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Defining the problem

• a disordered medium

• linear equations of motion: all eigenstates are Anderson localized

• add short range nonlinearity (interactions)

• follow the spreading of an initially localized wave packet 

Will it delocalize?
Yes because of nonintegrability and ergodicity

No because of energy conservation –

spreading leads to small energy density, 

nonlinearity can be neglected, 

dynamics becomes integrable, and 

Anderson localization is restored



Model 1: The discrete nonlinear Schrödinger Equation

uniformly from 

Conserved quantities: energy and norm 

Varying the norm is strictly equivalent to varying β

Equations model light propagation  and cold atom dynamics

in structured media



Model 2: The Klein-Gordon chain

Conserved quantity: energy only 

uniformly from 

Equations can be approximately mapped on model 1 for small amplitudes

Advantage:

• test sensitivity to norm conservation

• numerical integration 10 times faster at same precision



Back to model 1:

The linear case:

Stationary states:

Normal mode (NM) eigenvectors:

Eigenvalues:

Width of EV spectrum:

Asymptotic decay:

Localization volume of NM: V

V(W < 4) ≈ 3ξ V(W > 10) ≈ 1 

l

Localization length:



Equations in normal mode space:

NM ordering in real space:

Characterization of wavepackets in normal mode space:

Second moment:

Participation number:

Compactness index:

K adjacent sites equally excited:

K adjacent sites, every second empty

or equipartition:

location of tails

number of strongly excited modes



Frequency scales

• Eigenvalue (frequency) spectrum width:

• Localization volume of eigenstate:   V ≈ 360/W

• Average frequency spacing inside 

localization volume:    d = Δ/V

W=4 :

8

~18 (sites)

0.43

• Nonlinearity induced frequency shift:

Three expected evolution regimes:

Weak chaos                : δ < d

Strong chaos              : d < δ < 2

(partial) self trapping : 2 < δ

2



DNLS W=4, β= 0, 0.1, 1, 4.5 KG W=4, E= 0, 0.05, 0.4, 1.5

Results for single site excitations
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SF,Krimer,Skokos (2009)

Skokos,Krimer,Komineas,SF (2009)

Wavepacket spreads

way beyond localization

volume.

DNLS at



W=4

Wave packet with 20 sites

Norm density = 1

Random initial phases

Averaging over

1000 realizations 



W=4

Wave packet with 20 sites

Norm density = 1

Random initial phases

Averaging over

1000 realizations 



The emerging picture
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SF,Krimer,Skokos (2009)

Shepelyansky and Pikovsky (2008)

Molina (1998)

SF (2010)

Bodyfelt,Lapteva,Krimer,

Skokos,SF (2010)

Kopidakis, Komineas,

SF, Aubry (2008)

Weak Chaos Strong Chaos Selftrapping, part of

packet IS spreading

In all cases subdiffusive spreading

d=Δ/V Δ δ

Anderson Localization



Explaining subdiffusion?

• at some time t packet contains 1/n modes:

• each mode on average has norm

• the second moment amounts to  

Two mechanisms of exciting a cold exterior mode:

• heated up by the packet (nonresonant process)

• directly excited by a packet mode (resonant process)

• in both cases the relevant modes are in a layer of 

the width of the localization volume at the edge of the packet

μ

ν

< P



Simplest assumption:

• some modes in packet interact resonantly

and therefore evolve chaotic

• Probability of resonance: P(βn)

• all phases decohere after some time scale

• spreading = heating of cold exterior

Heating

exterior mode:

The momentary diffusion rate of packet equals the

inverse time the exterior mode needs to heat up to

the packet level:



Counting resonances inside the packet:

substitute

Ignore secular terms, eg

Resonance if

no averaging

is possible:



Probability of packet mode satisfying



Krimer,Skokos,Komineas,SF (2009)

C ≠ 0!

SF (2010)



Crossover from strong to weak chaos:

SF (2010)

Do you remember? 



We averaged the measured exponent

over 20 realizations:

α = 0.33 ± 0.02 (DNLS)

α = 0.33 ± 0.05 (KG)

Asymptotic regime of weak chaos Krimer,Skokos,Komineas,SF (2009)

Strong chaos and crossover to weak chaos Bodyfelt,Lapteva,Krimer,Skokos,SF (2010)

Averaging over 1000 realizations, taking local derivatives in log-log scales:

DNLS, W=4 KG, W=4



Generalization to larger dimensions and different nonlinearity powers: SF (2010)

Numerical evaluation for KG, D=1, W=4, single site excitations: Skokos,SF (2010)



Some corrections to the results of a famous writer …
“Well, in my country,” said Alice, still panting a little, “you would generally get 

to somewhere else, if you ran very fast for a long time, as we’ve been doing”.

“A slow sort of country!”, said the queen. “Now here, it takes all the running you 

alone can do, to stay in the same place.  But with friends, if running together, 

and more and more, the more time flows, you will finally get to somewhere else,

no matter how far that place will be. We call this game SUBDIFFUSION.”

Conclusions



Open questions, problems, controversial opinions:

• is there a KAM regime at small but finite β, or not?

• will a spreading packet eventually enter a KAM regime, or not?

• is the spreading wave packet equilibrating inside, if yes, how?

• is the observed spreading Arnold diffusion, or not?

• will the spreading slow down into a kind of Arnold diffusion, or not?

• are the computational results affected by roundoff errors, or not?

• finite systems: how is the KAM threshold scaling with system size?

• characteristics of energy diffusion at finite norm/energy densities ?

• relation to quantum many body localization ?
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