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I. The basics

Definition Let Ω be a domain in C with 1 ∈ Ω. Let

Pn(Ω) := {P ∈ Pn : P (0) = 1; P (D) ⊂ Ω}.

Then

Ωn :=
[

P∈Pn(Ω)

P (D)

is called the Maximal Range (of order n) of Ω.
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I. The basics

Definition Let Ω be a domain in C with 1 ∈ Ω. Let

Pn(Ω) := {P ∈ Pn : P (0) = 1; P (D) ⊂ Ω}.

Then

Ωn :=
[

P∈Pn(Ω)

P (D)

is called the Maximal Range (of order n) of Ω.

Maximal Range problem: Describe the maximal range Ωn for any given domain Ω and, in

particular, describe the extremal polynomials for Ωn.

Definition A polynomial P ∈ Pn(Ω) is called extremal polynomial for Ωn if

P (1) ∈ (∂Ωn \ ∂Ω) .

2



Example:

Let Ω := RH, so that Pn(Ω) = {P ∈ Pn : P (0) = 1; P (D) ⊂ Ω}.

Then, for P ∈ Pn(Ω), (L. Fejér 1916)

Re P (z) < n + 1, z ∈ D.

This is sharp for the Fejér polynomials

P (z) := Fn(z) = 1 + 2

n
X

k=1

n + 1 − k

n + 1
z

k
,

where Fn(1) = n + 1.

Theorem (A. Córdova, S.R. 1990):

Ωn :=
[

P∈Pn(Ω)

P (D) = co Fn(D).
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Here is the case n = 4. The thick line is the border of F4(D), the hatched area is Ω4.

Note that Fn is univalent in D with all zeros of its derivative on ∂D.
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Theorem (A. Córdova, C. Genthner, L. Salinas, S.R. (1990-2003))

Let Ω be a simply connected domain with 1 ∈ Ω and let n ∈ N. Then every extremal

polynomial P ∈ Pn(Ω) (with P (1) = ω ∈ ∂Ωn \ ∂Ω) is

1) univalent in D with all zeros of its derivative on ∂D, say

zj = e
iθj : 0 < θ1 < · · · < θn−1 < 2π.

2) The θj are interlaced by

ϕj : 0 < ϕ0 ≤ θ1 ≤ ϕ1 ≤ . . . θn−1 ≤ ϕn−1 < 0

so that P (eiϕj) ∈ ∂Ω (‘points of contact’).

3) If Ω is a convex domain then P satisfies the “arc-conjecture” i.e. P is uniquely determined

and the arc {P (eiϕ) : ϕn−1 − 2π < ϕ < ϕ0} belongs to ∂Ωn.
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2. The univalence of the extremal polynomials

Surprisingly, the most complicated part of the proof of the previous Theorem seems to be the

univalence of the extremal polynomials. It is based on the following situation.

We are using the notion of “almost extremal polynomials”, which are defined essentially by the

conditions 1) and 2) in the previous Theorem (without the univalence):

Definition For some simply-connected domain Ω let P ∈ Pn(Ω) be such that:

1) All the zeros of its derivative are on ∂D, say

zj = eiθj : 0 < θ1 < · · · < θn−1 < 2π.

2) The θj are interlaced by

ϕj : 0 < ϕ0 ≤ θ1 ≤ ϕ1 ≤ . . . θn−1 ≤ ϕn−1 < 0

so that P (eiϕj) ∈ ∂Ω (‘points of contact’).

Then P is called “almost extremal”.
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Theorem (C. Genthner, L. Salinas, S.R. 2003) Every almost extremal polynomial is univalent

in D.

History

1) “Proof” by A.C. and S.R. (1990): 1 page, false...(unpublished)

2) Proof by C. Genthner (PhD-Thesis) (1996): 123 pages... (unpublished)

3) Proof by C. Genthner, L. Salinas and S.R. (2003): 11 pages (CMFT vol. 2) (still complicated)

7



3. Approximation Questions

A slightly different approach to the maximal range problem has been used by V. Andrievskii

and S.R.

Let Ω be a simply connected domain with 1 ∈ Ω, and let f : D → Ω be a conformal mapping

onto Ω with f(0) = 1. For 0 < s < 1 define fs(z) := f((1 − s)z), z ∈ D.

Theorem (V. Andrievskii, S.R. 1998) There exists a universal constant c0 > 1 with the

following property: for each simply connected Ω as above and every n ≥ 2c0 there exists a

univalent p ∈ Pn(Ω) such that

fc0
n

≺ p ≺ f.

In particular,

fc0
n
(D) ⊂ Ωn ⊂ Ω.
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Theorem (V. Andrievskii, S.R. 1998) There exists a universal constant c0 > 1 with the

following property: for each simply connected Ω as above and every n ≥ 2c0 there exists a

univalent p ∈ Pn(Ω) such that

fc0
n

≺ p ≺ f.

In particular,

fc0
n
(D) ⊂ Ωn ⊂ Ω.

Here ≺ stands for the subordination of analytic functions in D.
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Theorem (V. Andrievskii, S.R. 1998) There exists a universal constant c0 > 1 with the

following property: for each simply connected Ω as above and every n ≥ 2c0 there exists a

univalent p ∈ Pn(Ω) such that

fc0
n

≺ p ≺ f.

In particular,

fc0
n
(D) ⊂ Ωn ⊂ Ω.

The proof of this result is constructive, however a first quantitative study based on the proof

led to the estimate

c0 ≤ 10
73

.
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Theorem (V. Andrievskii, S.R. 1993) There exists a universal constant c0 > 1 with the

following property: for each simply connected Ω as above and every n ≥ 2c0 there exists a

univalent p ∈ Pn(Ω) such that

fc0
n

≺ p ≺ f.

In particular,

fc0
n
(D) ⊂ Ωn ⊂ Ω.

The proof of this result is constructive, however a first quantitative study based on the proof

led to the weak estimate

c0 ≤ 10
73

.

This has later been improved by R. Greiner (1994) to

π ≤ c0 < 73,

where the value π occurs for the slit domain C \ (−∞,−1/4). The correct value for c0 is

still unknown.
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More precise information we get for special domains.

Theorem (R. Greiner, S.R.)

Let Ω be a convex domain. Then for n ≥ 4 there exists a univalent p ∈ Pn(Ω) such that

f2
n
≺ p ≺ f.

In particular,

f2
n
(D) ⊂ Ωn ⊂ Ω.

Theorem (R. Greiner, S.R.)

Let Ω be a convex domain. Then for n ≥ 4 there exists a convex univalent p ∈ Pn(Ω) such

that

f4
n
≺ p ≺ f.

There are better estimates than c0/n for domains with special boundary conditions.
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Application of special cases (domains)

For quite a number of special domains the maximal ranges have been found explicitely. Knowing

those will generally lead to new estimates for polynomials subject to certain restrictions. We

give a few examples for circular domains.

Theorem Let P ∈ Pn satisfy P (0) = 1 and |P (z)| > ρ, z ∈ D. Then

| arg P (z)| ≤ (n + 1) arccos

„

ρ1/(n+1) cos
π

2n + 2

«

−
π

2
, z ∈ D.

This estimate is sharp for P = Qρ
n.

Theorem Let P ∈ Pn satisfy P (0) = 1 and |P (z)| > ρ, z ∈ D. Then

||P || ≤ ρ Tn+1

“

ρ−1/(n+1)
”

.

This estimate is sharp for P = Qρ
n.
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Theorem Let n > 1, P ∈ Pn, P (0) = 1, and ||P || ≤ ρ. Then, for z ∈ D, we have

Re P (z) >

(

ρTn+1

“

ρ−1/(n+1)
”

, 1 ≤ ρ ≤
h

cos π
n+1

i−n−1

,

−ρ, elsewhere .

These bounds are sharp.

There are many other special cases for slit-domains, sectors, strip domains, squares and

rectangles etc., too many to mention them all.
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5. A general special case

Theorem (A. Cordova, S.R. 1991)

Let P ∈ Pn be an ‘almost extremal’ polynomial and let Q ∈ Pn be such that P (0) = Q(0)

and Q(D) does not meet any of the critical values of P . Then Q ≺ P and, in particular,

Q(D) ⊂ P (D).
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Let P ∈ Pn be an ‘almost extremal’ polynomial and let Q ∈ Pn be such that P (0) = Q(0)

and Q(D) does not meet any of the critical values of P . Then Q ≺ P and, in particular,

Q(D) ⊂ P (D).

Example: Let P (z) = z − zn

n , and Q ∈ P with Q(0) = 0 and n−1
n e2πij/(n−1) /∈ Q(D)

for j = 1, . . . , n − 1. Then Q(D) ⊂ P (D) and, in particular, ||Q|| ≤ n+1
n .
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Note: Every ‘almost extremal’ polynomial is actually extremal for some domain!
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5. A general special case

Theorem (A. Cordova, S.R. 1991)

Let P ∈ Pn be an ‘almost extremal’ polynomial and let Q ∈ Pn be such that P (0) = Q(0)

and Q(D) does not meet any of the critical values of P . Then Q ≺ P and, in particular,

Q(D) ⊂ P (D).

Example: Let P (z) = z − zn

n , and Q ∈ P with Q(0) = 0 and n−1
n e2πij/(n−1) /∈ Q(D)

for j = 1, . . . , n − 1. Then Q(D) ⊂ P (D) and, in particular, ||Q|| ≤ n+1
n .

Note: Every ‘almost extremal’ polynomial is actually extremal for some domain!

Thank you for your attention !!
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