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Electronic Structure Calculations:

• Good description of many microscopic properties are obtained in
terms of -

Born-Oppenheimer Approximation
Nuclei and the electrons to a good approximation may be treated
separately.

One-electron Approximation
Each electron behaves as an independent particle moving in the
mean field of the other electrons plus the field of the nuclei.
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LDA

Most satisfactory foundation of the one electron picture is provided
by the local approximation to the Hohenberg-Kohn-Sham density
functional formalism

≡ LDA

⇓

• LDA leads to an effective one electron potential which is a function
of local electron density.

• Leads to Self consistent solution to an one electron Schrödinger
Eqn.
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Strongly correlated electron materials

∗ The conventional band-structure calculations within the framework
of LDA is surprising successful for many materials.

∗ However, they fail for materials with strong e-e correlation !

• correlation effect necessarily arise, and

• the consideration of electron correlation effects provides the
natural way to understand the phenomena like the insulating nature
of CoO.
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Strongly correlated electron materials
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Accordingly to LDA, odd no. of e’s per unit cell always give rise to Metal ! . – p.6/55



Strongly correlated electron materials

Failure of Band Theory

Total No. of electrons = 9 +6 = 15

Band theory predicts CoO to be
metal, while it is the toughest
insulator known

−−) Importance of e−e interaction effects (Correlation)

Failure of LDA −) Failure of single particle picture
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Strongly correlated electron materials
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Hesitant e-s: delocalized or localized picture ?

broad energy bands- associated with large KE, highly itinerant

→ well described using wave-like picture

narrow energy bands- e-s spend larger time around a given atom -

tendency towards localization, effects of statistical correlations
between the motion of individual electrons become important
→ particle-like picture may be more appropriate

Intermediate situation - localized character on short time-scales
and itinerant character on the long time-scale co-exist!
→ e-s hesitate between being itinerant and localized.
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Examples of strongly correlated materials

Transition metals:

- d-orbitals extend much further from the nucleus than the core
electrons.
- throughout the 3d series (and even more in 4d series), d-electrons
do have an itinerant character, giving rise to quasiparticle bands!

- electron correlations do have important physical effects, but not
extreme ones like localization.
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Examples of strongly correlated materials

f-electrons: rare earths, actinides and their compounds:

- rare-earth 4f-electrons tend to be localized than itinerant,
contribute little to cohesive energy, other e- bands cross EF , hence
the metallic character.
- actinide (5f) display behavior intermediate between TM and rare
earths
- e- correln becomes more apparent in compounds involving
rare-earth or actinides.
- extremely large effective mass → heavy fermion behavior.

- At high temp local mag. mom and Curie law, low-temp screening
of the local moment and Pauli form → Kondo effect
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Examples of strongly correlated materials - TMO

- direct overlap between d-orbitals small, can only move through
hybridization!
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Examples of strongly correlated materials- TMO
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Examples of strongly correlated materials - TMO

Three crucial Energies

tpd Metal-ligand Hybridization

∆ = ǫd − ǫp Charge Transfer Energy

U On-site Coulomb Repulsion

Band-width is controlled by: teff = t2pd/∆
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Examples of strongly correlated materials - TMO

Minimal model for a TMO

H = ǫp

∑

jσ

p†jσpjσ + ǫd

∑

iσ

d†
iσdiσ

− tpd

∑

iσ

∑

δ

(d†
iσpi±δσ + h.c.) + Ud

∑

i

nd
i↑n

d
i↓

And may be add . . . . . .

tpp, Upp, Upd

. . . . . . orbital degeneracy, etc . . . . . .

. – p.16/55



Examples of strongly correlated materials - TMO

The infamous Hubbard U

Naively:
∫
φ∗

i↑φi↑
1

|r−r′|φ
∗
i↓φi↓

But this is HUGE (10 -20 eV)!

SCREENING plays a key role, in particular by 4s electrons

- Light TMOs (left of V): p-level much below d-level; 4s close by : U

not so big U < ∆

- Heavy TMOs (right of V): p-level much closer; 4s much above

d-level : U is very big U > ∆
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Examples of strongly correlated materials - TMO

The Mott phenomenon: turning a half-filled band into an insulator

Consider the simpler case first: U < ∆

Moving an electron requires creating a hole and a double
occupancy: ENERGY COST U

This object, once created, can move with a kinetic energy of order of

the bandwidth W!

U < W: A METALLIC STATE IS POSSIBLE

U > W: AN INSULATING STATE IS PREFERRED
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Hubbard bands

d p∆ = | ε   −  ε     |

E
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p band

d band

U

Interaction U

The composite excitation hole+double occupancy forms a band (cf
excitonic band)
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Charge transfer insulators

d p∆ = | ε   −  ε     |

tpd

teff
tpdGain: ~ / ∆2

Cost: ∆ =  ε   −  ε     
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charge gap

Transition for ∆ >

Zaanen, Sawatzky, Allen; Fujimori and Minami

U
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Methods

Strongly correlated Metal

LDA gives correct answer

U < W 

Weakly correlated Metal
Intermediate regime − Hubbard bands +

QS peak (reminder of LDA metal)

?
U >> W 

Mott insulator

Can be described 
by "LDA+U" method

courtesy: K. Held
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Basic Idea of LDA+U

PRB 44 (1991) 943, PRB 48 (1993) 169

• Delocalized s and p electrons: LDA

• Localized d or f-electrons: + U

using on-site d-d Coulomb interaction (Hubbard-like term)
U

∑
i 6=j ninj

instead of averaged Coulomb energy
U N(N-1)/2
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n+1 n−1

n n

n+1 n−1

U

e

Hubbard U for localized d orbital:

U = E(d      ) + E(d      ) − 2 E(d   )
n
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LDA+U energy functional (Static Mean Field Theory):

ELDA+U
local = ELDA

−UN(N − 1)/2 +
1

2
U

∑

i 6=j

ninj

LDA+U potential :

Vi(r̂) =
δE

δni(r̂)
= V LDA(r̂) + U(

1

2
− ni)

. – p.24/55



LDA+U eigenvalue :

ǫi =
δE

δni

= ǫLDA
i + U(

1

2
− ni)

For occupied state ni = 1 → ǫi = ǫLDA − U/2

For unoccupied state ni = 0 → ǫi = ǫLDA + U/2

⇓
∆ǫi = U MOTT-HUBBARD GAP

U = δ
δnd

LDAε
ε
LDA
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Rotationally Invariant LDA+U

LDA+U functional:

ELSDA+U [ρσ(r), {nσ}] = ELSDA[ρσ(r)] + EU [{nσ}] − Edc[{n
σ}]

Screened Coulomb Correlations:

EU [{nσ}] =
1

2

∑

{m},σ

{〈m, m
′′

|Ve,e|m
′

, m
′′′

〉nσ
mm

′ n−σ

m
′′

m
′′′′ +

(〈m, m
′′

|Ve,e|m
′

, m
′′′

〉 − 〈m, m
′′

|Ve,e|m
′′′

, m
′

〉nσ
mm

′ nσ
m

′′
m

′′′′

LDA-double counting term:

Edc[{n
σ}] =

1

2
Un(n − 1) −

1

2
J [n↑(n↑ − 1) + n↓(n↓ − 1)]
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Slater parametrization of U

Multipole expansion:

1

|r − r′ |
=

∑

kq

4π

2k + 1

rk
<

rk+1
>

Y ∗
kq(r̂)Ykq(r̂

′

)

Coulomb Matrix Elements in Ylm basis:

〈mm
′

||m
′′

m
′′′

〉 =
∑

k

ak(m, m
′′

, m
′

, m
′′′

)F k

Fk → Slater integrals

Average interaction: U and J
U = F0; J (for d electrons) = 1

14
(F 2 + F 4)
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How to calculate U and J

PRB 39 (1989) 9028

• Constrained DFT + Super-cell calculation

• Calculate the energy surface as a function of local charge
fluctuations.

• Mapped onto a self-consistent mean-filed solution of the
Hubbard model.

• Extract U and J from band structure results.
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Notes on calculation of U

• Constrained DFT works in the fully localized limit. Therefore
often overestimates the magnitude of U.

• For the same element, U depends also on the ionicity in different
compounds → higher the ionicity, larger the U.

• One thus varies U in the reasonable range (Comparison with
photoemission..).
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Where to find U and J

PRB 44 (1991) 943 : 3d atoms

PRB 50 (1994) 16861 : 3d, 4d, 5d atoms

PRB 58 (1998) 1201 : 3d atoms

PRB 44 (1991) 13319 : Fe(3d)

PRB 54 (1996) 4387 : Fe(3d)

PRL 80 (1998) 4305 : Cr(3d)

PRB 58 (1998) 9752 : Yb(4f)
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CO in CaFeO3
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CO in CaFeO3
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Strongly correlated electron materials

+ 
−  + 

−
Account for correln. effects

LDA Model Approaches
Materials−specific

Fails for strong correln.

Input parameters unknown
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Strongly correlated electron materials

+ 
−  + 

−
Account for correln. effects

LDA Model Approaches
Materials−specific

Fails for strong correln.

Input parameters unknown

→ Improve the description starting from LDA, by combining ab-initio
calculations with many-body methods.

→ A major break-through in this respect is (DMFT).

http://online.kitp.ucsb.edu/online/cem02/

- Impurity model takes into account of the local dynamics.

- SCF captures the translational invariance and and coherence
invariance of the lattice.
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Marrying DMFT and DFT-LDA

DMFT emphasizes local correlation → we need a localized basis
set, i.e. basis functions which are centered on the atomic positions
R in the crystal lattice

⇓
Use Wannier function basis !
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NMTO: truly minimal set and Wannier functions

♣ A basis set of localized orbitals is constructed from the exact
scattering solutions of a superposition of short-ranged,
spherically-symmetric potential wells (the so-called muffin-tin
approximation to the potential) at a mesh of energies, ǫ0, ǫ1, . . . , ǫN

♣ The number of energy points, N, defines the order of such
muffin-tin orbitals, the NMTO’s.

♣ Each NMTO satisfies a specific boundary condition which
provides it with an orbital character and makes it localized.

♣ The NMTO’s being energy-selective in nature are flexible and may
be chosen to span selected bands ⇒ Downfolding

♣ If these bands are isolated, the NMTO set spans the Hilbert
space of the Wannier functions. In other words, the orthonormalized
NMTO’s are the localized Wannier functions.
O. K. Andersen and T. Saha-Dasgupta Phys. Rev. B 62, R16219 (2000)
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Phase diagram of V 2O3

* undergoes 1st−order M−I transition − can be induced by temp., pressure,  alloying

* PM−PI : same crystal (corundum) & magn. structure

* only known example among transition−metal oxides to show a    PM−PI transition. – p.36/55



V2O3: Corundum Structure

V t2g xy V eg x2−y2 V eg 3z2−1

pd   antibonding pd   antibonding

-1

0

1

2

3

4

 L  Z  Γ  F 

                              

E0    

E1    

E2    

2

4

6

8

10

12

 L  Z  Γ  F 

                              

E0    

E1    

-8

-6

-4

-2

0

 L  Z  Γ  F 

 

                              

E0    

E1    

E2    

-1

0

1

2

3

4

 L  Z  Γ  F 

 

                              

E0    

E1    

E2    

O−p V−t2g V−eg V−s

pd   antibonding
π σ σ . – p.37/55



NMTO+DMFT

Input Hamiltonian- multi-band Hubbard Hamiltonian:

H = H lda+
1

2

∑
Umm′nimσnim

′
σ̄
+

1

2

∑

m6=m′

[U
mm

′−J
mm

′ ]nimσnim
′
σ

• The many-body Hamiltonian depends on the choice of
the basis func.– NMTO’s are the ideal candidates!

• The low-energy Hamiltonian defined above, involves
ONLY correlated, localized Wannier orbitals and
no other orbitals → achieved via NMT O-downfolding

• Assume dc. corrections to be orbital-independent within
d-manifold ⇒ results into simple shift of the chemical potential!

. – p.38/55



NMTO+DMFT

⇒ Many-body Hamiltonian solve by DMFT.

lm(ω)Σσ

1

2

Dyson eqn.
Single site problem

Georges Kotliar’92

⇒ Multi-orbital quantum impurity problem solve by QMC.

⇓

- Maps the interacting electron problem onto a sum of
non-interacting problems (single particle moves in a fluctuating,

time-dependent field)

- Evaluates this sum by Monte Carlo sampling
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DMFT results
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PM spectra - comparison with PES

Expt:

Mo et.al.
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PI spectra - comparison with PES
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Hubbard model =⇒ t-J model

How spin physics arises
from

Strong Electron Correlations ?
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Large U limit of Hubbard Model (t/U ≪ 1)

can be picked out in C  2  N
  N
  L  ways !

ε

ε

at

at

+U
by N e−’s 

Atomic limit (t=0) has huge degeneracy. For L sites occupied

, singly occupied sites (which is spin)

Large degeneracy makes the standard perturbation theory inapplicable.

Treat consecutive orders of t/U systematically −>       Accomplished by a suitable 
 cannonical transformation

Motion of e−’s are constrained by having to avoid the creation of double occupancy

Hopping mixes the states!

Rotate to a basis whose states are not mixed in order t

Rotate to a basis whose states are not mixed in order t 2

.

.

.

or
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Projected Hopping
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^
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P̂

P̂

j

j

^^
j j

^
j j

j j

= |    >    <     |

= |   >     <    |

= | d >   < d |

     =   n    (1 − n     )

= (1 − n    )n     ^

^

Ensure there is     at i

Perform the hopping
Ensure site j is |d>
Ensure site i is |0> 

Ensure there is     at j

i j i i

O d

P̂i 

=

=  n     ^

^^= | O >   < O |j j = (1 − n    )(1 − n     )

n
^

B = c c  c  = (1 − c  c)c = c − c  cc = c
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Correlated Hopping

i j i j

O d

i j i j

Od

= − t H
t

<i,j>, σ

t
H  = 

H  = H  +  H  + Ht

H t

σ

i j i j

d

σ σ i j i j

O
σ σ

^
i i j

^
j σ

^
i σi σj σj

0 O

d

D −> D +1

D −> D −1

D −> D

σ j σi
^

H
t
+

j
<i,j>, σ

σ σ i
^

j σ= − t σi
^

σi σj
^n  c   c (1 − n  )+ n  c   c (1 − n )

σ σ= − t H
t

<i,j>, σ
σ σ

^
i i j j

^
j i σ i σ

^
σj(1− n  )c  c  n  +(1 − n  ) c  c  n

(1− n  )c  c  (1− n  ) + n   c  c  n

− 
Do not care the correlations!

Mind the local correlations!!

t t t
+ − 0

t t t
+ − 0H  = H  +  H  + Ht

compared to has accquired a complicated many−body character!H t

σi( c    c   + c    c   ) σj σj σi
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Canonical Transformation

• Intuitive notion: Low energy excitations are propagarted in the
lower Hubbard subband.

• Pure band motion mixes states from two subbands via H+
t and

H−
t .

• Unmixing can be achieved via rotation to a new basis.

Define Heff :

Heff = eiSHe−iS = H + i[S, H] +
i2

2
[S, [S, H]] + . . . + . . .

= HU + H+
t + H−

t + Ho
t + i[S, HU ] + i[S, HU + H+

t + H−
t + Ho

t ] +

Choose S such that: H+
t + H−

t gets cancelled by i[S, HU ]

⇒ S = − i
U

[H+
t − H−

t ]

⇓

Heff = HU + Ho
t + 1

U
[H+

t , H−
t ] to order t2
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Hubbard Operators

X     =  | b >   < a | [ Projection Operator: 
j jj

b <− a

^ a <− a
aP = | a > < a | = X     ]

<− 0
Cj j j

d <−
= X      +   X   

jC
j j

d <−<− 0
= X      −   X   

+ 1 if       

− 1 if σ

=

=

σ
Cjσ

= X    +          X
<− 0σ d <− σ−

η ( σ ) =
j η (σ) j

<− d −σ <− 0 −σ <− 0 −σ <− d −σ 

σ <− 0

0 0

<− d −σ <− 0 σ 
H

t

0
= − t 

<i,j>

i

d

<− d
X          X           + X       X          + H.c.ij

d

j

Ht
+

= − t η ( σ )
i j jX          X              + X          X          i

σ

−σ 

Convention: | d > = | 0 >jCCj
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t-J model

σ<− 0 0 <−σ

+

<ijk>

H t
+

H t
−

ij ij
, H t

+
H t

−

H t
+

H t
−

ij ij
,1

U

1
U

X         X            +   X             X        i j

σ σ’σ σ=’

t
U

2

σ<− 0 0 <−σ

Consider action of H on the low energy sub−spaceeff

H t
0

− t 

<ij>σ

, = 

<ij>

,ij jk

[ disjoint pairs commute]

σ σ ’ H

H t
+

H t
−

+
0 d

j i j i
H −

σσ ’

j i

− ij ij
H t H t

− +

−

σ σ ’

η(σ)η(σ  )’η(σ)η(σ  )

’<− −σ −σ <− 
X           X         ji

=’σ −σ : interchange of spin

j i

: original spin arrang.
^

i j
z z ^ )2t

U

2
( S  S  − n   n

4
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Heisenberg model

Heff≈ Ht−J = −t
∑

ij

−
∑

σ

(1 − n̂i−σ)c†iσCjσ(1 − n̂i−σ) + h.c.

+
4t2

U
[SiSj −

n̂in̂j

4
] + 3 − siteterms..

Exact half-filling (n=1):

H = J
∑

ij

SiSj

⇒ AF Heisenberg model [ J = 4t2

U
]

→ if neighboring sites are ↑↓, a virtual hopping process can create
an intermediate 0d pair state with energy U [ associated energy gain
t2

U
.

→ If spins are ↑↑ or↓↓, hopping is prohibited by Pauli principle.
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Super-exchange

| pz > ~ 

1 + b 2

< pz | H | d A>

ε     −   εdp

ε     −   εdp

or

cation A cation BAnion

3z 3z2 2p−z

| pz > + b | d   A >

[ b ~ ]

E                ~   For configuration: 2 pε     + 

For configuration:

1 + 2 b 2
2b2

( )

Exchange: E   −   E  ~ 2 b 
4
( )ε     −   εd p SUPER−EXCHANGE

E       ~   

1 + 2 b 
2

1

>< pz | H | pz ( | pz    >  + b | d     > + b | d     >)A B

( < pz    |  + b < d     | + b < d     |)A B
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La2NiMnO6 (PRL, 100, 186402)
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∆E =−4t  /(U+2 ∆ )

t
2g

t
2g

e
g

t
2g

t
2g

e
g

e
g

∆E =−4t  /(U+2 ∆ )∆E = 0
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La2NiMnO6 - Magnetism

NMTO-dowfolding study (Effective Ni-Mn model)

t e−t = 0.02 eV

∆e−t= 0.25 eV

t

∆
= 0.20 eV

= 1.90 eV

e−e

e−eo
155

NMTO−downfolding Study:

JNi−Mn = JAF + JFM

= 4

∑
(te,t)

2

(U + ∆e,t)
− 4

∑
(te,e)

2JH

(U + ∆e,e − JH)(U + ∆e,e)

⇒ JNi−Mn ≈ 4-7 meV (U ≈ 4-5 eV,JH=0.9 eV) . – p.54/55



Conclusion

♣ Recent technological developments allow for the realistic
description of strongly correlated electron system taking into
account both the material specific chemical knowledge and the
strong correlation aspect.
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