘワト ヘビト ヘビト

The non-uniformly hyperbolic case

What's easy to do:

To give a definition of "pseudo-orbits" in this context. But, we'll need an infinite alphabet.

Let's try Bowen's approach:

- $\Sigma(\mathcal{G}) = \{$ "generalized p.o." $\}$, where \mathcal{G} is an infinite graph
- $\Sigma(G)$ has a countable Markov partition
- projects to countable Markov collection in M

The difficulty

∃ countable collections of sets without a countable refining partitions.

・ロ・ ・ 四・ ・ ヨ・ ・ ヨ・

The non-uniformly hyperbolic case

What's easy to do:

To give a definition of "pseudo-orbits" in this context. But, we'll need an infinite alphabet.

Let's try Bowen's approach:

- $\Sigma(\mathcal{G}) = \{$ "generalized p.o." $\}$, where \mathcal{G} is an infinite graph
- $\Sigma(\mathcal{G})$ has a countable Markov partition
- projects to countable Markov collection in M

The difficulty

∃ countable collections of sets without a countable refining partitions.

ヘロト ヘワト ヘビト ヘビト

The non-uniformly hyperbolic case

What's easy to do:

To give a definition of "pseudo-orbits" in this context. But, we'll need an infinite alphabet.

Let's try Bowen's approach:

- $\Sigma(\mathcal{G}) = \{$ "generalized p.o." $\}$, where \mathcal{G} is an infinite graph
- $\Sigma(\mathcal{G})$ has a countable Markov partition
- projects to countable Markov collection in M

The difficulty

∃ countable collections of sets without a countable refining partitions.

・ロ・ ・ 四・ ・ ヨ・ ・ ヨ・

The non-uniformly hyperbolic case

What's easy to do:

To give a definition of "pseudo-orbits" in this context. But, we'll need an infinite alphabet.

Let's try Bowen's approach:

- $\Sigma(\mathcal{G}) = \{$ "generalized p.o." $\}$, where \mathcal{G} is an infinite graph
- $\Sigma(\mathcal{G})$ has a countable Markov partition
- projects to countable Markov collection in M

The difficulty

 \exists countable collections of sets without a countable refining partitions.

イロト イポト イヨト イヨト

The result	Bowen's construction in the UH case
Applications	The difficulty in the NUH case
Idea of proof	Strategy of proof

Must have local finiteness!

◆□> ◆□> ◆豆> ◆豆> ・豆 ・ のへで

Strategy of proof: Apriori local finiteness

Strategy of proof:

Come up with a definition of "pseudo–orbits" such that the Markov partition on $\Sigma(\mathcal{G})$ projects to a locally finite Markov collection in *M*. Then apply Bowen's construction.

What we need from the definition:

- Shadowing Lemma.
- Countable alphabet suffices
- Nearest neighbor constraints.
- itidio edi swobadi: $x_{23}(n)$: o.q a ezoqqu
Z : meldorq estevni « \leftarrow . "normo behnucd" ol qu x mort
 n'' "beat" nas ew nert. x lo

Strategy of proof: Apriori local finiteness

Strategy of proof:

Come up with a definition of "pseudo–orbits" such that the Markov partition on $\Sigma(\mathcal{G})$ projects to a locally finite Markov collection in *M*. Then apply Bowen's construction.

What we need from the definition:

- Shadowing Lemma.
- Countable alphabet suffices
- Nearest neighbor constraints.
- itidio edi swobadi: $x_{23}(n)$: o.q a ezoqqu
Z : meldorq estevni « \leftarrow . "normo behnucd" ol qu x mort
 n'' "beat" nas ew nert. x lo

Strategy of proof: Apriori local finiteness

Strategy of proof:

Come up with a definition of "pseudo–orbits" such that the Markov partition on $\Sigma(\mathcal{G})$ projects to a locally finite Markov collection in *M*. Then apply Bowen's construction.

What we need from the definition:

- Shadowing Lemma
- Countable alphabet suffices.
- Nearest neighbor constraints.
- hidro effi aveobada $x_{23}(v)$. o.q.a ecopyos ampositivo ecreval $v \to \cdots \to \cdots$ "rone bebrued" of quv mort vv "bear" nap eve neff. v to

Strategy of proof: Apriori local finiteness

Strategy of proof:

Come up with a definition of "pseudo–orbits" such that the Markov partition on $\Sigma(\mathcal{G})$ projects to a locally finite Markov collection in *M*. Then apply Bowen's construction.

What we need from the definition:

- Shadowing Lemma
- Countable alphabet suffices
- Nearest neighbor constraints
- → Inverse problem: Suppose a p.o. $(v_i)_{i \in \mathbb{Z}}$ shadows the orbit of *x*. Then we can "read" v_0 from *x* up to "bounded error".

Strategy of proof: Apriori local finiteness

Strategy of proof:

Come up with a definition of "pseudo–orbits" such that the Markov partition on $\Sigma(\mathcal{G})$ projects to a locally finite Markov collection in *M*. Then apply Bowen's construction.

What we need from the definition:

- Shadowing Lemma
- Countable alphabet suffices
- Nearest neighbor constraints
- → Inverse problem: Suppose a p.o. $(v_i)_{i \in \mathbb{Z}}$ shadows the orbit of *x*. Then we can "read" v_0 from *x* up to "bounded error".

Strategy of proof: Apriori local finiteness

Strategy of proof:

Come up with a definition of "pseudo–orbits" such that the Markov partition on $\Sigma(\mathcal{G})$ projects to a locally finite Markov collection in *M*. Then apply Bowen's construction.

What we need from the definition:

- Shadowing Lemma
- Countable alphabet suffices
- Nearest neighbor constraints
- → Inverse problem: Suppose a p.o. $(v_i)_{i \in \mathbb{Z}}$ shadows the orbit of *x*. Then we can "read" v_0 from *x* up to "bounded error".

Strategy of proof: Apriori local finiteness

Strategy of proof:

Come up with a definition of "pseudo–orbits" such that the Markov partition on $\Sigma(\mathcal{G})$ projects to a locally finite Markov collection in *M*. Then apply Bowen's construction.

What we need from the definition:

- Shadowing Lemma
- Countable alphabet suffices
- Nearest neighbor constraints
- → Inverse problem: Suppose a p.o. (v_i)_{i∈Z} shadows the orbit of x. Then we can "read" v₀ from x up to "bounded error".

Strategy of proof: Apriori local finiteness

Strategy of proof:

Come up with a definition of "pseudo–orbits" such that the Markov partition on $\Sigma(\mathcal{G})$ projects to a locally finite Markov collection in *M*. Then apply Bowen's construction.

What we need from the definition:

- Shadowing Lemma
- Countable alphabet suffices
- Nearest neighbor constraints
- → Inverse problem: Suppose a p.o. (v_i)_{i∈Z} shadows the orbit of x. Then we can "read" v₀ from x up to "bounded error".

Strategy of proof: Apriori local finiteness

Strategy of proof:

Come up with a definition of "pseudo–orbits" such that the Markov partition on $\Sigma(\mathcal{G})$ projects to a locally finite Markov collection in *M*. Then apply Bowen's construction.

What we need from the definition:

- Shadowing Lemma
- Countable alphabet suffices
- Nearest neighbor constraints
- → Inverse problem: Suppose a p.o. (v_i)_{i∈Z} shadows the orbit of x. Then we can "read" v₀ from x up to "bounded error".

Strategy of proof: Apriori local finiteness

Strategy of proof:

Come up with a definition of "pseudo–orbits" such that the Markov partition on $\Sigma(\mathcal{G})$ projects to a locally finite Markov collection in *M*. Then apply Bowen's construction.

What we need from the definition:

- Shadowing Lemma
- Countable alphabet suffices
- Nearest neighbor constraints
- → Inverse problem: Suppose a p.o. $(v_i)_{i \in \mathbb{Z}}$ shadows the orbit of *x*. Then we can "read" v_0 from *x* up to "bounded error".

	The result Applications Idea of proof	Bowen's construction in the UH case The difficulty in the NUH case Strategy of proof
Plan		

• Lecture 2: definition of "generalized pseudo-orbits"

• Lecture 3: shadowing lemma and inverse problem

→ E → < E →</p>

	The result Applications Idea of proof	Bowen's construction in the UH case The difficulty in the NUH case Strategy of proof
Plan		

- Lecture 2: definition of "generalized pseudo-orbits"
- Lecture 3: shadowing lemma and inverse problem