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Glossary

Particles: zero/full transmission below/above barrier,
no interference, phase does not matter

Waves: partial transmission below/above barrier,
interference, phase matters

Quantum / classical waves:
Identical description for single gm particle / linear case

Quantum many body waves: linear equations in
VERY high-dimensional Hilbert (vector) space

Classical nonlinear waves: nonlinear equations, e.g.
from mean field approximation for MANY quantum particles

Nonlinearity: wave-wave (mode-mode) interactions

Localization: waves start to travel, but never get away



Nobel Lecture

l--h p hi | ip W_ An de rSD n Mobel Lecture, December 8, 1977

5 [he Nobel Prize in Physics 1977

Local Moments and Localized States

| was cited for work both in the field of magnetism and in that of
disordered systems, and | would like to describe here one development
in each held which was specifically mentioned in that citation. The two
theories | will discuss differed sharply in some ways. The theory of local
moments in metals was, in a sense, easy: it was the condensation into a
simple mathematical model of ideas which were very much in the air at
the time, and it had rapid and permanent acceptance because of its
timeliness and its relative simplicity. What mathematical difficulty it
contained has been almost fully cleared up within the past few years.

Localization was a different matter: very few believed it at the time, and
even fewer saw its importance; among those who failed to fully
understand it at first was certainly its author. It has yet to receive
adequate mathematical treatment, and one has to resort to the indignity
of numerical simulations to settle even the simplest questions about it .



As usually, any new result has been obtained already before,
And of course by others ...

“Well, in my country,” said Alice, still panting a little, “you would generally get
to somewhere else, if you ran very fast for a long time, as we’ve been doing”.
“A slow sort of country!”, said the queen. “Now here, it takes all the running you
can do, to stay in the same place.”




Experimental Evidence for Anderson Localization

waves in disordered media — Anderson localization for:
electrons, phonons, photons, BEC, ...

Electrons: in: Akkermans et al 2006 o

Ultrasound: Weaver 1990
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Microwaves: Dalichaoush et al 1991, Chabanov/Pradhan/ et al 2000

Light: Wiersma et al 1997, Scheffold et al 1999, Stoerzer et al 2006, ¢ |
Schwartz et al 2007, Lahini et al 2008 S R

Figure 1| Observation of exponential localization. a, A small BEC
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Figure 2 | Experimental results for propagation in disordered lattices.
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Correlations due to Localization in Quantum Eigenfunctions of Disordered Microwave Cavities

Prabhakar Pradhan and 8. Sridhar
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1% stage: laser cooling
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Anderson Localizution of Expanding Bose Linstein Condensates in Random Polentials
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Direct observation of Anderson localization of matter
waves in a controlled disorder

wite Bik', Vincenl Josse', Thanchun Zeo', Alpin Bermard’, Ben Hambeecint', Porre Lupm', Dae




Observation of the signature of AL

BEC parameters : N=1.7 104 atoms, (p,,=220Hz)
Weak disorder : Vg /y,,=0.12 << 1
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An optical one-dimensional waveguide lattice (Silberberg et al ’08)

/

» Evanescent coupling between waveguides
* Light coherently tunnels between neighboring waveguides
» Dynamics is described by the Tight-Binding model

oU_
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S, — waveguide’s refraction index /width
C.ne1 — Separation between waveguides
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e Injecting a narrow beam (~3 sites) at different locations
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(a) Periodic array — expansion
(b) Disordered array - expansion
(c) Disordered array - /ocalization



SOME FACTS, THOUGHTS AND IDEAS



Anderson + Lattice - tight binding model
I\/I()d e|  Onsite energies & - random

« Hopping matrix elements tij
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Anderson Transition

all states are

\ localized

DoS

EC - mobility edges (one patrticle)



Localization of single-particle wave-functions.

Continuous limit:
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The one-dimensional tight-binding model

e The periodic Lattice (Bloch, 1928)

8
l//n E Wn +T [l//n+1 +Wn 1]
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Eigenfunctions extend over entire lattice (Bloch functions)

e The disordered lattice (Anderson, 1958)
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Wave packet evolution

e EXciting a single site as an initial condition

Ordered lattice Disordered lattice Disordered lattice - averaged




Properties of disordered states in the 1d Anderson model:

stationary states:  \NA; = ¢ A; — Aj_1 — A1

Normal mode (NM) eigenvectors: Ay,l (Zl Agl — 1)

Eigenvalues: A, € [—2 — %7 2+ %}

Width of EV spectrum: Ap =W + 4

Asymptotic decay: Au,l ~ e /&)
Localization length: £(A\,) < £(0) ~ 100/W*

Localization volume of NM: V >
VIW<4)=3¢ V(W>10)=1 ,./




What happens when we add nonlinear terms to the
equations of motion?

* Eigenmodes of the linear equations can be continued as
periodic orbits, however there are infinitely many resonances;
still many modes stay localized, with frequencies inside or
outside the spectrum of the lin. equations (S. Aubry, 00, ’01)

* Finite sets of eigenmodes can be continued as quasiperiodic
orbits as well, with similar properties as for periodic orbits
(Wang/Bourgain '08)

* All these statements are about manifolds of zero measure
in phase space. What about the rest?

* Linear wave equations correspond to
Integrable dynamical systems

* Nonlinear terms will in general destroy integrability

* Will they also destroy localization?



Koelmogorov — Arnold — Moser. (KAM) theory

A.N. Kolmogorov, Integrable classical HamiltonianH,, d>1:

Dokl. Akad. Nauk

SSSR, 1954. Separation of variables: O sets of action-angle
Proc. 1954 Int. variables | @ =2mwt;.., 1,,0, = 27w,t;..
E/I%?r?erasz;i?:l; North.  Quasiperiodic motion: set of the frequencies,
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. Will an arbitrary weak perturbation ?
Q _ Vof the integrable Hamiltonian H
destroy the tori and make the motion 2

ergodic (when each Jmim at the energy
shell will be reached sooner or later)

Most of the tori survive EVFINV
weak and smooth enough theorem
perturbations

" viadimir
Arnold




KAM Most of the tori survive weak and
0122 s . i smooth enough perturbations
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Each point in the space of the Finite motion.
integrals of motion corresponds Localization in the space
to a torus and vice versa of the integrals of motion &

« KAM applies to finite systems

* Does it apply to waves in infinite systems?

« How are KAM thresholds scaling with number of degrees of freedom?
* Will nonlinear waves observe KAM regime?

* If they do — then localization remains

* If they do not — waves can delocalize

Some answers will be obvious from the next lecture ...




