
Петербургский электротехнический университет "ЛЭТИ" Факультет электроники

The World of Quantum Information

Marianna Safronova Department of Physics and Astronomy

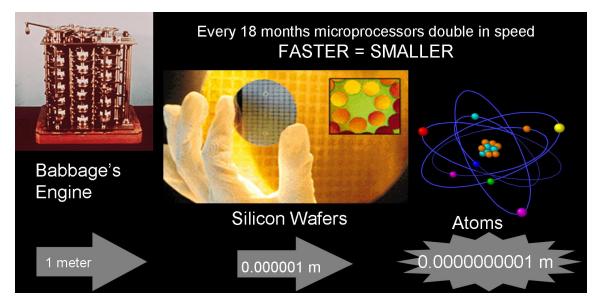
May 22, 2012

Outline

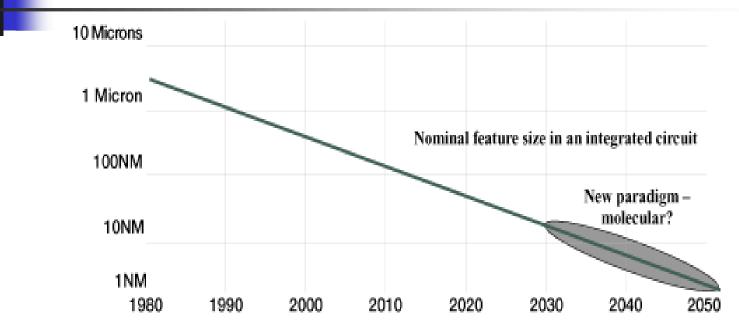
Quantum Information: fundamental principles

- (and how it is different from the classical one).
- Bits & Qubits
- Quantum weirdness: entanglement, superposition & measurement
- Logic gates & Quantum circuits
- Cryptography & quantum information
- A brief introduction to quantum computing
- Real world: what do we need to build a quantum computer/quantum network?
- Current status & future roadmap

Why quantum information?


Information is physical! Any processing of information is always performed by physical means

Bits of information obey laws of classical physics.


Why quantum information?

Information is physical! Any processing of information is always performed by physical means

Bits of information obey laws of classical physics.

Why Quantum Computers?

Computer technology is making devices smaller and smaller...

...reaching a point where classical physics is no longer a suitable model for the laws of physics.

Bits & Qubits

Fundamental building blocks of classical computers:

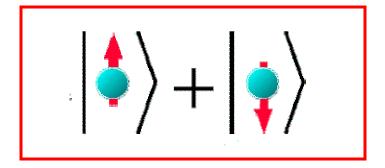
BITS

STATE: **Definitely** 0 or 1

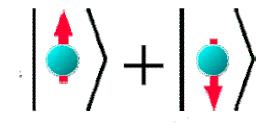
Fundamental building blocks of quantum computers: Quantum bits or **QUBITS** Basis states: $|0\rangle$ and $|1\rangle$ Superposition:

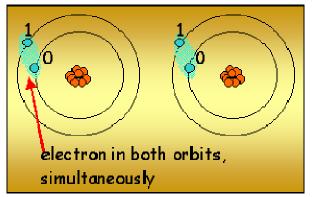
 $|\psi\rangle = \alpha |0\rangle + \beta |1\rangle$

Bits & Qubits

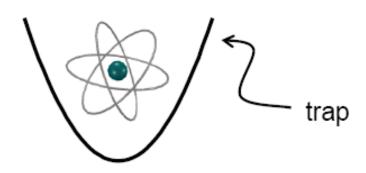

Fundamental building blocks of classical computers:

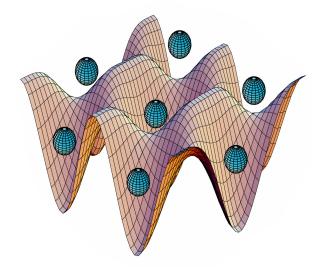
BITS


STATE: **Definitely** 0 or 1 Fundamental building blocks of quantum computers:

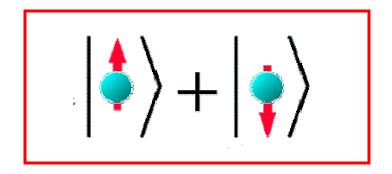

> Quantum bits or QUBITS

Basis states: $\left| 0 \right\rangle$ and $\left| 1 \right\rangle$




Qubit: any suitable two-level quantum system

single trapped atom:

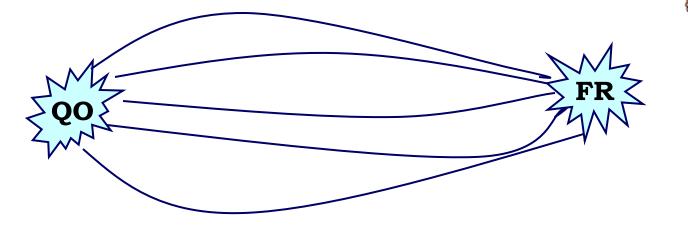


Bits & Qubits: primary differences

Superposition

$$|\psi\rangle = \alpha |0\rangle + \beta |1\rangle$$

Bits & Qubits: primary differences


Measurement

 Classical bit: we can find out if it is in state 0 or 1 and the measurement will not change the state of the bit.

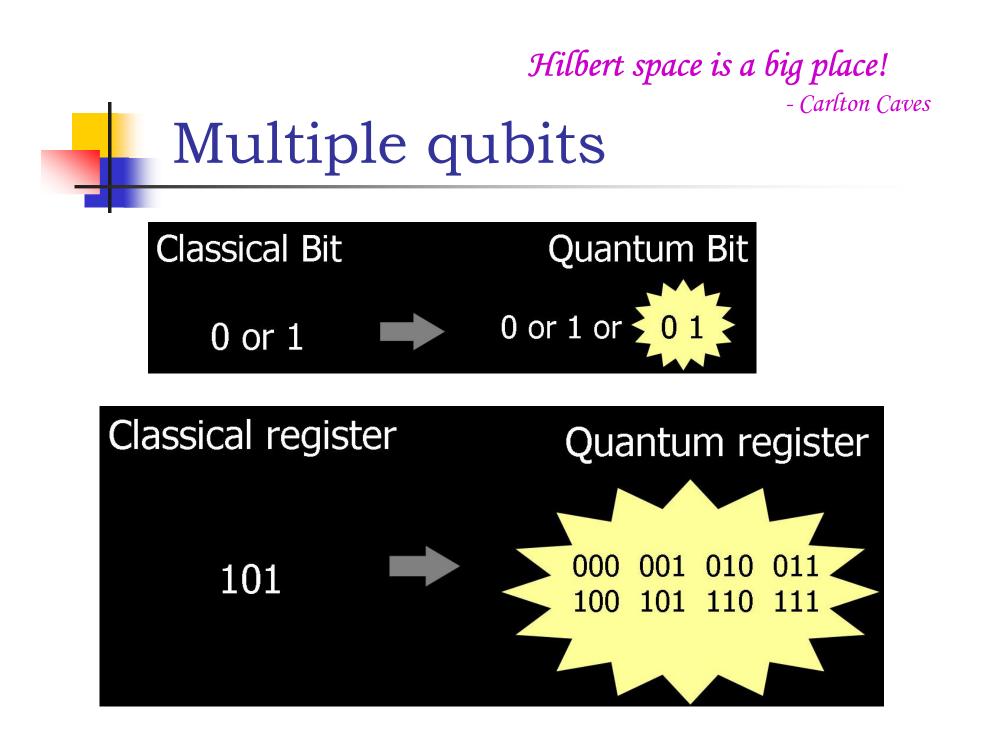
Look at final

answer!

 Qubit: Quantum calculation: number of parallel processes due to superposition

Bits & Qubits: primary differences

SuperpositionMeasurement


$$|\psi\rangle = \alpha |0\rangle + \beta |1\rangle$$

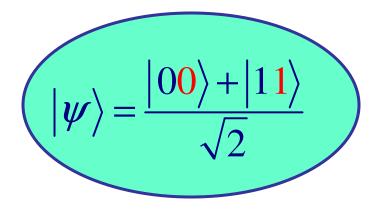
 Classical bit: we can find out if it is in state 0 or 1 and the measurement will not change the state of the bit.

• Qubit: we cannot just measure α and β and thus determine its state! We get either $|0\rangle$ or $|1\rangle$ with corresponding probabilities $|\alpha|^2$ and $|\beta|^2$.

$$\left|\boldsymbol{\alpha}\right|^{2}+\left|\boldsymbol{\beta}\right|^{2}=1$$

The measurement changes the state of the qubit!

Hilbert space is a big place! - Carlton Caves


Multiple qubits

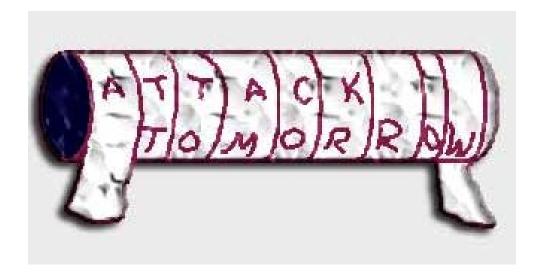
- Two bits with states 0 and 1 form four definite states 00, 01, 10, and 11.
- Two qubits: can be in superposition of four computational basis set states.

 $|\psi\rangle = \alpha |00\rangle + \beta |01\rangle + \gamma |10\rangle + \delta |11\rangle$

2 qubits	4 amplitudes			
3 qubits	8 amplitudes			
10 qubits	1024 amplitudes			
20 qubits	1 048 576 amplitudes			
30 qubits	1 073 741 824 amplitudes			
500 qubits	More amplitudes than our estimate of			
	number of atoms in the Universe!!!			
500 qubits More amplitudes than our estimate of number of atoms in the Universe!!!				

Results of the measurementFirstqubit01Second qubit01

$$|\psi\rangle \neq |\alpha\rangle \otimes |\beta\rangle$$


Entangled states

Quantum cryptography

Classical cryptography

Scytale - the first known mechanical device to implement permutation of characters for cryptographic purposes

Classical cryptography

Private key cryptography

How to securely transmit a private key?

Key distribution

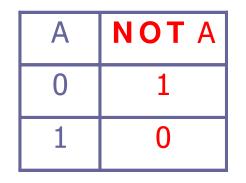
A central problem in cryptography: the key distribution problem.

- 1) Mathematics solution: <u>public key cryptography</u>.
- 2) Physics solution: quantum cryptography.

Public-key cryptography relies on the computational difficulty of certain hard mathematical problems (computational security)

Quantum cryptography relies on the laws of <u>quantum</u> <u>mechanics</u> (information-theoretical security).

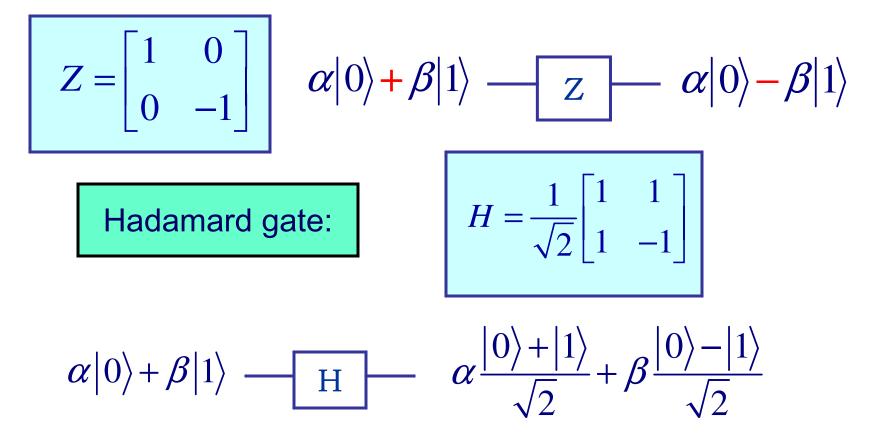
Quantum key distribution


- Quantum mechanics: quantum bits cannot be copied or monitored.
- Any attempt to do so will result in altering it that can not be corrected.
- Problems
 - Authentication
 - Noisy channels

Quantum logic gates

Classical NOT gate

The only non-trivial single bit gate

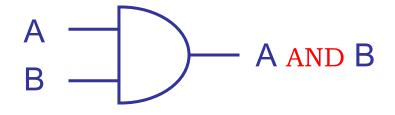

Quantum NOT gate (X gate) $\alpha |0\rangle + \beta |1\rangle - x - \alpha |1\rangle + \beta |0\rangle$

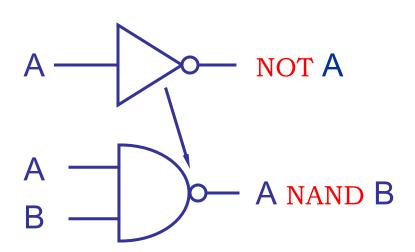
Matrix form representation

$$X = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$
$$X \begin{bmatrix} \alpha \\ \beta \end{bmatrix} = \begin{bmatrix} \beta \\ \alpha \end{bmatrix}$$

More single qubit gates

Any unitary matrix U will produce a quantum gate!




Single qubit gates, two-qubit gates, three-qubit gates ...

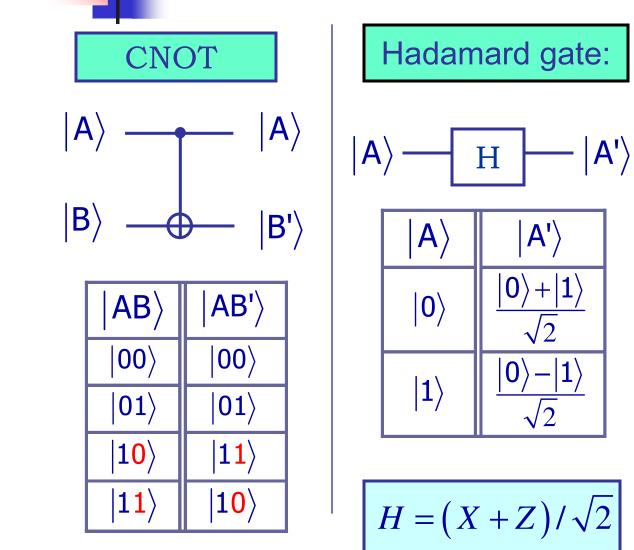
- How many gates do we need to make?
- Do we need three-qubit and four-qubit gates?
- Where do we find such physical interactions?
- Coming up with one suitable controlled interaction for physical system is already a problem!

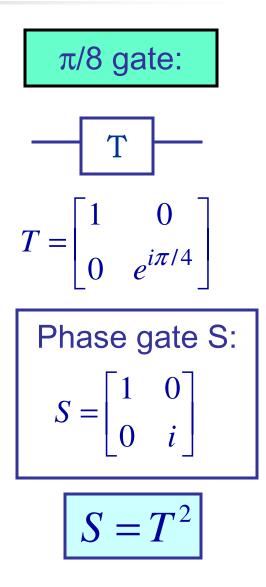
Universality: classical computation

Only one classical gate (NAND) is needed to compute any function on bits!

Α	В	A AND B	A NAND B			
0	0	0	1			
0	1	0	1			
1	0	0	1			
1	1	1	0			

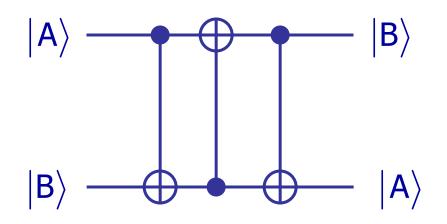
Universality: quantum computation


How many quantum gates do we need to build any quantum gate?

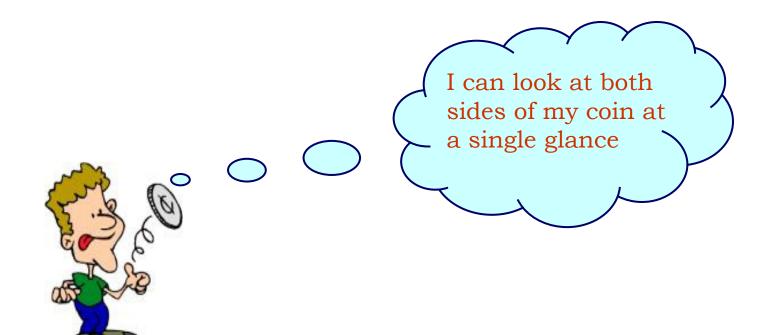

Any n-qubit gate can be made from 2-qubit gates. (Since any unitary nxn matrix can be decomposed to product of two-level matrices.)

Only one two-qubit gate is needed!

Example: CNOT gate


Universal set of gates

From gates to circuits

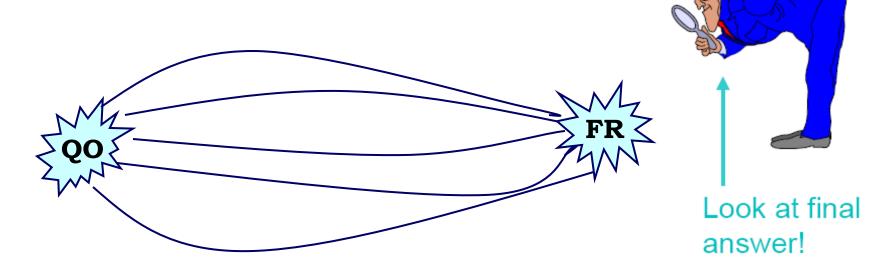

Example: swap circuit

Differences with classical circuits

- No loops no feedback from one part of circuit to another.
- •No wires joined together since it is not reversible.
- •No "copy a qubit" operation (forbidden by quantum mechanics).

Quantum parallelism

Quantum parallelism



$$f(x): \{0,1\} \rightarrow \{0,1\}$$
 $|x, y\rangle \xrightarrow{U_f} |x, y \oplus f(x)\rangle$

Superposition
$$\frac{|0\rangle + |1\rangle}{\sqrt{2}}$$
 x x y U_f U_f $|0\rangle$ y $f(x)$

Single circuit just evaluated *f*(x) for both x=0 and 1 simultaneously!

Quantum parallelism: a major problem

- So we can evaluate functions for all values of x at the same time using just one circuit!
- Need only n+1 qubits to evaluate 2ⁿ values of x.
- But we still get only one answer when we measure the result: it collapses to x,f(x)!!!

Quantum algorithms

Unique features of quantum computation

- Superposition: n qubits can represent 2ⁿ integers.
- Problem: if we read the outcome we lose the superposition and we can't know with certainty which one of the values we will obtain.
- Entanglement: measurements of states of different qubits may be highly correlated.

Current advantages of quantum computation

- Shor's quantum Fourier transform provides exponential speedup over known classical algorithms.
- Applications: solving discrete logarithm and factoring problems which enables a quantum computer to break public key cryptosystems such as RSA.
- Quantum searching (Grover's algorithm) allows quadratic speedup over classical computers.
- Simulations of quantum systems.

How to factor 15?

- Pick a number less then 15: 7
- Calculate 7ⁿ mod 15:

n	7 ⁿ	15×A	7 ⁿ mod 15
1	7	1	7
2	49	45	4
3	343	330	13
4	2401	2400	1

- Calculate $gcd\left\{7^{R/2}\pm1,15\right\}$
- $gcd{48,15} = 3, gcd{50,15} = 5$

Shor's algorithm for N=15

- Choose n such as 2ⁿ<15: n=4</p>
- Choose y: y=7
- Initialize two four-qubit register $|\Psi_0\rangle = |0000\rangle|0000\rangle$
- Create a superposition of states of the first register
- Compute the function f(k)=7^k mod 15 on the second register.
- Operate on the first register by a Fourier transform
- Measure the state of the first register: u=0, 4, 8, 12 are only non-zero results.
- Two cases give period R=4, therefore the procedure succeeds with probability 1/2 after one run.

Back to the real world:

What do we need to build a quantum computer?

- Qubits which retain their properties.
 Scalable array of qubits.
- Initialization: ability to prepare one certain state repeatedly on demand. Need continuous supply of $|0\rangle$.
- Universal set of quantum gates. A system in which qubits can be made to evolve as desired.
- Long relevant decoherence times.
- Ability to efficiently read out the result.

	The DiVincenzo Criteria								
QC Approach	Quantum Computation						QC Networkability		
	#1	#2	#3	#4	#5		#6	#7	
NMR	Ô	6	6	<u>&</u>	6		Ô	Ô	
Trapped lon	6	\bigotimes	6	<u>&</u>	\diamond		0	6	
Neutral Atom	Ô	\bigotimes	6	6	6		Ô	0	
Cavity QED	6	\bigotimes	6	6	\diamond		Ô	6	
Optical	6	6	\bigotimes	6	0		Ø	\bigotimes	
Solid State	6	6	6	6	0		Ô	Ô	
Superconducting	6	\bigotimes	6	6	6		ô	ô	
Unique Qubits	This field is so diverse that it is not feasible to label the criteria with "Promise" symbols.								

The Mid-Level Quantum Computation Roadmap: Promise Criteria

Legend: 😔 = a potentially viable approach has achieved sufficient proof of principle

🔞 = a potentially viable approach has been proposed, but there has not been sufficient proof of principle

ano viable approach is known