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Problem: no signal faster than speed of light 

Since 1996 (at least) 

computing on supercomputers requires parallel computing 

Prediction: in 10 years almost all PCs will have >16 PEs 
(Processing Elements) 



BlueGene/L   BlueGene/Q 

2x2x32x32x64 = 131,072  PEs 



June 2012 Top500.org 
Sequoia computer 
BlueGene/Q      IBM 
US DOE NNSA/LLNL 
1,572,864 cores 
Rpeak=15.7 petaFLOP 
Rmax=20.1 petaFLOP 

0 with less than 1024 Pes 
1 Top-500 with 1024 to 2048 PEs 

12 Top-500 with >=128,000 PEs 



Perfect Scalability 

  For large NPE, utilization independent of NPE 

  For large NPE, PE memory independent of NPE 

  Number of interconnects O(1) per PE 

NPE = # Processing Elements 

Non-trivial parallelization 

Amount of work O(NPE) 



How Computational Physicists Count 

1 body 

2 body 

Too Many bodies 

use 

Statistical Mechanics 

2 PEs 

= 

2 grad students 

1 PE (Processor Element) 

= 

1 grad student 

Too Many PEs 

Too many grad students 

use 

Statistical Mechanics 



Motivation for PDES model 

Parallel computing 

Complicated Behavior & Informatics  
from Non-equilibrium Surface Growth Models 



Non-equilibrium surface growth 

Dynamic scaling: 

β  growth exponent 
z   dynamic exponent 
α  roughness exponent 



Non-equilibrium surface growth model:  PDES model 

-ln( r ) 

0<r<1 

Replenish 
when 
needed 

Start with flat interface (in d dimensions) 

In first step, all ‘drops’ fall 



PDES model 

-ln( r ) 

0<r<1 

Replenish 
when 
needed 

For each step, all ‘drops’ fall ONLY if the 
surface underneath is at a local minimum 



PDES model 

Note: at each step t all ‘drops’ fall 
at the same time 

t t + 1 



PDES model 

t=0 t=1 

t=11 



Discrete Event Simulations 

• DES (Discrete Event Simulations) 
* State changes are discontinuous 
* Times of state changes are random 

PDES 

Parallel Discrete Event Simulations 



PDES Technology Implications 
•  All today’s largest computers are massively parallel computers 

•  Must make good use of parallelization in programs for efficiency 

•  Parallel Discrete Event Simulations (PDES) 

o  Used in military simulations and training (‘what-if’ scenarios) 

o  Used in homeland security simulations and training 

o  Used in modeling of factory deliveries 

o  Used in modeling temporal drug concentrations  in patient models 

o  Used in simulating materials and materials failure 

o  Used in modeling switching in cellular and wireless networks 

o  Used in ecological modeling 

o  Used in modeling epidemiological models 

o  Used in electric power grid simulations 



Information-Driven Systems 

Trivial Non-Trivial 

Parallelization 

Example:  
Dynamic Monte Carlo of Ising spins 
with nearest-neighbor interactions 

Dynamic Monte Carlo simulations 

Randomly pick a spin 

Decide if spin will be flipped 



Physical processes and logical processes 

Physical System 
spatially extended system of NL 
spins, arranged on a lattice 

Computing System 
L PEs: each carries N lattice 
sites, Nb of which are border sites 

Physical Events/Processes 
         random spin flipping 

Logical Events/Processes 
each PE manages the state of the 
assigned subsystem.  

asynchronous 
nature of 
physical 

dynamics 

asynchronous 
 system of  

logical 
processes 

discrete event: the spin flip discrete event: the state update 



Parallel discrete-event simulation 
for spatially decomposable asynchronous cellular automata 

• Spatial decomposition on lattice/grid 
  (for systems with short-range interactions 
  only local synchronization between subsystems) 
• Changes/updates: independent Poisson arrivals 

 Each subsystem/block of sites, carried by a 
    processing element (PE) must must have its 
    own local simulated time, {τi} (“virtual time”) 
 Synchronization scheme 
 PEs must concurrently advance their own 
   Poisson streams, without violating causality 

τi 

PEi 

This is the PDES model 



Non-equilibrium surface growth 

Dynamic scaling: 

β  growth exponent 
z   dynamic exponent 
α  roughness exponent 



Coarse graining for the stochastic time 
surface evolution 

Kardar-Parisi-Zhang 
 equation  

Steady state (d=1): 
Edwards-Wilkinson 

 Hamiltonian  

 Random-walk profile: short-range correlated local slopes 

Korniss, Toroczkai, Novotny, Rikvold, PRL ‘00 

• Θ(…) is the Heaviside step-function 
• ηi(t) iid exponential random numbers 



“Simulating the simulations” 
 Universality/roughness (d=1) 

exact KPZ: 
β=1/3 
α=1/2 

Foltin et.al., ‘94 



 Utilization/efficiency 
Finite-size effects for the density of local minima/average growth rate 
(steady state): 

d=1 

〈u〉 = 〈u〉∞ + const/NPE  



Implications for scalability 

 Simulation phase: scalable  

 Measurement (data management) phase: not scalable  

〈u〉∞ asymptotic average rate of progress of the 
simulation (utilization ) is non-zero  

Virtual Time Horizon belongs to KPZ universality class 

 GREAT News -----------  Bad News 

〈u〉 = 〈u〉∞ + const/NPE  

Rough Times! 



Improve efficiency 

Mixing 

KPZ + RD 

+ 



Simulation model for conservative PDES 
Time-step t : index of the simultaneous update attempt 
Updates at t : independent Poisson-random processes 

If update at t : hk(t+1) = hk(t) + ηk(t)  

Update rule 

choose a neighbor hk(t) ≤ min{hk-1(t), hk+1(t)} 

hk(t) ≤ hnn(t) 

choose a lattice site 

interior 

N>2 

border 

hk(t) ≤hnn(t) 

N=1 N=2 

deposition at t 
local height increment δh 

Virtual Time Horizon (VTH) 

update at t 
local time increment δh 

Properties of the algorithm 
are encoded in the VTH 



Diagnostics: utilization of the parallel processing environment 
<u

(L
; N

)>
 

PRB 69, 075407 (2004) 

Steady-state simulations 
v(t) = <u(t)> µ P 



Actual implementation 

1.  Local time incremented  
2.  Randomly chosen site 
3. If chosen site is on the boundary, 
    PE must wait  until τ≤min{τnn} 

Dynamics of a thin magnetic film 

l > 1                   Mixing RD+KPZ 



Implications for scalability 

 Simulation phase: scalable  

 Measurement (data management) phase: not scalable  

〈u〉∞ asymptotic average rate of progress of the 
simulation (utilization ) is non-zero  

Virtual Time Horizon belongs to KPZ universality class 

 GREAT News -----------  Bad News 

〈u〉 = 〈u〉∞ + const/NPE  

Rough Times! 



How to make the measurement 
phase scalable as well? 

Greenberg et.al., ’96 
“Mean-field” like approximation to model the evolution  of the time 
horizon (K-random interaction) 
K=2: each PE randomly chooses two others, r and r’ 

 Controlling the width 

 Width is finite in this mean-field model when L→∞ 
 〈u〉L ~ 1/(K+1) is nonzero 



Annealed (or quenched) random connections 

KPZ surface: 

Slopes are still short-range correlated: non-zero 〈u〉 



small-world-like connections: 
used with probability p>0 

regular lattice (ring) topology 
(“p=0”) 



Steady-state “height” structure factors 

(d=1) 

only short-range connections (KPZ) + random connections (relaxation) 



Quenched random (Small World) 
connections 

Slopes are still short-range correlated: non-zero 〈u〉 



PDES Summary and outlook 
•  Simple surface-growth model very useful 
•  The tools and methods of non-

equilibrium statistical physics (coarse-
graining, finite-size scaling, universality, 
etc.) can be applied to scalability 
modeling and algorithm engineering 

•  Conservative schemes can be made 
perfectly scalable (ALL short-ranged PDES) 
•  Computational phase always scalable (KPZ universality) 
•  Communication phase scalable with small-world network 



Fully Scalable Computer Architectures 
Main Paper 

Shows ALL parallel discrete event simulations that are short-
ranged can be made to be perfectly scalable on the correct 
computer architecture. 

US Patent 

6,996,504 

Issued Feb. 7, 2006 

Novotny & Korniss 

Large Paper 

Guclu et al, PRE 2006 



 Discussion 

  Neither software nor hardware nor algorithms alone 
will lead to (non-trivial) perfect scalability 

  Without use of statistical mechanics, parallel 
computing will never be efficient/scalable 

  Similar ideas apply to (non-trivial) cloud computing 

  Similar ideas for sensor networks 

  Similar ideas for databases and searches 

 Similar ideas for fault-tolerant computing 
  Similar ideas can be used to design new materials 

and devices with novel properties 

and Provocations 
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