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Particles: zero/full  transmission below/above barrier,

no interference, phase does not matter

Waves: partial transmission below/above barrier,

interference, phase matters

Quantum / classical waves:

Identical description for single qm particle / linear case

Quantum many body waves: linear equations in 

VERY high-dimensional Hilbert (vector) space

Classical nonlinear waves: nonlinear equations, e.g.

from mean field approximation for MANY quantum particles

Nonlinearity: wave-wave (mode-mode) interactions 

Localization: waves start to travel, but never get away

Glossary



I was cited for work both in the field of magnetism and in that of 
disordered systems, and I would like to describe here one development 
in each held which was specifically mentioned in that citation. The two 
theories I will discuss differed sharply in some ways. The theory of local 
moments in metals was, in a sense, easy: it was the condensation into a 
simple mathematical model of ideas which were very much in the air at 
the time, and it had rapid and permanent acceptance because of its 
timeliness and its relative simplicity. What mathematical difficulty it 
contained has been almost fully cleared up within the past few years.

Localization was a different matter: very few believed it at the time, and 

even fewer saw its importance; among those who failed to fully 

understand it at first was certainly its author. It has yet to receive 

adequate mathematical treatment, and one has to resort to the indignity 

of numerical simulations to settle even the simplest questions about it . 



As usually, any new result has been obtained already before,

And of course by others …

“Well, in my country,” said Alice, still panting a little, “you would generally get 

to somewhere else, if you ran very fast for a long time, as we’ve been doing”.

“A slow sort of country!”, said the queen. “Now here, it takes all the running you 

can do, to stay in the same place.”



Experimental Evidence for Anderson Localization

waves in disordered media – Anderson localization for:

electrons, phonons, photons, BEC, …

Electrons: in: Akkermans et al 2006

Ultrasound: Weaver 1990

Microwaves: Dalichaoush et al 1991, Chabanov/Pradhan/ et al 2000

Light: Wiersma et al 1997,  Scheffold et al 1999, Stoerzer et al 2006,

Schwartz et al 2007, Lahini et al 2008

BEC: Billy et al 2008, Roati et al 2008



Localized State
Anderson Insulator

Extended State
Anderson Metal

f = 3.04 GHz f = 7.33 GHz











• Evanescent coupling between waveguides 
• Light coherently tunnels between neighboring waveguides

• Dynamics is described by the Tight-Binding model
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βn – waveguide’s refraction index /width

Cn,n±1 – separation between waveguides

The 1d waveguide latticeAn optical one-dimensional waveguide lattice (Silberberg et al ’08)



Experimental setup

• Injecting a narrow beam (~3 sites) at different locations 
across the lattice

(a) Periodic array – expansion

(b) Disordered array - expansion
(c) Disordered array - localization

(a)

(b)

(c)



SOME FACTS, THOUGHTS AND IDEAS



Anderson  

Model

• Lattice - tight binding model

• Onsite energies  ei - random

• Hopping matrix elements tijj i

Iij

tij ={-W/2 < ei <W/2
uniformly distributed

t < tc
t > tc

Insulator 
All eigenstates 
are localized

Metal
There appear states extended

all over the whole system

Anderson  Transition

t   i and j are nearest 
neighbors

0 otherwise



DoS DoS

all states are

localized

t < tct > tc

Anderson  Transition

- mobility edges (one particle)

extended



Localization of single-particle wave-functions. 

Continuous limit:

extended

localized

d=1: All states are localized

d=2: All states are localized

d >2: Anderson transition



• The disordered lattice (Anderson, 1958)
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• The periodic Lattice (Bloch, 1928)
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Eigenfunctions extend over entire lattice (Bloch functions)

The Tight Binding ModelThe one-dimensional tight-binding model



Wave packet expansion in disordered arrays

P
ro

p
a
g
a
ti
o
n
 d

is
ta

n
c
e
 (

A
U

)

Position (site number)

1
0
0
 

2
0
0

3
0
0

4
0
0

5
0
0

6
0
0

7
0
0

8
0
0

9
0
0

8
0

6
0

4
0

2
0 0

-2
0

-4
0

-6
0

-8
0

P
ro

p
a
g
a
ti
o
n
 d

is
ta

n
c
e
 (

A
U

)

Position (site number)

1
0
0

2
0
0

3
0
0

4
0
0

5
0
0

6
0
0

7
0
0

8
0
0

9
0
0

8
0

6
0

4
0

2
0 0

-2
0

-4
0

-6
0

-8
0

Ordered lattice Disordered  lattice Disordered  lattice - averaged

• Exciting a single site as an initial condition

Wave packet evolution



Stationary states:

Normal mode (NM) eigenvectors:

Eigenvalues:

Width of EV spectrum:

Asymptotic decay:

l

Properties of disordered states in the 1d Anderson model:

Localization length:

Localization volume of NM: V

V(W < 4) ≈ 3ξ V(W > 10) ≈ 1 



What happens when we add nonlinear terms to the

equations of motion?

• Eigenmodes of the linear equations can be continued as

periodic orbits, however there are infinitely many resonances;

still many modes stay localized, with frequencies inside or

outside the spectrum of the lin. equations (S. Aubry, ’00, ’01)

• Finite sets of eigenmodes can be continued as quasiperiodic

orbits as well, with similar properties as for periodic orbits

(Wang/Bourgain ’08)

• All these statements are about manifolds of zero measure 

in phase space. What about the rest?

• Linear wave equations correspond to 

integrable dynamical systems

• Nonlinear terms will in general destroy integrability

• Will they also destroy localization?



Andrey 

Kolmogorov 

Vladimir 

Arnold
Jurgen

Moser

Kolmogorov – Arnold – Moser (KAM) theory

Integrable classical Hamiltonian , d>1:

Separation of variables: d sets of action-angle 
variables

Quasiperiodic motion: set of the frequencies,   
which are in general incommensurate 

Actions       are integrals of motion
1 2, ,.., d  

1

1I
2

2I
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Q:
Will an arbitrary weak perturbation 

of  the integrable Hamiltonian 
destroy the tori and make the motion 
ergodic (when each point at the energy 
shell will be reached sooner or later)

?

A:
Most of the tori survive 
weak and smooth enough 
perturbations

V̂ 0Ĥ

KAM 
theorem

A.N. Kolmogorov, 
Dokl. Akad. Nauk 
SSSR, 1954. 
Proc. 1954 Int. 
Congress of 
Mathematics, North-
Holland, 1957

0Ĥ



1I

2I

Each point in the space of the 
integrals of motion corresponds 
to a torus  and vice versa

0ˆ V

1I

2I

Finite motion.
Localization in the space 
of the integrals of motion?

Most of the tori survive weak and 
smooth enough perturbations

KAM 
theorem:

• KAM applies to finite systems

• Does it apply to waves in infinite systems?

• How are KAM thresholds scaling with number of degrees of freedom?

• Will nonlinear waves observe KAM regime?

• If they do – then localization remains

• If they do not – waves can delocalize

•Some answers will be obvious from the next lecture …


