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Problem: no signal faster than speed of light
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Since 1996 (at least)
computing on supercomputers requires parallel computing

Prediction: in 10 years almost all PCs will have >16 PEs
(Processing Elements)



BlueGene/L - BlueGene/Q

System
(64 cabinets, 64x32x32)

Cabinet
(32 Node boards, 8x8x16)

Node Board
(32 chips, 4xdx?)
16 Compute Cards

Compute Card
(2 chips, 2x1x1)
Chip
(2 processors)

16 TB DDR

2.95.7TF/s
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8 GB DDR

2x2x32x32x64 = 131,072 PEs

f—— 5.6/11.2 GF/s
2.8/5.6 GF/s 0.5 GB DDR
4 MB
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Sequoia computer
BlueGene/Q IBM
US DOE NNSA/LLNL
1,572,864 cores
Ryeak=19.-7 petaFLOP
R;2x=20.1 petaFLOP
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O with less than 1024 Pes
1 Top-500 with 1024 to 2048 PEs
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Into the Wide
Blue Yonder

12 Top-500 with >=128,000 PEs
with BlueGene/L
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Perfect Scalability

Ny = # Processing Elements

Non-trivial parallelization

Amount of work O(Npg)

arge Npg, utilization independent of N

arge Ny, PE memory independent of N

» Number of interconnects O(7) per PE




How Computational Physicists Count

1 PE (Processor Element)

Banked Cuw»ra\j S —

1 body - _

1 grad student
— 2 PEs

2 body —

2 grad students
Too Many PLEs
Too Many bodies = 0o many grad students
use — use

Statistical Mechanics R e e Chanics




Motivation for PDES model

Parallel computing
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Non-equilibrium surface growth model: PDES model

-In(r)

O<r<l

Replenish
when
needed

Start with flat interface (in d dimensions)

In first step, all ‘drops’ fall




PDES model

-In(r)

0<r<l

Replenish
when
needed

For each step, all ‘drops’ fall ONLY 1f the
surface underneath 1s at a local mimimum




PDES model

Note: at each step ¢ all ‘drops’ fall
at the same time




PDES model
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Discrete Event Simulations 2

* DES (Discrete Event Simulations)
* State changes are discontinuous
* Times of state changes are random

PDES

Parallel Discrete Event Simulations



PDES Technology Implications

- All today’s largest computers are massively parallel computers
* Must make good use of parallelization in programs for efficiency
 Parallel Discrete Event Simulations (PDES)
0 Used in military simulations and training (‘what-if’ scenarios)
0 Used in homeland security simulations and training
o Used in modeling of factory deliveries
0 Used in modeling temporal drug concentrations in patient models
0 Used in simulating materials and materials failure
o Used in modeling switching in cellular and wireless networks
o Used in ecological modeling
o Used in modeling epidemiological models

o Used in electric power grid simulations
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Information-Driven Systems

Example:
Dynamic Monte Carlo of Ising spins
with nearest-neighbor interactions

Randomly pick a spin

Decide if spin will be flipped =~ Dynamic Monte Carlo simulations

Parallelization

o P
@ Trivial @
o (€

Non-Trivial
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Physical processes and logical processes

. _ o
§ L 6958275 = k=5 pe k=6
asynchronous @ NG el @ - asynchronous

; N RN 5
natu re of f 334 5337 JX i PEs o systc:)m of
physical el execute events @ logical
dynamics { k=3 & proceed in @ processes

3 ;0 local time £
o 7 e k=L -1
®e O 2 ke R
Physical System —_— Computing System

spatially extended system of NL
spins, arranged on a lattice

Physical Events/Processes
random spin flipping

discrete event: the spin flip

_—

L PEs: each carries N lattice
sites, N, of which are border sites

Logical Events/Processes
=——> each PE manages the state of the
assigned subsystem.

discrete event: the state update



*Spatial decomposition on lattice/grid
(for systems with short-range interactions

only local synchronization between subsystems)
*Changes/updates: independent Poisson arrivals

*»Each subsystem/block of sites, carried by a

processing element (PE) must must have its
own local simulated time, {t;} (“virtual time”)

¢ Synchronization scheme BRRE T T
“»PEs must concurrently advance theirown — ~
Poisson streams, without violating causality =~ = g

This is the PDES model
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Coarse graining for the stochastic time

surface evolution
Korniss, Toroczkai, Novotny, Rikvold, PRL ‘00

{1+ 1) = 7,(t) + (1) O 7,_1 (1) = (1) 1O 71,1 (1) = (1) ]

*0(...) 1s the Heaviside step-function
*1n,(¢¥) 1d exponential random numbers

dhlz. 1) O?h(x,t) 2 B lﬁh(x,t)

=V

2
] + Dy, n(z, ) Kardar-Parisi-Zhang

ot ox? ox :
equation
] o\’ Stead (d=1)
b oT teady state (d=1):
P [T(x)] x exp D f dx( ax ) Edwards-Wilkinson
Hamiltonian

**Random-walk profile: short-range correlated local slopes



“Simulating the simulations”
*»* Universality/roughness (d=1)
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“»Utilization/efficiency

Finite-size effects for the density of local minima/average growth rate
(steady state):
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Implications for scalability

Virtual Time Horizon belongs to KPZ universality class

GREAT News Bad News

< Simulation phase: Scalable (u) = (u),, + const/Np

(1), asymptotic average rate of progress of the
simulation (utilization ) 1s non-zero

“»Measurement (data management) phase: NOt scalable

P, if t<<t,
L, if t>>t,

<W2 (t)>L ~ 9

Rough Times!



Improve efficiency

Mixing
KPZ + RD

Oh(x,t) Phiz. 1) iy [(‘)h(;l:,t)
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Simulation model for conservative PDES

Time-step t : index of the simultaneous update attempt

If update at t: h (t+1) = nh(t) + 1, (t)

N=1

h (t) < min{h (1), h. (D)}

deposition at t < > update at t

local time increment dh

local height increment dh |,

local height h,

Ve

20 40

60

site index k

80 100

Update rule
I_§ \ 4
N=2 N>2
choose a neighbor choose a lattice site
hi(t) < hya(t) : '
interior border
hk(t) Shnn(t)

| Virtual Time Horizon (VTH)

Properties of the algorithm
are encoded in the VTH



Diagnostics: utilization of the parallel processing environment

Steady-state simulations
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Actual implementation

Dynamics of a thin magnetic film
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1. Local time incremented

2. Randomly chosen site

3. If chosen site 1s on the boundary,
PE must wait until t=min{t_, }

[> ] =—> Mixing RD+KPZ

n Ixl, I=128, Metropolis (Cray T3E)
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Implications for scalability

Virtual Time Horizon belongs to KPZ universality class

GREAT News Bad News

< Simulation phase: Scalable (u) = (u),, + const/Np

(1), asymptotic average rate of progress of the
simulation (utilization ) 1s non-zero

“»Measurement (data management) phase: NOt scalable

P, if t<<t,
L, if t>>t,

<W2 (t)>L ~ 9

Rough Times!



How to make the measurement
phase scalable as well?

“*Controlling the width

Greenberg et.al., '96

“Mean-field” like approximation to model the evolution of the time
horizon (K-random interaction)

K=2: each PE randomly chooses two others, rand r’

T, <=mini{t,,T,} I S A T




Annealed (or quenched) random connections

NN

-1 1 |i+] r

\/

7, < min{rt,__} T, = min{t,,,7, |

|

-1
KPZ surface: W~ L” w=const.+ QL")

2 2

_ 0T :
4,7 = a—T—)L ..+ noise 0,7 = -y (t(x,)-T(¢))+—5 +...+noise
ox° 0x 0x

Slopes are still short-range correlated: non-zero (1)



regular lattice (ring) topology =~ small-world-like connections:

("p=0") used with probability p>0
S 5 O [ N Y
S~ —

p

p=0.1

p=0.0

w~ N¢

N =10’ o

w ~ const.



Steady-state “height” structure factors
S(k) o (T(k)T(=k))

only short-range connections (KPZ) + random connections (relaxation)
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Quenched random (Small World)
connections

w = const.+ QL)
Slopes are still short-range correlated: non-zero (1)

United States Patent 6,996,504
Novotny, etal. February 7, 2006

Fully scalable computer architecture

A scalable computer architecture capable of performing fully scalable simulations includes a plurality of processing elements (PEs)
and a plurality of interconnections between the PEs. In this regard, the interconnections can interconnect each processing element to
each neighboring processing element located adjacent the respective processing element, and further interconnect at least one
processing element to at least one other processing element located remote from the respective at least one processing element. For
example, the interconnections can interconnect the plurality of processing elements according to a fractal-type method or a quenched
random method. Further, the plurality of interconnections can include at least one interconnection at each length scale of the plurality
of processing elements.

Inventors:  Novetny; Mark A. (Starkville, MS); Korniss; Gyorgy (Latham, NY)
Assignee:  Mississippi State University (Mississippi State, MS)

Appl. No.: 990681

Filed: November 14, 2001

T, =min{r_.T, }



PDES Summary and outlook

» Simple surface-growth model very useful

* The tools and methods of non-
equilibrium statistical physics (coarse-
graining, finite-size scaling, universality,

etc.) can be applied to scalability
modeling and algorithm engineering

 Conservative schemes can be made
perfectly scalable (ALL short-ranged PDES)

« Computational phase always scalable (KPZ universality)
« Communication phase scalable with small-world network




Fully Scalable Computer

Suppressing Roughness of Virtual
Times in Parallel Discrete-Event

Simulations

G. Korniss,™ M. A. Novotny,? H. Guclu,” Z. Toroczkai,®
P. A. Rikvold*

In a parallel discrete-event simulation (PDES) scheme, tasks are distributed
among processing elements (PEs) whose progress is controlled by a synchro-
nization scheme. For lattice systems with short-range interactions, the progress
of the conservative PDES scheme is govemed by the Kardar-Parisi-Zhang equa-
tion from the theory of nonequilibrium surface growth. Although the simulated
(virtual) times of the PEs progress at a nonzero rate, their standard deviation
(spread) diverges with the number of PEs, hindering efficient data collection. We
show that weak random interactions among the PEs can make this spread
nondivergent. The PEs then progress at a nonzero, near-uniform rate without

requiring global synchronizations.

Simulating large systems often leaves the
programmer with only one option: parallel
distributed simulations where parts of the
system are allocated and simulated on differ-
ent processing elements (PEs). A large class
of interacting systems, including financial
market models, epidemic models, dynamics
of magnetic systems, and queuing networks,
can be described by a set of local state vari-
ables assuming a finite number of possible
values. As the system evolves in time, the
values of the local state variables change at
discrete instants, synchronously or asynchro-
nously depending on the dynamics of the
system. Parallel simulation for the former is
straightforward (at least conceptually). For
the latter—that is, for asynchronous or non-
parallel dynamics—one must use some kind
of synchronization to ensure causality. The
instantaneous changes in the local configura-
tion are also called discrete events, hence the
term  parallel ~discrete-event  simulation
(PDES) (/-3). Examples of PDES applica-
tions include dynamic channel allocation in
cell phone communication networks (3, 4),
models of the spread of diseases (5), battle-
field simulations (6), and dynamic phenome-

"Department of Physics, Applied Physics, and Astron-
omy, Rensselaer Polytechnic Institute, 110 8th Street,
Troy, NY 12180, USA. 2Department of Physics and
Astronomy and ERC Center for Computational Sci-
ence, Mississippi State University, Post Office Box
5167, Mississippi State, MS 39762, USA. *Complex
Systems Group, Theoretical Division, Los Alamos Na-
tional Laboratory, Mail Stop B-213, Los Alamos, NM
87545, USA. “Department of Physics, Center for Ma-
terials Research and Technology, and School of Com-
putational Science and Information Technology, Flor-
ida State University, Tallahassee, FL 32306, USA.

*To whom correspondence should be addressed. E-
mail: korniss@rpi.cdu

na in highly anisotropic magnetic systems (7,
&). Here the discrete events are call arrivals,
infections, troop movements, and changes of
the orientation of the local magnetic mo-
‘ments, respectively. As the number of PEs on
parallel architectures increases to tens of
thousands, fundamental questions of the scal-
ability of the underlying algorithms must be
addressed. Here, we show a way to construct
fully scalable parallel simulations for systems
with asynchronous dynamics and short-range
interactions. Understanding the effects of the

dynamics (cor to the
algorithmic synchronization rules) on the
global properties of the simulation scheme
brings us to the solution. Recently, a similar
connection has been made (9) between roll-
back-based PDES schemes (70) and self-
organized criticality (17).

The two basic ingredients of PDES are the
set of local simulated times, often referred to
as virtual times (10), and a synchronization
scheme (7). For the PDES scheme to be
scalable (12), two criteria must be met: (i)
The virtual time horizon should progress on
average at a nonzero rate, and (ii) the typical
spread of the time horizon should be bounded
as the number of PEs Npg goes to infinity.
The first criterion ens nonzero progress
rate in the limit of large Npg, It is, however,
not sufficient if data are to be collected.
Different PEs have progressed to different
local simulated times with a possibly large
spread among them, making measurement a
complex task. Frequent global synchroniza-
tions can get costly for large Npg, whereas
temporarily storing a large amount of data as
a result of the large virtual time spread is
limited by the available memory. Therefore,
criterion (i) is crucial for the measurement

REPORTS

part of the algorithm to be scalable. Here, we
introduce a PDES scheme in which the PEs
make nonzero and close-to-uniform progress
without global intervention.

In conservative PDES schemes (13-15),
which we focus on, an update is performed by
a particular PE only if the resulting change in
the local configuration of the simulated sys-
tem is guaranteed not to violate causality.
Otherwise, the PE idles. The efficiency of the
scheme depends on the fraction of nonidling
PEs. It was shown (16, 17) that the virtual
time horizon exhibits kinetic roughening (18,
19) for the basic conservative scheme applied
to systems with short-range interactions on
regular lattices. In particular, the evolution of
the virtual time horizon is governed by the
Kardar-Parisi-Zhang (KPZ) equation (20),
which plays a central role in nonequilibrium
surface growth (18, 19). The above finding
has two major implications for the asymp-
totic scalability of the basic conservative
PDES scheme (16, 21): Criterion (i) for the
scalability is satisfied because the average
progress rate of the virtual time horizon
approaches a nonzero value in the limit Np,
— o, Criterion (if), however, is violated
because the virtual time horizon becomes
macroscopically rough.

For illustration, we consider a geneml

1 system with t

bor inferactions, in which the discrete eves
exhibit Poisson asynchrony. In the one- slte-
per-PE scenario, each site has its own local
simulated time, constituting the virtual time
, where ¢ is the discrete
number of parallel steps executed by all PEs
(which is proportional to the wall-clock
time). According to the basic conservative
synchronization scheme (4, 15), at each par-
allel step ¢, only those PEs for which the local
simulated time is not greater than the local
simulated times of their neighbors can incre-
ment their local time by an exponentially
distributed random amount. [Without loss of
generality, we assume that the mean of the
local time increment is 1 in simulated time
mits (stw).] Thus, if 7,() = minfr, (),
7,.4(D)}, PE i can update the configuration of
the underlying site it carries and determine
the time of the next event. Otherwise, it idles.
Despite its simplicity, this rule preserves un-
altered the asynchronous causal dynamics of
the underlying system (14, I5).

The progress rate of the simulation
<1:(t):>,\,; . (the density of local minima of the
virtual time horizon) approaches a nonzero
constant in the asymptotic long-time, large-

o limit (Z6, 21). The average width of the
virtual time horizon, however, diverges as
Npg — = (16, 17). Specifically, the average
width is defined as
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ovotny & Korniss

Large Paper
Guclu et al, PRE 200

A Gate-Controlled Bidirectional
Spin Filter Using Quantum
Coherence

1A Folk,13% R M. Potok, C. M. Marcus,™ V. Umansky

Shows ALL parallel discrete event simulations that are short-
ranged can be made to be perfectly scalable on the correct
computer architecture.



Discussion and Provocations

> Neither software nor hardware nor algorithms alone
will lead to (non-triviai) perfect scalability

» Without use of statistical mechanics, parallel
computing will never be efficient/scalable

» Similar ideas apply to (on-trivia cloud computing
» Similar ideas for sensor networks

» Similar ideas for databases and searches

» Similar ideas for fault-tolerant computing

» Similar ideas can be used to design new materials
and devices with novel properties
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