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 Discrete quantum system can be thermalized by a finite bath 
 Glemer and Michel, Europhysics Letters 2006 

  Prove reaching equilibrium is a universal property of quantum 
systems: almost any subsystem in interaction with a large enough bath 
will reach an equilibrium state and remain close to it for almost all times 

  Linden, Popescu, Short, Winger, PRE 2009 
  For sufficiently large times the ensemble is for all practical purpose 
indistinguishable from a canonical density operator 

 Reimann, New J. Physics 2010 
  Different processes coupled to the same noise source can have 
different decoherence rates (stronger noise can have faster decoherence) 

 Zhao, Wang, Liu, Phys. Rev. Lett. 2011 
  As long as finite bath drives system toward a quantum-typicality state, 
decoherence for spin ½ bath goes as σ≈2-Nbath/2 

 Jin, De Raedt, Novotny, Michielsen, Miyashita, to be submitted 
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Locking electron spins into magnetic resonance 
by electron-nuclear feedback 

Ivo T Vink, Katja C Nowack, Frank H L Koppens, Jeroen Danon, Yuli V Nazarov 
and Lieven M K Vandersypen Nat Phys 5(10):764-768 (2009) 
 
Quantum information processing requires accurate coherent control of 
quantum-mechanical two-level systems, but is hampered in practice by their 
coupling to an uncontrolled environment. For electron spins in III–V quantum 
dots, the random environment is mostly given by the nuclear spins in the 
quantum-dot host material; they collectively act on the electron spin through 
the hyperfine interaction, much like a random magnetic field. Here we show that 
the same hyperfine interaction can be harnessed such that partial control of the 
normally uncontrolled environment becomes possible. In particular, we observe 
that the electron-spin-resonance frequency remains locked to the frequency of 
an applied microwave magnetic field, even when the external magnetic field or 
the excitation frequency are changed. The nuclear field thereby adjusts itself 
such that the electron-spin-resonance condition remains satisfied. General 
theoretical arguments indicate that this spin-resonance locking might be 
accompanied by a significant reduction of the randomness in the nuclear field. 
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obtained from the canonical distribution of the environment
at the inverse temperature !. Note that in practice, it is often
sufficient to consider only one random state j!Ei (see
Appendix).

The assumption of random phases in the initial state has
been instrumental in the derivation of the quantum master
equation,38,39) a key equation in the theory of non-equi-
librium statistical mechanics. Within the quantum master
equation approach, the approach to equilbrium of a quantum
system is well understood.1,39) Although there may be an
apparent similarity with the use of the random initial states
that we use in the present work, there is no relation between
the random initial states and the random phase assumption in
the derivation of the master equation. In the present work,
random initial states are a convenient computational device
only: As we show in the Appendix, their use effectively
eliminates the need to compute traces of operators and
allows us to work with pure states only. Below, we also
demonstrate explicitly that the use of random initial states
is not essential for the main conclusions of this paper by
starting the simulation from the initial state with all spins up.

2.3 Time evolution
A pure state of the composite system Sþ E evolves in

time according to (in units of h" ¼ 1)

j#ðtÞi ¼ e%itH j#ð0Þi ¼
XDS

i¼1

XDE

p¼1

cði; p; tÞji; pi; ð6Þ

where the states fji; pig are just another notation of the
complete set of orthonormal states in the spin-up–spin-down
basis and DS ¼ 2nS and DE ¼ 2nE denote the dimension of
the Hilbert space of the system and environment, respec-
tively.

Numerically, the real-time propagation by e%itH is carried
out by means of the Chebyshev polynomial algorithm,33–36)

thereby solving the TDSE for the composite system starting
from the initial state j#ð0Þi. This algorithm yields results
that are very accurate (close to machine precision), in-
dependent of the time step used.40)

2.4 Reduced density matrix
The state of the quantum system S is described by the

reduced density matrix

e""ðtÞ & TrE "ðtÞ; ð7Þ

where "ðtÞ is the density matrix of the composite system at
time t and TrE denotes the trace over the degrees of freedom
of the environment. The system S is in the canonical state if
the reduced density matrix takes the form

b""ð!Þ &
e%!HS

TrS e%!HS
; ð8Þ

where TrS denotes the trace over the degrees of freedom of
the system S. In terms of the expansion coefficients cði; p; tÞ,
the matrix element ði; jÞ of the reduced density matrix reads

e""i; jðtÞ ¼ TrE
XDE

p¼1

XDE

q¼1

c'ði; q; tÞcð j; p; tÞjj; pihi; qj

¼
XDE

p¼1

c'ði; p; tÞcð j; p; tÞ: ð9Þ

2.5 Data analysis
We analyze the time-dependent data of the reduced

density matrix in various ways. First, at each time step
(in units of # ¼ $=10), we diagonalize the (non-negative
definite) reduced density matrix itself and study the time-
dependence of its eigenvalues. We define the variance of the
set of eigenvalues at t and tf by

varðtÞ &

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
XDS

i¼1

½%iðtÞ % %iðtfÞ)2

vuut ; ð10Þ

where %iðtÞ is the ith eigenvalue of e""ðtÞ. Usually, tf is taken
to be the final time of the simulation. From the eigenvalues,
we also compute the entropy of the system

SðtÞ & %Tre""ðtÞ lne""ðtÞ ¼ %
XDS

i¼1

%iðtÞ ln %iðtÞ: ð11Þ

We characterize the degree of decoherence of the
system by

&ðtÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
XDS%1

i¼1

XDS

j¼iþ1

je""ijðtÞj2
vuut ; ð12Þ

where e""ijðtÞ is the matrix element ði; jÞ of the reduced density
matrix e"" in the representation that diagonalizes HS. Clearly,
&ðtÞ is a global measure for the size of the off-diagonal terms
of the reduced density matrix in the representation that
diagonalizes HS. If &ðtÞ ¼ 0 the system is in a state of
full decoherence (relative to the representation that diago-
nalizes HS).
Assuming that the system S, evolving in time ac-

cording to the TDSE, relaxes to the canonical state we
expect that e""ðtÞ * b""ðbÞ for t > t0 where t0 is some
finite time and b denotes the effective inverse tempera-
ture of S. The difference between the state e""ðtÞ and the
canonical distribution b""ðbðtÞÞ is conveniently character-
ized by

'ðtÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
XDS

i¼1

e""iiðtÞ %
e%bðtÞEi

XDS

i¼1

e%bðtÞEi

0

BB@

1

CCA

2

vuuuuut
; ð13Þ

with

bðtÞ ¼

X

i<j;Ei 6¼Ej

½lne""iiðtÞ % lne""jjðtÞ)=ðEj % EiÞ

X

i<j;Ei 6¼Ej

1
: ð14Þ

If the system relaxes to its canonical distribution both 'ðtÞ
and &ðtÞ are expected to vanish, bðtÞ converging to the
effective inverse temperature b.

For any function f ð+Þ of the system Hamiltonian HS, we
define the averages

h f ðHSÞi ~""ðtÞ & Tre""ðtÞ f ðHSÞ; ð15Þ

h f ðHSÞib &
Tr e%bHS f ðHSÞ

Tr e%bHS
: ð16Þ

Then, application of the Schwarz inequality yields

jh f ðHSÞi ~""ðtÞ % h f ðHSÞibj
2 , '2ðtÞTr f 2ðHSÞ; ð17Þ

J. Phys. Soc. Jpn., Vol. 79, No. 12 F. JIN et al.

124005-3

Person-to-person distribution by the author only. Not permitted for publication for institutional repositories or on personal Web sites.

obtained from the canonical distribution of the environment
at the inverse temperature !. Note that in practice, it is often
sufficient to consider only one random state j!Ei (see
Appendix).

The assumption of random phases in the initial state has
been instrumental in the derivation of the quantum master
equation,38,39) a key equation in the theory of non-equi-
librium statistical mechanics. Within the quantum master
equation approach, the approach to equilbrium of a quantum
system is well understood.1,39) Although there may be an
apparent similarity with the use of the random initial states
that we use in the present work, there is no relation between
the random initial states and the random phase assumption in
the derivation of the master equation. In the present work,
random initial states are a convenient computational device
only: As we show in the Appendix, their use effectively
eliminates the need to compute traces of operators and
allows us to work with pure states only. Below, we also
demonstrate explicitly that the use of random initial states
is not essential for the main conclusions of this paper by
starting the simulation from the initial state with all spins up.

2.3 Time evolution
A pure state of the composite system Sþ E evolves in

time according to (in units of h" ¼ 1)

j#ðtÞi ¼ e%itH j#ð0Þi ¼
XDS

i¼1

XDE

p¼1

cði; p; tÞji; pi; ð6Þ

where the states fji; pig are just another notation of the
complete set of orthonormal states in the spin-up–spin-down
basis and DS ¼ 2nS and DE ¼ 2nE denote the dimension of
the Hilbert space of the system and environment, respec-
tively.

Numerically, the real-time propagation by e%itH is carried
out by means of the Chebyshev polynomial algorithm,33–36)

thereby solving the TDSE for the composite system starting
from the initial state j#ð0Þi. This algorithm yields results
that are very accurate (close to machine precision), in-
dependent of the time step used.40)

2.4 Reduced density matrix
The state of the quantum system S is described by the

reduced density matrix

e""ðtÞ & TrE "ðtÞ; ð7Þ

where "ðtÞ is the density matrix of the composite system at
time t and TrE denotes the trace over the degrees of freedom
of the environment. The system S is in the canonical state if
the reduced density matrix takes the form

b""ð!Þ &
e%!HS

TrS e%!HS
; ð8Þ

where TrS denotes the trace over the degrees of freedom of
the system S. In terms of the expansion coefficients cði; p; tÞ,
the matrix element ði; jÞ of the reduced density matrix reads

e""i; jðtÞ ¼ TrE
XDE

p¼1

XDE

q¼1

c'ði; q; tÞcð j; p; tÞjj; pihi; qj

¼
XDE

p¼1

c'ði; p; tÞcð j; p; tÞ: ð9Þ

2.5 Data analysis
We analyze the time-dependent data of the reduced

density matrix in various ways. First, at each time step
(in units of # ¼ $=10), we diagonalize the (non-negative
definite) reduced density matrix itself and study the time-
dependence of its eigenvalues. We define the variance of the
set of eigenvalues at t and tf by

varðtÞ &

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
XDS

i¼1

½%iðtÞ % %iðtfÞ)2

vuut ; ð10Þ

where %iðtÞ is the ith eigenvalue of e""ðtÞ. Usually, tf is taken
to be the final time of the simulation. From the eigenvalues,
we also compute the entropy of the system

SðtÞ & %Tre""ðtÞ lne""ðtÞ ¼ %
XDS

i¼1

%iðtÞ ln %iðtÞ: ð11Þ

We characterize the degree of decoherence of the
system by

&ðtÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
XDS%1

i¼1

XDS

j¼iþ1

je""ijðtÞj2
vuut ; ð12Þ

where e""ijðtÞ is the matrix element ði; jÞ of the reduced density
matrix e"" in the representation that diagonalizes HS. Clearly,
&ðtÞ is a global measure for the size of the off-diagonal terms
of the reduced density matrix in the representation that
diagonalizes HS. If &ðtÞ ¼ 0 the system is in a state of
full decoherence (relative to the representation that diago-
nalizes HS).
Assuming that the system S, evolving in time ac-

cording to the TDSE, relaxes to the canonical state we
expect that e""ðtÞ * b""ðbÞ for t > t0 where t0 is some
finite time and b denotes the effective inverse tempera-
ture of S. The difference between the state e""ðtÞ and the
canonical distribution b""ðbðtÞÞ is conveniently character-
ized by

'ðtÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
XDS

i¼1

e""iiðtÞ %
e%bðtÞEi

XDS

i¼1

e%bðtÞEi

0

BB@

1

CCA

2

vuuuuut
; ð13Þ

with

bðtÞ ¼

X

i<j;Ei 6¼Ej

½lne""iiðtÞ % lne""jjðtÞ)=ðEj % EiÞ

X

i<j;Ei 6¼Ej

1
: ð14Þ

If the system relaxes to its canonical distribution both 'ðtÞ
and &ðtÞ are expected to vanish, bðtÞ converging to the
effective inverse temperature b.

For any function f ð+Þ of the system Hamiltonian HS, we
define the averages

h f ðHSÞi ~""ðtÞ & Tre""ðtÞ f ðHSÞ; ð15Þ

h f ðHSÞib &
Tr e%bHS f ðHSÞ

Tr e%bHS
: ð16Þ

Then, application of the Schwarz inequality yields

jh f ðHSÞi ~""ðtÞ % h f ðHSÞibj
2 , '2ðtÞTr f 2ðHSÞ; ð17Þ

J. Phys. Soc. Jpn., Vol. 79, No. 12 F. JIN et al.

124005-3



M spins  
spin bath (N)  

2 difficulties: 
①  Minus sign problem (phase) 
②   Size of matrix 2M+N  

Person-to-person distribution by the author only. Not permitted for publication for institutional repositories or on personal Web sites.

obtained from the canonical distribution of the environment
at the inverse temperature !. Note that in practice, it is often
sufficient to consider only one random state j!Ei (see
Appendix).

The assumption of random phases in the initial state has
been instrumental in the derivation of the quantum master
equation,38,39) a key equation in the theory of non-equi-
librium statistical mechanics. Within the quantum master
equation approach, the approach to equilbrium of a quantum
system is well understood.1,39) Although there may be an
apparent similarity with the use of the random initial states
that we use in the present work, there is no relation between
the random initial states and the random phase assumption in
the derivation of the master equation. In the present work,
random initial states are a convenient computational device
only: As we show in the Appendix, their use effectively
eliminates the need to compute traces of operators and
allows us to work with pure states only. Below, we also
demonstrate explicitly that the use of random initial states
is not essential for the main conclusions of this paper by
starting the simulation from the initial state with all spins up.

2.3 Time evolution
A pure state of the composite system Sþ E evolves in

time according to (in units of h" ¼ 1)

j#ðtÞi ¼ e%itH j#ð0Þi ¼
XDS

i¼1

XDE

p¼1

cði; p; tÞji; pi; ð6Þ

where the states fji; pig are just another notation of the
complete set of orthonormal states in the spin-up–spin-down
basis and DS ¼ 2nS and DE ¼ 2nE denote the dimension of
the Hilbert space of the system and environment, respec-
tively.

Numerically, the real-time propagation by e%itH is carried
out by means of the Chebyshev polynomial algorithm,33–36)

thereby solving the TDSE for the composite system starting
from the initial state j#ð0Þi. This algorithm yields results
that are very accurate (close to machine precision), in-
dependent of the time step used.40)

2.4 Reduced density matrix
The state of the quantum system S is described by the

reduced density matrix

e""ðtÞ & TrE "ðtÞ; ð7Þ

where "ðtÞ is the density matrix of the composite system at
time t and TrE denotes the trace over the degrees of freedom
of the environment. The system S is in the canonical state if
the reduced density matrix takes the form

b""ð!Þ &
e%!HS

TrS e%!HS
; ð8Þ

where TrS denotes the trace over the degrees of freedom of
the system S. In terms of the expansion coefficients cði; p; tÞ,
the matrix element ði; jÞ of the reduced density matrix reads

e""i; jðtÞ ¼ TrE
XDE

p¼1

XDE

q¼1

c'ði; q; tÞcð j; p; tÞjj; pihi; qj

¼
XDE

p¼1

c'ði; p; tÞcð j; p; tÞ: ð9Þ

2.5 Data analysis
We analyze the time-dependent data of the reduced

density matrix in various ways. First, at each time step
(in units of # ¼ $=10), we diagonalize the (non-negative
definite) reduced density matrix itself and study the time-
dependence of its eigenvalues. We define the variance of the
set of eigenvalues at t and tf by

varðtÞ &

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
XDS

i¼1

½%iðtÞ % %iðtfÞ)2

vuut ; ð10Þ

where %iðtÞ is the ith eigenvalue of e""ðtÞ. Usually, tf is taken
to be the final time of the simulation. From the eigenvalues,
we also compute the entropy of the system

SðtÞ & %Tre""ðtÞ lne""ðtÞ ¼ %
XDS

i¼1

%iðtÞ ln %iðtÞ: ð11Þ

We characterize the degree of decoherence of the
system by

&ðtÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
XDS%1

i¼1

XDS

j¼iþ1

je""ijðtÞj2
vuut ; ð12Þ

where e""ijðtÞ is the matrix element ði; jÞ of the reduced density
matrix e"" in the representation that diagonalizes HS. Clearly,
&ðtÞ is a global measure for the size of the off-diagonal terms
of the reduced density matrix in the representation that
diagonalizes HS. If &ðtÞ ¼ 0 the system is in a state of
full decoherence (relative to the representation that diago-
nalizes HS).
Assuming that the system S, evolving in time ac-

cording to the TDSE, relaxes to the canonical state we
expect that e""ðtÞ * b""ðbÞ for t > t0 where t0 is some
finite time and b denotes the effective inverse tempera-
ture of S. The difference between the state e""ðtÞ and the
canonical distribution b""ðbðtÞÞ is conveniently character-
ized by

'ðtÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
XDS

i¼1

e""iiðtÞ %
e%bðtÞEi

XDS

i¼1

e%bðtÞEi

0

BB@

1

CCA

2

vuuuuut
; ð13Þ

with

bðtÞ ¼

X

i<j;Ei 6¼Ej

½lne""iiðtÞ % lne""jjðtÞ)=ðEj % EiÞ

X

i<j;Ei 6¼Ej

1
: ð14Þ

If the system relaxes to its canonical distribution both 'ðtÞ
and &ðtÞ are expected to vanish, bðtÞ converging to the
effective inverse temperature b.

For any function f ð+Þ of the system Hamiltonian HS, we
define the averages

h f ðHSÞi ~""ðtÞ & Tre""ðtÞ f ðHSÞ; ð15Þ

h f ðHSÞib &
Tr e%bHS f ðHSÞ

Tr e%bHS
: ð16Þ

Then, application of the Schwarz inequality yields

jh f ðHSÞi ~""ðtÞ % h f ðHSÞibj
2 , '2ðtÞTr f 2ðHSÞ; ð17Þ

J. Phys. Soc. Jpn., Vol. 79, No. 12 F. JIN et al.

124005-3

Person-to-person distribution by the author only. Not permitted for publication for institutional repositories or on personal Web sites.

obtained from the canonical distribution of the environment
at the inverse temperature !. Note that in practice, it is often
sufficient to consider only one random state j!Ei (see
Appendix).

The assumption of random phases in the initial state has
been instrumental in the derivation of the quantum master
equation,38,39) a key equation in the theory of non-equi-
librium statistical mechanics. Within the quantum master
equation approach, the approach to equilbrium of a quantum
system is well understood.1,39) Although there may be an
apparent similarity with the use of the random initial states
that we use in the present work, there is no relation between
the random initial states and the random phase assumption in
the derivation of the master equation. In the present work,
random initial states are a convenient computational device
only: As we show in the Appendix, their use effectively
eliminates the need to compute traces of operators and
allows us to work with pure states only. Below, we also
demonstrate explicitly that the use of random initial states
is not essential for the main conclusions of this paper by
starting the simulation from the initial state with all spins up.

2.3 Time evolution
A pure state of the composite system Sþ E evolves in

time according to (in units of h" ¼ 1)

j#ðtÞi ¼ e%itH j#ð0Þi ¼
XDS

i¼1

XDE

p¼1

cði; p; tÞji; pi; ð6Þ

where the states fji; pig are just another notation of the
complete set of orthonormal states in the spin-up–spin-down
basis and DS ¼ 2nS and DE ¼ 2nE denote the dimension of
the Hilbert space of the system and environment, respec-
tively.

Numerically, the real-time propagation by e%itH is carried
out by means of the Chebyshev polynomial algorithm,33–36)

thereby solving the TDSE for the composite system starting
from the initial state j#ð0Þi. This algorithm yields results
that are very accurate (close to machine precision), in-
dependent of the time step used.40)

2.4 Reduced density matrix
The state of the quantum system S is described by the

reduced density matrix

e""ðtÞ & TrE "ðtÞ; ð7Þ

where "ðtÞ is the density matrix of the composite system at
time t and TrE denotes the trace over the degrees of freedom
of the environment. The system S is in the canonical state if
the reduced density matrix takes the form

b""ð!Þ &
e%!HS

TrS e%!HS
; ð8Þ

where TrS denotes the trace over the degrees of freedom of
the system S. In terms of the expansion coefficients cði; p; tÞ,
the matrix element ði; jÞ of the reduced density matrix reads

e""i; jðtÞ ¼ TrE
XDE

p¼1

XDE

q¼1

c'ði; q; tÞcð j; p; tÞjj; pihi; qj

¼
XDE

p¼1

c'ði; p; tÞcð j; p; tÞ: ð9Þ

2.5 Data analysis
We analyze the time-dependent data of the reduced

density matrix in various ways. First, at each time step
(in units of # ¼ $=10), we diagonalize the (non-negative
definite) reduced density matrix itself and study the time-
dependence of its eigenvalues. We define the variance of the
set of eigenvalues at t and tf by

varðtÞ &

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
XDS

i¼1

½%iðtÞ % %iðtfÞ)2

vuut ; ð10Þ

where %iðtÞ is the ith eigenvalue of e""ðtÞ. Usually, tf is taken
to be the final time of the simulation. From the eigenvalues,
we also compute the entropy of the system

SðtÞ & %Tre""ðtÞ lne""ðtÞ ¼ %
XDS

i¼1

%iðtÞ ln %iðtÞ: ð11Þ

We characterize the degree of decoherence of the
system by

&ðtÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
XDS%1

i¼1

XDS

j¼iþ1

je""ijðtÞj2
vuut ; ð12Þ

where e""ijðtÞ is the matrix element ði; jÞ of the reduced density
matrix e"" in the representation that diagonalizes HS. Clearly,
&ðtÞ is a global measure for the size of the off-diagonal terms
of the reduced density matrix in the representation that
diagonalizes HS. If &ðtÞ ¼ 0 the system is in a state of
full decoherence (relative to the representation that diago-
nalizes HS).
Assuming that the system S, evolving in time ac-

cording to the TDSE, relaxes to the canonical state we
expect that e""ðtÞ * b""ðbÞ for t > t0 where t0 is some
finite time and b denotes the effective inverse tempera-
ture of S. The difference between the state e""ðtÞ and the
canonical distribution b""ðbðtÞÞ is conveniently character-
ized by

'ðtÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
XDS

i¼1

e""iiðtÞ %
e%bðtÞEi

XDS

i¼1

e%bðtÞEi

0

BB@

1

CCA

2

vuuuuut
; ð13Þ

with

bðtÞ ¼

X

i<j;Ei 6¼Ej

½lne""iiðtÞ % lne""jjðtÞ)=ðEj % EiÞ

X

i<j;Ei 6¼Ej

1
: ð14Þ

If the system relaxes to its canonical distribution both 'ðtÞ
and &ðtÞ are expected to vanish, bðtÞ converging to the
effective inverse temperature b.

For any function f ð+Þ of the system Hamiltonian HS, we
define the averages

h f ðHSÞi ~""ðtÞ & Tre""ðtÞ f ðHSÞ; ð15Þ

h f ðHSÞib &
Tr e%bHS f ðHSÞ

Tr e%bHS
: ð16Þ

Then, application of the Schwarz inequality yields

jh f ðHSÞi ~""ðtÞ % h f ðHSÞibj
2 , '2ðtÞTr f 2ðHSÞ; ð17Þ
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obtained from the canonical distribution of the environment
at the inverse temperature !. Note that in practice, it is often
sufficient to consider only one random state j!Ei (see
Appendix).

The assumption of random phases in the initial state has
been instrumental in the derivation of the quantum master
equation,38,39) a key equation in the theory of non-equi-
librium statistical mechanics. Within the quantum master
equation approach, the approach to equilbrium of a quantum
system is well understood.1,39) Although there may be an
apparent similarity with the use of the random initial states
that we use in the present work, there is no relation between
the random initial states and the random phase assumption in
the derivation of the master equation. In the present work,
random initial states are a convenient computational device
only: As we show in the Appendix, their use effectively
eliminates the need to compute traces of operators and
allows us to work with pure states only. Below, we also
demonstrate explicitly that the use of random initial states
is not essential for the main conclusions of this paper by
starting the simulation from the initial state with all spins up.

2.3 Time evolution
A pure state of the composite system Sþ E evolves in

time according to (in units of h" ¼ 1)

j#ðtÞi ¼ e%itH j#ð0Þi ¼
XDS

i¼1

XDE

p¼1

cði; p; tÞji; pi; ð6Þ

where the states fji; pig are just another notation of the
complete set of orthonormal states in the spin-up–spin-down
basis and DS ¼ 2nS and DE ¼ 2nE denote the dimension of
the Hilbert space of the system and environment, respec-
tively.

Numerically, the real-time propagation by e%itH is carried
out by means of the Chebyshev polynomial algorithm,33–36)

thereby solving the TDSE for the composite system starting
from the initial state j#ð0Þi. This algorithm yields results
that are very accurate (close to machine precision), in-
dependent of the time step used.40)

2.4 Reduced density matrix
The state of the quantum system S is described by the

reduced density matrix

e""ðtÞ & TrE "ðtÞ; ð7Þ

where "ðtÞ is the density matrix of the composite system at
time t and TrE denotes the trace over the degrees of freedom
of the environment. The system S is in the canonical state if
the reduced density matrix takes the form

b""ð!Þ &
e%!HS

TrS e%!HS
; ð8Þ

where TrS denotes the trace over the degrees of freedom of
the system S. In terms of the expansion coefficients cði; p; tÞ,
the matrix element ði; jÞ of the reduced density matrix reads

e""i; jðtÞ ¼ TrE
XDE

p¼1

XDE

q¼1

c'ði; q; tÞcð j; p; tÞjj; pihi; qj

¼
XDE

p¼1

c'ði; p; tÞcð j; p; tÞ: ð9Þ

2.5 Data analysis
We analyze the time-dependent data of the reduced

density matrix in various ways. First, at each time step
(in units of # ¼ $=10), we diagonalize the (non-negative
definite) reduced density matrix itself and study the time-
dependence of its eigenvalues. We define the variance of the
set of eigenvalues at t and tf by

varðtÞ &

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
XDS

i¼1

½%iðtÞ % %iðtfÞ)2

vuut ; ð10Þ

where %iðtÞ is the ith eigenvalue of e""ðtÞ. Usually, tf is taken
to be the final time of the simulation. From the eigenvalues,
we also compute the entropy of the system

SðtÞ & %Tre""ðtÞ lne""ðtÞ ¼ %
XDS

i¼1

%iðtÞ ln %iðtÞ: ð11Þ

We characterize the degree of decoherence of the
system by

&ðtÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
XDS%1

i¼1

XDS

j¼iþ1

je""ijðtÞj2
vuut ; ð12Þ

where e""ijðtÞ is the matrix element ði; jÞ of the reduced density
matrix e"" in the representation that diagonalizes HS. Clearly,
&ðtÞ is a global measure for the size of the off-diagonal terms
of the reduced density matrix in the representation that
diagonalizes HS. If &ðtÞ ¼ 0 the system is in a state of
full decoherence (relative to the representation that diago-
nalizes HS).
Assuming that the system S, evolving in time ac-

cording to the TDSE, relaxes to the canonical state we
expect that e""ðtÞ * b""ðbÞ for t > t0 where t0 is some
finite time and b denotes the effective inverse tempera-
ture of S. The difference between the state e""ðtÞ and the
canonical distribution b""ðbðtÞÞ is conveniently character-
ized by

'ðtÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
XDS

i¼1

e""iiðtÞ %
e%bðtÞEi

XDS

i¼1

e%bðtÞEi

0

BB@

1

CCA

2

vuuuuut
; ð13Þ

with

bðtÞ ¼

X

i<j;Ei 6¼Ej

½lne""iiðtÞ % lne""jjðtÞ)=ðEj % EiÞ

X

i<j;Ei 6¼Ej

1
: ð14Þ

If the system relaxes to its canonical distribution both 'ðtÞ
and &ðtÞ are expected to vanish, bðtÞ converging to the
effective inverse temperature b.

For any function f ð+Þ of the system Hamiltonian HS, we
define the averages

h f ðHSÞi ~""ðtÞ & Tre""ðtÞ f ðHSÞ; ð15Þ

h f ðHSÞib &
Tr e%bHS f ðHSÞ

Tr e%bHS
: ð16Þ

Then, application of the Schwarz inequality yields

jh f ðHSÞi ~""ðtÞ % h f ðHSÞibj
2 , '2ðtÞTr f 2ðHSÞ; ð17Þ
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obtained from the canonical distribution of the environment
at the inverse temperature !. Note that in practice, it is often
sufficient to consider only one random state j!Ei (see
Appendix).

The assumption of random phases in the initial state has
been instrumental in the derivation of the quantum master
equation,38,39) a key equation in the theory of non-equi-
librium statistical mechanics. Within the quantum master
equation approach, the approach to equilbrium of a quantum
system is well understood.1,39) Although there may be an
apparent similarity with the use of the random initial states
that we use in the present work, there is no relation between
the random initial states and the random phase assumption in
the derivation of the master equation. In the present work,
random initial states are a convenient computational device
only: As we show in the Appendix, their use effectively
eliminates the need to compute traces of operators and
allows us to work with pure states only. Below, we also
demonstrate explicitly that the use of random initial states
is not essential for the main conclusions of this paper by
starting the simulation from the initial state with all spins up.

2.3 Time evolution
A pure state of the composite system Sþ E evolves in

time according to (in units of h" ¼ 1)

j#ðtÞi ¼ e%itH j#ð0Þi ¼
XDS

i¼1

XDE

p¼1

cði; p; tÞji; pi; ð6Þ

where the states fji; pig are just another notation of the
complete set of orthonormal states in the spin-up–spin-down
basis and DS ¼ 2nS and DE ¼ 2nE denote the dimension of
the Hilbert space of the system and environment, respec-
tively.

Numerically, the real-time propagation by e%itH is carried
out by means of the Chebyshev polynomial algorithm,33–36)

thereby solving the TDSE for the composite system starting
from the initial state j#ð0Þi. This algorithm yields results
that are very accurate (close to machine precision), in-
dependent of the time step used.40)

2.4 Reduced density matrix
The state of the quantum system S is described by the

reduced density matrix

e""ðtÞ & TrE "ðtÞ; ð7Þ

where "ðtÞ is the density matrix of the composite system at
time t and TrE denotes the trace over the degrees of freedom
of the environment. The system S is in the canonical state if
the reduced density matrix takes the form

b""ð!Þ &
e%!HS

TrS e%!HS
; ð8Þ

where TrS denotes the trace over the degrees of freedom of
the system S. In terms of the expansion coefficients cði; p; tÞ,
the matrix element ði; jÞ of the reduced density matrix reads

e""i; jðtÞ ¼ TrE
XDE

p¼1

XDE

q¼1

c'ði; q; tÞcð j; p; tÞjj; pihi; qj

¼
XDE

p¼1

c'ði; p; tÞcð j; p; tÞ: ð9Þ

2.5 Data analysis
We analyze the time-dependent data of the reduced

density matrix in various ways. First, at each time step
(in units of # ¼ $=10), we diagonalize the (non-negative
definite) reduced density matrix itself and study the time-
dependence of its eigenvalues. We define the variance of the
set of eigenvalues at t and tf by

varðtÞ &

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
XDS

i¼1

½%iðtÞ % %iðtfÞ)2

vuut ; ð10Þ

where %iðtÞ is the ith eigenvalue of e""ðtÞ. Usually, tf is taken
to be the final time of the simulation. From the eigenvalues,
we also compute the entropy of the system

SðtÞ & %Tre""ðtÞ lne""ðtÞ ¼ %
XDS

i¼1

%iðtÞ ln %iðtÞ: ð11Þ

We characterize the degree of decoherence of the
system by

&ðtÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
XDS%1

i¼1

XDS

j¼iþ1

je""ijðtÞj2
vuut ; ð12Þ

where e""ijðtÞ is the matrix element ði; jÞ of the reduced density
matrix e"" in the representation that diagonalizes HS. Clearly,
&ðtÞ is a global measure for the size of the off-diagonal terms
of the reduced density matrix in the representation that
diagonalizes HS. If &ðtÞ ¼ 0 the system is in a state of
full decoherence (relative to the representation that diago-
nalizes HS).
Assuming that the system S, evolving in time ac-

cording to the TDSE, relaxes to the canonical state we
expect that e""ðtÞ * b""ðbÞ for t > t0 where t0 is some
finite time and b denotes the effective inverse tempera-
ture of S. The difference between the state e""ðtÞ and the
canonical distribution b""ðbðtÞÞ is conveniently character-
ized by

'ðtÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
XDS

i¼1

e""iiðtÞ %
e%bðtÞEi

XDS

i¼1

e%bðtÞEi

0

BB@

1

CCA

2

vuuuuut
; ð13Þ

with

bðtÞ ¼

X

i<j;Ei 6¼Ej

½lne""iiðtÞ % lne""jjðtÞ)=ðEj % EiÞ

X

i<j;Ei 6¼Ej

1
: ð14Þ

If the system relaxes to its canonical distribution both 'ðtÞ
and &ðtÞ are expected to vanish, bðtÞ converging to the
effective inverse temperature b.

For any function f ð+Þ of the system Hamiltonian HS, we
define the averages

h f ðHSÞi ~""ðtÞ & Tre""ðtÞ f ðHSÞ; ð15Þ

h f ðHSÞib &
Tr e%bHS f ðHSÞ

Tr e%bHS
: ð16Þ

Then, application of the Schwarz inequality yields

jh f ðHSÞi ~""ðtÞ % h f ðHSÞibj
2 , '2ðtÞTr f 2ðHSÞ; ð17Þ
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obtained from the canonical distribution of the environment
at the inverse temperature !. Note that in practice, it is often
sufficient to consider only one random state j!Ei (see
Appendix).

The assumption of random phases in the initial state has
been instrumental in the derivation of the quantum master
equation,38,39) a key equation in the theory of non-equi-
librium statistical mechanics. Within the quantum master
equation approach, the approach to equilbrium of a quantum
system is well understood.1,39) Although there may be an
apparent similarity with the use of the random initial states
that we use in the present work, there is no relation between
the random initial states and the random phase assumption in
the derivation of the master equation. In the present work,
random initial states are a convenient computational device
only: As we show in the Appendix, their use effectively
eliminates the need to compute traces of operators and
allows us to work with pure states only. Below, we also
demonstrate explicitly that the use of random initial states
is not essential for the main conclusions of this paper by
starting the simulation from the initial state with all spins up.

2.3 Time evolution
A pure state of the composite system Sþ E evolves in

time according to (in units of h" ¼ 1)

j#ðtÞi ¼ e%itH j#ð0Þi ¼
XDS

i¼1

XDE

p¼1

cði; p; tÞji; pi; ð6Þ

where the states fji; pig are just another notation of the
complete set of orthonormal states in the spin-up–spin-down
basis and DS ¼ 2nS and DE ¼ 2nE denote the dimension of
the Hilbert space of the system and environment, respec-
tively.

Numerically, the real-time propagation by e%itH is carried
out by means of the Chebyshev polynomial algorithm,33–36)

thereby solving the TDSE for the composite system starting
from the initial state j#ð0Þi. This algorithm yields results
that are very accurate (close to machine precision), in-
dependent of the time step used.40)

2.4 Reduced density matrix
The state of the quantum system S is described by the

reduced density matrix

e""ðtÞ & TrE "ðtÞ; ð7Þ

where "ðtÞ is the density matrix of the composite system at
time t and TrE denotes the trace over the degrees of freedom
of the environment. The system S is in the canonical state if
the reduced density matrix takes the form

b""ð!Þ &
e%!HS

TrS e%!HS
; ð8Þ

where TrS denotes the trace over the degrees of freedom of
the system S. In terms of the expansion coefficients cði; p; tÞ,
the matrix element ði; jÞ of the reduced density matrix reads

e""i; jðtÞ ¼ TrE
XDE

p¼1

XDE

q¼1

c'ði; q; tÞcð j; p; tÞjj; pihi; qj

¼
XDE

p¼1

c'ði; p; tÞcð j; p; tÞ: ð9Þ

2.5 Data analysis
We analyze the time-dependent data of the reduced

density matrix in various ways. First, at each time step
(in units of # ¼ $=10), we diagonalize the (non-negative
definite) reduced density matrix itself and study the time-
dependence of its eigenvalues. We define the variance of the
set of eigenvalues at t and tf by

varðtÞ &

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
XDS

i¼1

½%iðtÞ % %iðtfÞ)2

vuut ; ð10Þ

where %iðtÞ is the ith eigenvalue of e""ðtÞ. Usually, tf is taken
to be the final time of the simulation. From the eigenvalues,
we also compute the entropy of the system

SðtÞ & %Tre""ðtÞ lne""ðtÞ ¼ %
XDS

i¼1

%iðtÞ ln %iðtÞ: ð11Þ

We characterize the degree of decoherence of the
system by

&ðtÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
XDS%1

i¼1

XDS

j¼iþ1

je""ijðtÞj2
vuut ; ð12Þ

where e""ijðtÞ is the matrix element ði; jÞ of the reduced density
matrix e"" in the representation that diagonalizes HS. Clearly,
&ðtÞ is a global measure for the size of the off-diagonal terms
of the reduced density matrix in the representation that
diagonalizes HS. If &ðtÞ ¼ 0 the system is in a state of
full decoherence (relative to the representation that diago-
nalizes HS).
Assuming that the system S, evolving in time ac-

cording to the TDSE, relaxes to the canonical state we
expect that e""ðtÞ * b""ðbÞ for t > t0 where t0 is some
finite time and b denotes the effective inverse tempera-
ture of S. The difference between the state e""ðtÞ and the
canonical distribution b""ðbðtÞÞ is conveniently character-
ized by

'ðtÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
XDS

i¼1

e""iiðtÞ %
e%bðtÞEi

XDS

i¼1

e%bðtÞEi

0

BB@

1

CCA

2

vuuuuut
; ð13Þ

with

bðtÞ ¼

X

i<j;Ei 6¼Ej

½lne""iiðtÞ % lne""jjðtÞ)=ðEj % EiÞ

X

i<j;Ei 6¼Ej

1
: ð14Þ

If the system relaxes to its canonical distribution both 'ðtÞ
and &ðtÞ are expected to vanish, bðtÞ converging to the
effective inverse temperature b.

For any function f ð+Þ of the system Hamiltonian HS, we
define the averages

h f ðHSÞi ~""ðtÞ & Tre""ðtÞ f ðHSÞ; ð15Þ

h f ðHSÞib &
Tr e%bHS f ðHSÞ

Tr e%bHS
: ð16Þ

Then, application of the Schwarz inequality yields

jh f ðHSÞi ~""ðtÞ % h f ðHSÞibj
2 , '2ðtÞTr f 2ðHSÞ; ð17Þ
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obtained from the canonical distribution of the environment
at the inverse temperature !. Note that in practice, it is often
sufficient to consider only one random state j!Ei (see
Appendix).

The assumption of random phases in the initial state has
been instrumental in the derivation of the quantum master
equation,38,39) a key equation in the theory of non-equi-
librium statistical mechanics. Within the quantum master
equation approach, the approach to equilbrium of a quantum
system is well understood.1,39) Although there may be an
apparent similarity with the use of the random initial states
that we use in the present work, there is no relation between
the random initial states and the random phase assumption in
the derivation of the master equation. In the present work,
random initial states are a convenient computational device
only: As we show in the Appendix, their use effectively
eliminates the need to compute traces of operators and
allows us to work with pure states only. Below, we also
demonstrate explicitly that the use of random initial states
is not essential for the main conclusions of this paper by
starting the simulation from the initial state with all spins up.

2.3 Time evolution
A pure state of the composite system Sþ E evolves in

time according to (in units of h" ¼ 1)

j#ðtÞi ¼ e%itH j#ð0Þi ¼
XDS

i¼1

XDE

p¼1

cði; p; tÞji; pi; ð6Þ

where the states fji; pig are just another notation of the
complete set of orthonormal states in the spin-up–spin-down
basis and DS ¼ 2nS and DE ¼ 2nE denote the dimension of
the Hilbert space of the system and environment, respec-
tively.

Numerically, the real-time propagation by e%itH is carried
out by means of the Chebyshev polynomial algorithm,33–36)

thereby solving the TDSE for the composite system starting
from the initial state j#ð0Þi. This algorithm yields results
that are very accurate (close to machine precision), in-
dependent of the time step used.40)

2.4 Reduced density matrix
The state of the quantum system S is described by the

reduced density matrix

e""ðtÞ & TrE "ðtÞ; ð7Þ

where "ðtÞ is the density matrix of the composite system at
time t and TrE denotes the trace over the degrees of freedom
of the environment. The system S is in the canonical state if
the reduced density matrix takes the form

b""ð!Þ &
e%!HS

TrS e%!HS
; ð8Þ

where TrS denotes the trace over the degrees of freedom of
the system S. In terms of the expansion coefficients cði; p; tÞ,
the matrix element ði; jÞ of the reduced density matrix reads

e""i; jðtÞ ¼ TrE
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¼
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2.5 Data analysis
We analyze the time-dependent data of the reduced

density matrix in various ways. First, at each time step
(in units of # ¼ $=10), we diagonalize the (non-negative
definite) reduced density matrix itself and study the time-
dependence of its eigenvalues. We define the variance of the
set of eigenvalues at t and tf by
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where %iðtÞ is the ith eigenvalue of e""ðtÞ. Usually, tf is taken
to be the final time of the simulation. From the eigenvalues,
we also compute the entropy of the system
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%iðtÞ ln %iðtÞ: ð11Þ

We characterize the degree of decoherence of the
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where e""ijðtÞ is the matrix element ði; jÞ of the reduced density
matrix e"" in the representation that diagonalizes HS. Clearly,
&ðtÞ is a global measure for the size of the off-diagonal terms
of the reduced density matrix in the representation that
diagonalizes HS. If &ðtÞ ¼ 0 the system is in a state of
full decoherence (relative to the representation that diago-
nalizes HS).
Assuming that the system S, evolving in time ac-

cording to the TDSE, relaxes to the canonical state we
expect that e""ðtÞ * b""ðbÞ for t > t0 where t0 is some
finite time and b denotes the effective inverse tempera-
ture of S. The difference between the state e""ðtÞ and the
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ized by

'ðtÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
XDS

i¼1

e""iiðtÞ %
e%bðtÞEi

XDS

i¼1

e%bðtÞEi

0

BB@

1

CCA

2

vuuuuut
; ð13Þ

with

bðtÞ ¼

X

i<j;Ei 6¼Ej

½lne""iiðtÞ % lne""jjðtÞ)=ðEj % EiÞ

X

i<j;Ei 6¼Ej

1
: ð14Þ

If the system relaxes to its canonical distribution both 'ðtÞ
and &ðtÞ are expected to vanish, bðtÞ converging to the
effective inverse temperature b.

For any function f ð+Þ of the system Hamiltonian HS, we
define the averages

h f ðHSÞi ~""ðtÞ & Tre""ðtÞ f ðHSÞ; ð15Þ

h f ðHSÞib &
Tr e%bHS f ðHSÞ

Tr e%bHS
: ð16Þ

Then, application of the Schwarz inequality yields

jh f ðHSÞi ~""ðtÞ % h f ðHSÞibj
2 , '2ðtÞTr f 2ðHSÞ; ð17Þ
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obtained from the canonical distribution of the environment
at the inverse temperature !. Note that in practice, it is often
sufficient to consider only one random state j!Ei (see
Appendix).

The assumption of random phases in the initial state has
been instrumental in the derivation of the quantum master
equation,38,39) a key equation in the theory of non-equi-
librium statistical mechanics. Within the quantum master
equation approach, the approach to equilbrium of a quantum
system is well understood.1,39) Although there may be an
apparent similarity with the use of the random initial states
that we use in the present work, there is no relation between
the random initial states and the random phase assumption in
the derivation of the master equation. In the present work,
random initial states are a convenient computational device
only: As we show in the Appendix, their use effectively
eliminates the need to compute traces of operators and
allows us to work with pure states only. Below, we also
demonstrate explicitly that the use of random initial states
is not essential for the main conclusions of this paper by
starting the simulation from the initial state with all spins up.

2.3 Time evolution
A pure state of the composite system Sþ E evolves in

time according to (in units of h" ¼ 1)
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where the states fji; pig are just another notation of the
complete set of orthonormal states in the spin-up–spin-down
basis and DS ¼ 2nS and DE ¼ 2nE denote the dimension of
the Hilbert space of the system and environment, respec-
tively.

Numerically, the real-time propagation by e%itH is carried
out by means of the Chebyshev polynomial algorithm,33–36)

thereby solving the TDSE for the composite system starting
from the initial state j#ð0Þi. This algorithm yields results
that are very accurate (close to machine precision), in-
dependent of the time step used.40)

2.4 Reduced density matrix
The state of the quantum system S is described by the

reduced density matrix
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we also compute the entropy of the system
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where e""ijðtÞ is the matrix element ði; jÞ of the reduced density
matrix e"" in the representation that diagonalizes HS. Clearly,
&ðtÞ is a global measure for the size of the off-diagonal terms
of the reduced density matrix in the representation that
diagonalizes HS. If &ðtÞ ¼ 0 the system is in a state of
full decoherence (relative to the representation that diago-
nalizes HS).
Assuming that the system S, evolving in time ac-

cording to the TDSE, relaxes to the canonical state we
expect that e""ðtÞ * b""ðbÞ for t > t0 where t0 is some
finite time and b denotes the effective inverse tempera-
ture of S. The difference between the state e""ðtÞ and the
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ized by
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If the system relaxes to its canonical distribution both 'ðtÞ
and &ðtÞ are expected to vanish, bðtÞ converging to the
effective inverse temperature b.

For any function f ð+Þ of the system Hamiltonian HS, we
define the averages

h f ðHSÞi ~""ðtÞ & Tre""ðtÞ f ðHSÞ; ð15Þ
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at the inverse temperature !. Note that in practice, it is often
sufficient to consider only one random state j!Ei (see
Appendix).

The assumption of random phases in the initial state has
been instrumental in the derivation of the quantum master
equation,38,39) a key equation in the theory of non-equi-
librium statistical mechanics. Within the quantum master
equation approach, the approach to equilbrium of a quantum
system is well understood.1,39) Although there may be an
apparent similarity with the use of the random initial states
that we use in the present work, there is no relation between
the random initial states and the random phase assumption in
the derivation of the master equation. In the present work,
random initial states are a convenient computational device
only: As we show in the Appendix, their use effectively
eliminates the need to compute traces of operators and
allows us to work with pure states only. Below, we also
demonstrate explicitly that the use of random initial states
is not essential for the main conclusions of this paper by
starting the simulation from the initial state with all spins up.

2.3 Time evolution
A pure state of the composite system Sþ E evolves in
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where the states fji; pig are just another notation of the
complete set of orthonormal states in the spin-up–spin-down
basis and DS ¼ 2nS and DE ¼ 2nE denote the dimension of
the Hilbert space of the system and environment, respec-
tively.

Numerically, the real-time propagation by e%itH is carried
out by means of the Chebyshev polynomial algorithm,33–36)

thereby solving the TDSE for the composite system starting
from the initial state j#ð0Þi. This algorithm yields results
that are very accurate (close to machine precision), in-
dependent of the time step used.40)

2.4 Reduced density matrix
The state of the quantum system S is described by the

reduced density matrix

e""ðtÞ & TrE "ðtÞ; ð7Þ

where "ðtÞ is the density matrix of the composite system at
time t and TrE denotes the trace over the degrees of freedom
of the environment. The system S is in the canonical state if
the reduced density matrix takes the form

b""ð!Þ &
e%!HS

TrS e%!HS
; ð8Þ

where TrS denotes the trace over the degrees of freedom of
the system S. In terms of the expansion coefficients cði; p; tÞ,
the matrix element ði; jÞ of the reduced density matrix reads

e""i; jðtÞ ¼ TrE
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¼
XDE
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2.5 Data analysis
We analyze the time-dependent data of the reduced

density matrix in various ways. First, at each time step
(in units of # ¼ $=10), we diagonalize the (non-negative
definite) reduced density matrix itself and study the time-
dependence of its eigenvalues. We define the variance of the
set of eigenvalues at t and tf by
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where %iðtÞ is the ith eigenvalue of e""ðtÞ. Usually, tf is taken
to be the final time of the simulation. From the eigenvalues,
we also compute the entropy of the system

SðtÞ & %Tre""ðtÞ lne""ðtÞ ¼ %
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i¼1

%iðtÞ ln %iðtÞ: ð11Þ

We characterize the degree of decoherence of the
system by
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where e""ijðtÞ is the matrix element ði; jÞ of the reduced density
matrix e"" in the representation that diagonalizes HS. Clearly,
&ðtÞ is a global measure for the size of the off-diagonal terms
of the reduced density matrix in the representation that
diagonalizes HS. If &ðtÞ ¼ 0 the system is in a state of
full decoherence (relative to the representation that diago-
nalizes HS).
Assuming that the system S, evolving in time ac-

cording to the TDSE, relaxes to the canonical state we
expect that e""ðtÞ * b""ðbÞ for t > t0 where t0 is some
finite time and b denotes the effective inverse tempera-
ture of S. The difference between the state e""ðtÞ and the
canonical distribution b""ðbðtÞÞ is conveniently character-
ized by
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If the system relaxes to its canonical distribution both 'ðtÞ
and &ðtÞ are expected to vanish, bðtÞ converging to the
effective inverse temperature b.

For any function f ð+Þ of the system Hamiltonian HS, we
define the averages

h f ðHSÞi ~""ðtÞ & Tre""ðtÞ f ðHSÞ; ð15Þ
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obtained from the canonical distribution of the environment
at the inverse temperature !. Note that in practice, it is often
sufficient to consider only one random state j!Ei (see
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The assumption of random phases in the initial state has
been instrumental in the derivation of the quantum master
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librium statistical mechanics. Within the quantum master
equation approach, the approach to equilbrium of a quantum
system is well understood.1,39) Although there may be an
apparent similarity with the use of the random initial states
that we use in the present work, there is no relation between
the random initial states and the random phase assumption in
the derivation of the master equation. In the present work,
random initial states are a convenient computational device
only: As we show in the Appendix, their use effectively
eliminates the need to compute traces of operators and
allows us to work with pure states only. Below, we also
demonstrate explicitly that the use of random initial states
is not essential for the main conclusions of this paper by
starting the simulation from the initial state with all spins up.
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where the states fji; pig are just another notation of the
complete set of orthonormal states in the spin-up–spin-down
basis and DS ¼ 2nS and DE ¼ 2nE denote the dimension of
the Hilbert space of the system and environment, respec-
tively.

Numerically, the real-time propagation by e%itH is carried
out by means of the Chebyshev polynomial algorithm,33–36)

thereby solving the TDSE for the composite system starting
from the initial state j#ð0Þi. This algorithm yields results
that are very accurate (close to machine precision), in-
dependent of the time step used.40)

2.4 Reduced density matrix
The state of the quantum system S is described by the

reduced density matrix

e""ðtÞ & TrE "ðtÞ; ð7Þ

where "ðtÞ is the density matrix of the composite system at
time t and TrE denotes the trace over the degrees of freedom
of the environment. The system S is in the canonical state if
the reduced density matrix takes the form

b""ð!Þ &
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; ð8Þ

where TrS denotes the trace over the degrees of freedom of
the system S. In terms of the expansion coefficients cði; p; tÞ,
the matrix element ði; jÞ of the reduced density matrix reads

e""i; jðtÞ ¼ TrE
XDE

p¼1

XDE

q¼1

c'ði; q; tÞcð j; p; tÞjj; pihi; qj

¼
XDE

p¼1

c'ði; p; tÞcð j; p; tÞ: ð9Þ
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&ðtÞ is a global measure for the size of the off-diagonal terms
of the reduced density matrix in the representation that
diagonalizes HS. If &ðtÞ ¼ 0 the system is in a state of
full decoherence (relative to the representation that diago-
nalizes HS).
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define the averages

h f ðHSÞi ~""ðtÞ & Tre""ðtÞ f ðHSÞ; ð15Þ

h f ðHSÞib &
Tr e%bHS f ðHSÞ

Tr e%bHS
: ð16Þ

Then, application of the Schwarz inequality yields

jh f ðHSÞi ~""ðtÞ % h f ðHSÞibj
2 , '2ðtÞTr f 2ðHSÞ; ð17Þ

J. Phys. Soc. Jpn., Vol. 79, No. 12 F. JIN et al.

124005-3



1 10 100 1000 10000

t2  N

10 8

10 7

10 6

10 5

10 4

10 3

10 2

10 1

100

2P
(t)

1

Asymptotic = 16/ (t2 J2
2 N)2

Nx=300 X Bath ONLY
N=300
N= 90
N= 60



1 Byte = 8 Bits  
Exabyte = 260   

Petabyte = 250   

Terabyte = 240   

Gigabyte = 230   

Megabyte =220   

Kilobyte = 210   

Byte = 20   
Bit = 2-3   

0 1 2 3
   t

0.5

0.4

0.3

0.2

0.1

0

0.1

0.2

<S
0z >

N=  4
N=  8
N= 16
N= 32
N= 64
N=128
N=256




