
Биомолекулярные системы с асимметричными 
положительными обратными связями 

 
ASymmetrically Self-UpREgulated (ASSURE) 

biomolecular systems 

ИЦиГ СО РАН, 3 июля 2012 

Александр Ратушный 



Positive feedback systems 

(A) Establishment of polarity in budding yeast. (B) Mammalian calcium signal 
transduction. (C) Xenopus oocyte maturation. (D) Erythroid cell differentiation. 

Kuhn, 1994; Ratushny et al., 2000; Brandman et al., 2005 
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In positive feedback systems, input signals trigger a chain of signaling or 
regulatory events, which loop back and amplify the system response. 



Positive vs. negative feedback systems 

Alon, 2007 



Positive feedback system characteristics 

• Positive feedback is one of the main causes of instability in dynamical 
systems. 
 

 

• Positive feedback amplifies changes in state and is the force behind 
population explosions. 
 

 

• Positive feedback can also create unstable breakpoints or thresholds in 

dynamical systems. 

classes.entom.wsu.edu/529/ 



Asymmetry in positive feedback systems 

Symmetric feedback loop 

Asymmetric feedback loop 

ASymmetric Self-UpREgulation (ASSURE) network motif 



Symmetric feedback loop Asymmetric feedback loop 

Possible evolution of positive feedback systems 
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Fatty acid response and peroxisome biogenesis in S. cerevisiae  
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Examples of regulatory networks with the ASSURE motif 
System Asymmetric positive feedback 

Fatty-acid-response and peroxisome 
biogenesis in budding yeast 

Fatty-acid + Oaf1p → Oaf1p* 
Oaf1p* + Pip2p → heterodimer → upregulation of PIP2 gene 

Adipocyte differentiation Agonist + PPARγ→ PPARγ* 
PPARγ* + RXRα → heterodimer → upregulation of PPARγ gene 

Cholesterol homeostasis in human 
macrophages 

Agonist + LXRα → LXRα* 
LXRα* + RXRα → heterodimer → upregulation of LXRα gene 

Early development and differentiation 
(human) 

Agonist + RARβ → RARβ* 
RAR* + RXR → heterodimer → upregulation of RAR gene 

Early development and differentiation (mice) Agonist + RAR → RAR* 
RAR* + RXR → heterodimer → upregulation of RAR gene 

Early development and differentiation 
(zebrafish) 

Agonist + RAR → RAR* 
RAR* + RXR → heterodimer → upregulation of RAR gene 

Cellular antiviral defense Signal/virus + IRF3 → IRF3* 
Signal/virus + IRF7 → IRF7* 
IRF3* + IRF7* → heterodimer → upregulation of IFNβ gene → IFNβ → STAT1, STAT2 and IRF9 → 
upregulation of IRF7 gene 

Myogenesis Signal + MyoD → MyoD* 
MyoD* + E12 → heterodimer → upregulation of MyoD gene 

Control of the synaptic plasticity in Drosophila Signal + Fos → Fos* 
Signal + Jun → Jun* 
Fos* + Jun* → heterodimer → upregulation of CREB gene 
CREB → upregulation of CREB and Fos genes 

Filamentous growth regulation in yeast Signal (low nitrogen, butanol, etc.) + Tec1 → Tec1* 
Signal + Ste12 → Ste12* 
Tec1* + Ste12* → upregulation of TEC1 gene (and filamentous genes) 

Cell proliferation and growth (Myc system) Myc --| miRNA-22 --| MYCBP → Myc+MAX → upregulation of target genes 

Antioxidant response (HepG2 cells) ROS → KEAP1-Nrf2 → Nrf2 → Nrf2-small Maf → upregulation of p62 expression → p62 level → 
upregulation of Nrf2 expression 

Response to xenobiotics: reduction of arsenic-
induced cytotoxicity (HeLa cells) 

iAsIII→ Nrf2 activation (KEAP1-Nrf2 → Nrf2) → Nrf2-small Maf → Upregulation of HO-1 expression 
→ HO-1 level → Upregulation of Nrf2 expression 

White-opaque phenotypic switching in 
Candida albicans 

Signal (loss of the mating type locus heterozygosity) → Wor1; Wor1 + Mcm1 → upregulation of 
WOR1 and other target genes (induction of the white-opaque phenotypic switching) 

Cell cycle (G1 -> S phase transition) and tumor 
suppression control 

E2F1 + DP1 → E2F1-DP1 
E2F1-DP1 + pRB → pRB-E2F1-DP1 
Growth stimulatory signals → pRB-E2F1-DP1 → E2F1-DP1 + pRB → upregulation of E2F1 gene  



What are predominant features that may be responsible 
for evolutionary advantages of the ASSURE network motif 
and its consequent widespread use in biology? 
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Mathematical models 
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Ratushny et al., 2012 



Equivalence condition for the ASSURE I&II responses 

Time (h) 

Signal>>P1 and/or Ksp  0 
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Ksp = 1.65×10-8 M for Oaf1/oleate 
 

Ksp = 1.33×10-7 M for PPARγ/nitrolinoleic acid 
 

Ksp = 1.33×10-7 M for LXRα and 22(R)-hydroxychol 

typical physiological conditions  

Ratushny et al., 2012 



ASSURE precisely controls the response level 

Time (h) Signal>>P1 and/or Ksp  0 
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ASSURE is robust to parameter changes 

Signal>>P1 and/or Ksp  0 
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Ratushny et al., 2012 



Response time (τ0.5) 
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Response time of the ASSURE and SPF systems 
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Sensitivity analysis of the ASSURE and SPF responses 

Ratushny et al., 2012 



Exploration of the effects of changing multiple model parameters on 
the SPF and ASSURE temporal responses 

Ratushny et al., 2012 



Randomly parameterized SPF and ASSURE models 

Ratushny et al., 2012 
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Bifurcation analysis 
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Ratushny et al., 2012 



Experimental validation: engineered strain construction 

Ratushny et al., 2012 



Comparison of the SPF, ASSURE I and SPF I systems 

Ratushny et al., 2012 



Experimental validation: rapid and controlled response of the ASSURE 

Time (h) 

Theoretical prediction Experimental validation 

Ratushny et al., 2012 



Experimental validation: competitive advantage of the ASSURE 

10 replicates for each panel 

If [(WT+Eng) in hygromycin]/[(WT+Eng) in YPD]=0.5  there is no competitive advantage for any of these two strains 

Hygromycin B 

WT Engineered strain

Ratushny et al., 2012 



Summary 

Many important biological systems rely on regulation by dimers of 
proteins which upregulate the transcription of numerous targets, 
including one, and only one, of the dimer pair. This is termed 
asymmetric self-upregulation. 
 
ASymmetric Self-UpREgulated (ASSURE) networks confer rapid 
induction of their targets and their network behaviors are robust to 
parameter variation—both features appear to have contributed to the 
prevalence of the network across widely different biological systems. 
 
Likely evolutionary precursors to ASSURE networks are symmetrically 
self-upregulated network mediated by homodimers. In silico and 
experimental studies demonstrate that the ASSURE network confers a 
competitive advantage over its symmetrical counterpart. 
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