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A. Two methods for producing inequalities for polynomials in D

A.1. Bound-preserving operators

Let Pn be the set of complex polynomials of degree ≤ n.

A function (formal power series) f(z) =
P∞

k=0 ckz
k is called bound-preserving of degree n

(f ∈ Bn) if for all polynomials P (z) =
Pn

k=0 akz
k ∈ Pn we have

||f ∗ P || = ||
nX

k=0

ckakz
k|| ≤ ||P || (||.|| := sup

z∈D

|.|).

If f ∈ Bn and f(0) = 1 we say that f ∈ B0
n. Note that

f(z) =

nX

k=0

ckz
k ∈ B

0
n ⇒ f̃(z) := z

n
f(1/z) =

nX

k=0

cn−kz
k ∈ Bn
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Theorem 1 (Carathéodory-Toeplitz) f(z) =
Pn

k=0 ckz
k ∈ B0

n if and only if the Hermite-

Toeplitz matrix

Hn :=

0
BBBBB@

1 c1 c2 . . . cn

c1 1 c1 · · · cn−1

c2 c2 1 · · · cn−2
... ... ... . . . ...

cn cn−1 cn−2 · · · 1

1
CCCCCA

is positive semi-definite.

Example: For |ε| ≤ 1 we have

Qn(ε) :=
n−1X

k=0

n − k

n
z

k
+

2ε

n + 2
z

n ∈ B
0
n.
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Using fQn this example leads to a classical result and its refinement:

Theorem (ε = 0, S. Bernstein) For P ∈ Pn we have

||P ′|| ≤ n||P ||.
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Using fQn this example leads to a classical result and its refinement:

Theorem (ε = 0, S. Bernstein) For P ∈ Pn we have

||P ′|| ≤ n||P ||.

Theorem (|ε| = 1, S.R. (1982)) For P ∈ Pn we have

||P ′|| ≤ n||P || −
2n

n + 2
|P (0)|.

The bound 2n
n+2 is best possible.

Many improvements and new proofs of classical results via this method have been obtained (R.

Fournier, C. Frappier, Q.I. Rahman, S.R. and others). This always deals with the (sometimes

tedious) study of the semi-definiteness of special Hermite-Toeplitz matrices.
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Question: For which polynomials are the inequalities generated by this method best possible?

This question is open in general.

For Bernstein’s inequality, however, the answer has been known for long. For the generalization

given above, the (identical) answer was established by R. Fournier, namely

P (z) = cz
n
, c ∈ C,

are the only polynomials for which these inequalities are sharp.

Recently the following answer for at least certain cases has been obtained:
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Theorem (Fournier, S.R.) Let H be a Hermite-Toeplitz (n + 1) × (n + 1)-matrix with its

first row (1, c1, . . . , cn) and the following properties

1. |cn| < 1.

2. All principal minors of H of order ≤ n are positive,

3. det H = 0.

If P (z) =
Pn

k=0 akz
k satisfies

||
nX

k=0

akckz
k|| = ||P ||,

then P ≡ const.
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A problem and the consequences of its solution

In 2008 Gerard Letac (Toulouse) posed the following

Problem1 For n ≥ 2 and x ∈ C let

Hn(x) :=

0
BBBBB@

1 x x . . . x

x 1 x · · · x

x x 1 · · · x
... ... ... . . . ...

x x x · · · 1

1
CCCCCA

be a Hermite-Toeplitz n × n matrix. Describe the set ∆n ⊂ C of those x for which Hn(x)

is positive semi-definite.

Clearly, the solution to this problem must have applications to polynomial inequalities.

1Amer. Math. Monthly, Problem 11396 (2008)

7



Theorem (R. Fournier, G. Letac, S.R. (2010)) For n ≥ 2 and x ∈ C let

Hn(x) :=

0
BBBBB@

1 x x . . . x

x 1 x · · · x

x x 1 · · · x
... ... ... . . . ...

x x x · · · 1

1
CCCCCA

be a Hermite-Toeplitz n × n matrix. Let ∆n ⊂ C be the set of those x for which Hn(x) is

positive semi-definite. Then ∆n is the convex hull of the Jordan curve

(
−e

iϕ sin ϕ
n

sin(n−1
n ϕ)

: |ϕ| ≤ π

)
.
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For all n ≥ 2 we have 1 ∈ ∂∆n. Furthermore, for all x ∈ ∂∆n \ {1} we have

det Hk(x)


= 0, k = n,

> 0, 2 ≤ k < n.

-1 -0.5 0.5 1

-1

-0.5

0.5

1

Figure 1: ∂∆n for n = 2, 3, 6, 11
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In terms of polynomial inequalities this result has the following interpretation:

Theorem (Fournier, Letac, S.R. (2010)) For P ∈ Pn−1 and α ∈ C we have

||P || ≤ n (||z P (z) + α|| − |α|) .

For no n ∈ N and no α > 0 the constant n can be replaced by anything smaller without

violating the conclusion. On the other hand, the only polynomial for which we have equality is

P ≡ 0.
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In terms of polynomial inequalities this result has the following interpretation:

Theorem (Fournier, Letac, S.R. (2010)) For P ∈ Pn−1 and α ∈ C we have

||P || ≤ n (||z P (z) + α|| − |α|) .

For no n ∈ N and no α > 0 the constant n can be replaced by anything smaller without

violating the conclusion. On the other hand, the only polynomial for which we have equality is

P ≡ 0.

Clearly, the following is an equivalent version of this inequality:

∀Q ∈ Pn : ||Q − Q(0)|| ≤ n(||Q|| − |Q(0)|).
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In terms of polynomial inequalities this result has the following interpretation:

Theorem (Fournier, Letac, S.R. (2010)) For P ∈ Pn−1 and α ∈ C we have

||P || ≤ n (||z P (z) + α|| − |α|) .

For no n ∈ N and no α > 0 the constant n can be replaced by anything smaller without

violating the conclusion. On the other hand, the only polynomial for which we have equality is

P ≡ 0.

Because of the structure of this result it is clear that the estimating factor n cannot depend

on α. This changes if we look only at polynomials in the class

P∗
n−1 := {P ∈ Pn−1 : ||P || = 1}.

Problem For α ≥ 0 and n ∈ N determine the numbers

Mn(α) := inf
P∈P∗

n−1

(||zP (z) + α|| − α).
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Note that from the matrix approach derived above we readily obtain

inf
α>0

Mn(α) =
1

n
,

but the methods described so far do not help with finding the actual values of Mn(α).
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A.2. The Maximal Range method.

Examples

1. Well known: Let Ω := C \ {0}, and

Pn(Ω) := {P ∈ Pn : P (0) = 1; P (D) ⊂ Ω}.

Then

P ∈ Pn(Ω) ⇒ P (D) ⊂ (1 + D)
n

(⇔ P ≺ (1 + z)
n
).

In other words:

Ωn :=
[

P∈Pn(Ω)

P (D) = (1 + D)
n
.

Note: There is one single polynomial (namely (1 + z)n) which describes the possible ranges

of all P ∈ Pn(Ω) for this domain Ω.
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2. Less well known...: Let Ω := RH, and

Pn(Ω) := {P ∈ Pn : P (0) = 1; P (D) ⊂ Ω}.

Then, for P ∈ Pn(Ω), (L. Fejér 1916)

Re P (z) < n + 1, z ∈ D.

This is sharp for the Fejér polynomials

P (z) := Fn(z) = 1 + 2
nX

k=1

n + 1 − k

n + 1
zk ,

where Fn(1) = n + 1.

Theorem (A. Córdova, Ru. 1990):

Ωn :=
[

P∈Pn(Ω)

P (D) = co Fn(D).
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This is the case n = 4. The thick line is the border of F4(D), the hatched area is Ω4.

Note that Fn is univalent in D with all zeros of its derivative on ∂D.
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Definition Let Ω be a domain in C with 1 ∈ Ω. Let

Pn(Ω) := {P ∈ Pn : P (0) = 1; P (D) ⊂ Ω}.

Then

Ωn :=
[

P∈Pn(Ω)

P (D)

is called the Maximal Range (of order n) of Ω.
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Definition Let Ω be a domain in C with 1 ∈ Ω. Let

Pn(Ω) := {P ∈ Pn : P (0) = 1; P (D) ⊂ Ω}.

Then

Ωn :=
[

P∈Pn(Ω)

P (D)

is called the Maximal Range (of order n) of Ω.

Maximal Range problem: Describe the maximal range Ωn for any given domain Ω and, in

particular, describe the extremal polynomials for Ωn.

Definition A polynomial P ∈ Pn(Ω) is called extremal polynomial for Ωn if

P (∂D) ∩ (∂Ωn \ ∂Ω) 6= ∅.
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Definition Let Ω be a domain in C with 1 ∈ Ω. Let

Pn(Ω) := {P ∈ Pn : P (0) = 1; P (D) ⊂ Ω}.

Then

Ωn :=
[

P∈Pn(Ω)

P (D)

is called the Maximal Range (of order n) of Ω.

Maximal Range problem: Describe the maximal range Ωn for any given domain Ω and, in

particular, describe the extremal polynomials for Ωn.

Definition A polynomial P ∈ Pn(Ω) is called extremal polynomial for Ωn if

P (∂D) ∩ (∂Ωn \ ∂Ω) 6= ∅.

Remark In our examples 1 and 2 the polynomials (1 + xz)n and Fn(xz) (where |x| = 1)

are the only extremal polynomials for the respective sets Ωn.
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Maximal ranges for disks with center at the origin

With Tn+1 the Chebychev polynomials of degree n + 1 we define the polynomials Qρ,n ∈ Pn

given by:

Qρ,n(z
2
) =

−ρ z2n+3

n + 1

d

dz

(
z
−n−1

Tn+1

 
ρ
−1/(n+1)1 + z2

2z

!)
.

where

1 < ρ ≤ ρn :=

„
cos

π

n + 1

«−n−1

= 1 +
π2

2n
+ O(n

−2
), n ∈ N.

For ρ > 1 we define Ωρ := {z : |z| < ρ} and Ωρ,n its maximal ranges.

It is known that the Qρ,n belong to Pn(Ωρ) and are univalent in D and have all zeros of their

derivatives on the boundary of D.

Note The Qρ,n were introduced and studied by R. Varga and S.R. (1984), in a different

context.
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Qρ,n for ρ = 1.5, n = 5
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Theorem (A. Córdova, S.R. (1992)) Let n ∈ N be fixed. Then the following statements hold.

(i) For 1 < ρ ≤ ρn the set Ωρ,n is the interior domain of the Jordan curve consisting of the

two arcs

C1 : =
n

Qρ,n(e
iτ) : |τ | ≤ τ1

o
,

C2 : =


ρ e

iτ
: |τ | < π −

n + 1

2
τ1

ff
,

where

τ1 := 2 arccos

„
ρ1/(n+1) cos(

π

n + 1
)

«
.

(ii) For ρ > ρn we have

Ωρ,n = Ωρ.
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B. Solution of the Mn(α) Problem

Problem: For α ≥ 0 and n ∈ N determine the numbers

Mn(α) := inf
P∈P∗

n−1

(||zP (z) + α|| − α).

Let 0 < α ≤ 1
1+ρn

(< 1
2). Trivially we have

Mn(α) ≥ 1 − 2α.

This is surprisingly best possible and sharp for the polynomials

P (z) =
Qρn,n(xz) − 1

(1 + ρn)z
, |x| = 1,

which can be shown by an easy (?) calculation.
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Theorem (M. Wo loszkiewicz, S.R. (2010)) Let n ∈ N be fixed. Then

(i) Mn(α) is a differentiable, strictly decreasing and convex function of α in 0 ≤ α < ∞
with Mn(0) = 1 and limα→∞ Mn(α) = 1

n.

(ii) Let α > 1
1+ρn

. Then we have Mn(α) = α (sn(α)− 1), where s = sn(α) is the unique

solution of the equation

s Tn+1(s
−1/(n+1)) = 1 − 1/α, 1 < s < ρn ,

In this range of α the only extremal polynomials P ∈ P∗
n−1 with Mn(α) = ||zP (z)+α||−α

are

P (z) = α
Qn,ρ(xz) − 1

z
, |x| = 1,

where ρ = cos(sn(α))−n−1

(iii) For 0 ≤ α ≤ 1
1+ρn

we have

Mn(α) = 1 − 2α.
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1 2 3 4 5

0.2

0.4

0.6

0.8

1

Mn(α) for n = 3, 4, 10

The proof is based on a proper reformulation of the “Mn(α) problem” into a “Maximal Range

problem”. Eventually one is left with the following technical inequality:
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Lemma For n ∈ N and 1 < ρ ≤ ρn we have

|Qρ,n(z) − 1| ≤ |Qρ,n(1) − 1|, |z| ≤ 1.

The proof is rather involved. There is numerical evidence for the following, even stronger

statement:

Conjecture Let

Qρ,n(z) = 1 +

nX

k=1

ak(ρ, n)z
k
.

Then, for k = 1 . . . , n and 1 < ρ ≤ ρn

ak(ρ, n) < 0.
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Remark: Surprisingly, for a particular (non-trivial) value of α, namely α = 1, we can

evaluate Mn explicitly:

For n ∈ N we have

Mn(1) =

„
cos

„
π

2n + 2

««−n−1

− 1 =
π2

8n
+ O

„
1

n2

«
.
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C. Further results on Maximal Ranges.

Theorem (A. Córdova, C. Genthner, L. Salinas, S.R. (1990-2003)) Let Ω be a simply

connected domain with 1 ∈ Ω and let n ∈ N. Then every extremal polynomial P ∈ Pn(Ω)

is

1) univalent in D with all zeros of its derivative on ∂D.

2) On each arc of ∂D with endpoints in two such zeros x, y there exists a “point of contact”,

i.e. a w ∈ ∂D with P (w) ∈ ∂Ω.

3) Let Ω be a convex domain and ω ∈ ∂Ωn \ ∂Ω. If ω = P (1) for an extremal polynomial

from Pn(Ω) then for each arc γ(a,b) := {P (eit) : t ∈ (a, b)} with 0 ∈ (a, b) we have

γ(a,b) ⊂ Ω ⇒ γ(a,b) ⊂ ∂Ωn.

In this case the extremal polynomial is uniquely determined.

Arc-Conjecture (A. Córdova, S.R.) Item 3) of the above Theorem holds for all simply

connected domains.
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The latest result concerning Maximal Ranges is about the following

Conjecture Let Ω be simply connected with 1 ∈ Ω. Then

(Ωn :=)
[

P∈Pn(Ω)

P (D) =
[

P∈Pu
n(Ω)

P (D),

where Pu
n(Ω) stands for the set of all univalent polynomials in Pn(Ω) (with all zeros of the

derivative on ∂D).

Theorem (V. Andrievskii, M. Wo loszkiewicz, S.R. (2011)) The conjecture holds for starlike

domains Ω w.r.t. 1.
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Finally:

There is some ongoing work with V. Andrievskii concerning the question of how fast a sequence

of extremal polynomials for a given simply-connected Ω converges to a conformal map of D

onto Ω. In principle, the extremal polynomials can be calculated numerically.

30



Finally:

There is some ongoing work with V. Andrievskii concerning the question of how fast a sequence

of extremal polynomials for a given simply-connected Ω converges to a conformal map of D

onto Ω. In principle, the extremal polynomials can be calculated numerically.

Thank you for your attention !!
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