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Overview

The Superconducting Integrated Receiver (SIR)
SIS mixer, coupling to antenna and LO

Josephson oscillators, Flux Flow Oscillator (FFO), emitted power

lg-V- 1., curves, Fiske Steps (FS), Flux Flow Step, sine-Gordon eq.

The SIR in action. SRON and the TELIS project

FFO linewidth

FFO tunability, frequency and phase locking, PLL
Simple theory for FFO linewidth

 Theory long ideal (“bare”) junction

 Magnetic field from bias current, short junction with coil
« Examples

« Measurements, the K-factor

Conclusion and outlook
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The
All-Superconducting Integrated Receiver (SIR)
IS based on the

guasi-particle (SIS) mixer/detector
pumped by the Flux Flow Oscillator (FFO)

FFO-NN-2009



Micro-photograph
of the SIR chip
with antenna,
SIS-mixer and
phase-locked FFO

Chip size is
4 mm by 4 mm.
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Blow-up
of central
part of SIR

chip showing:

Double
guarter-wave
antenna

SIS mixer

LO (FFO)
feeder

|F out & DC
bias
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SIS junction
Tumx 1 um

DC bias/IF output &
control line for

Josephson noise
suppression
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microstrip line)
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Antenna - 1

LO injector

(1 um wide A/4
microstrip line)
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A sequence of current-voltage characteristics at various
temperatures for a constant voltage source driving the
junction. The curves are offset from zero for clarity. Source:
B. L. Blackford and R. H. March, “Temperature Dependence
of the Energy Gap in Superconductivity A1-A1,05-A1

Tunnel Junctions,” Canadian Journal of Physics,

Vol. 46 (1968).
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DC I-V curve
for

SIS
junction

Quasi-particle
current vs.
temperature
shows also

A(T)

Used in the
SIS mixer
and in many
bolometric
detectors
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Josephson junction subjected to high frequency signals

SIS mixer pumped at 260,
350, 530 and 665 GHz
<
: £
Arrows point at the =
first Shapiro steps o
(JVVS) and the o
quasi-particle steps
(photon assisted
tunneling, PAT)
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Nine-pixel
Imaging
Array
Recelver
Block.
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Antenna-Lens Beam Pattern of the SIR at 625 GHz Dl

Co-polar, dBi
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Sub-mm receiver with
external LO (BWO)

External LO
(BWO)

Liquid helium (4.2 K)
“Hot" black body

“Cold" black body Vacuum cover (10)
(80 K of cryostat
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Receiver Noise Temperature (K)

Noise Temperature of the
TErahertz Limb Sounder (TELIS) SIR (DSB)

(T4m-093-05f,17-Dec-2007)

1000- |
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Josephson oscillators
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Emitted power from mm and sub-millimeter oscillators

i
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only a few microwatts needed on-chip!



Three types of Josephson junctions

Superconducting
electrode 1

Oxide Superconducting
- / barner ele7tr0de2

Substrate

(a)

Superconducting

- elec;ode |

Superconducting
electrode 2

——— Normal
Weakly superconducting metal
(b) proximity layer

Substrate

Superconducting
electrode 1

e

Substrate

Superconducting
electrode 2

()
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Josephson effect U]
and equations

—t

o
oD
o
I=1I.sin ¢

oQ/ot=(2m/Py)V

Normal Electron
Tunneling

Cooper Pair
/ Tunneling

DC I-V curve for SIS junction
(current biased, idealized)



Current biased °
resistively shunted junction

(RSJ) model
(negligible capacitance)
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lc sino R Vo

y=Wg

DC I-V curve

Y.+ «c avallable for rf
Yr < resistive loss

Power, linewidth
and tunability

VIRI,
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The long (L >> A)) Josephson tunnel junction

FFO: Viscous flow of magnetic quanta driven by
a bias current and an applied magnetic field

BIAS CURRENT

T

—

i

/ . L Y{' / / Is
|| r ..
/ / / VORTEX/ ) e

Dy

(a) (b)

The resonant soliton oscillator, RSO, without applied magnetic field
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Bare junction, long rectangular geometry U

s

Modeled by the perturbed 1-D sine-Gordon equation
Oyx — O = SINQ + ALYy — M.

where the normalized overlap current through the junction is
N and & is the normalized damping. Time ¢ is normalized to
the inverse maximum plasma frequency, ®mp, length x to the
Josephson penetration length, A;, currents to the maximum
critical current, ., and magnetic fields to /.A; which is half of

the critical field, H. = 2I-A;. needed to force the first fluxon
into the junction.

FFO-NN-2009



FFO LJL
-

Numerical
calculation
of flux flow
In long JJ

(Y. Zhang)

Note:
sinusoidal
output
voltage, low
content of
higher
harmonics

H(K,t)mljc
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Calculated DC I-V curve for FFO i
Numerical simulation with normalized length = 15, I
normalized magnetic field = 6 and dampinga=0.1 =

—
)
—T

(current)

© o © o o
o N A~ (@) oo
|

" 65
0 2 4 6 8 10
W (voltage)
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Set of IVCs for Nb-AlO,-Nb FFO recorded for fixed control line current, I, JL

which is then incremented by Al ~ 0.5 mA before the next IVC is recorded.

oD

P
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m]
FFO-Current:-(mA)

VJ 5|:=930|..|.V

0 0.2 0.4 0.6 0.8 1 1.2 1.4
FFO-Voltage-(mV)

DC and RF properties are understood MOST IMPORTANT IS TUNABILITY
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The SIR in action

with
SRON, Netherlands Institute for Space Research
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- HIFI - Herschel Space Observatory
— 480 to 1900 GHz SIS/HEB

- Atacama Large Millimeter Array (ALMA)
— 650 GHz SIS

- Atacama Pathfinder Experiment (APEX)
- 650 GHz / 810 GHz mixer array

- Terahertz Limb Sounder (TELIS)
- 650 GHz Integrated Receiver

- HEB-QCL research up to 6 THz

- Space interferometer concept
and Millimetron

FFO-NN-2009



Acronym: | “rahertz | Imb Sounder

Balloon instrument on board the
MIPAS gondola, IMK Karlsruhe

Three independent frequency channels,

cryogenic heterodyne receivers:

~ 500 GHz by RAL
~ 500-650 GHz by SRON
— 1.8 THz by DLR (PI)
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Spectral Power/ K
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Typical atmospheric spectrum >—=
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The SIR is a high resolution spectrometer
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TELIS schematics

Sky
signal

--------------------------------

Tertiary

Pointing mirror
telescope primary

/\ Single Side-Band filter

4 | Beam combiner

% External Local Oscillator
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Secondary

Windows

Calibration

.- load

________________________

Polarizer

Dichroic

4 K dewar

o

N
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/

Digital
Auto
Correlator

500-650 GHz SRON-IREE

1.8 THz
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Silicon (Si);
4x4x0.5mm?3
Nb-AlOx-Nb or

Nb-AIN-NbN

F4 52 -C4 T4m - IREE

IOl
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SIR Microcircuit for TELIS

i
oD
oD

Double-slot
twin SIS — 0.8 um?2

FFO
400*16 pm?

e —

Nb-AIN-NbN or Nb-AlOx-Nb; Jc=5-10 kA/cm?
Optionally: SIS — Jc = 8 kA/lcm?; FFO + HM = 4 kA/cm?
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Nb-AIN-NbN SIS pumped by FFO; -
FFO frequency tuning

HD13-09#26 (Vg=3.7mV, Rn=21 Ohm)
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TELlS prOjeC’[ EXOSPHERE

First test flight was in June 2008
(Terezina, Brazil). Unfortunately some
cables got too rigid and the cryostat
lost vacuum when the balloon passed
the tropopause (temperature was
almost -70°C).

THERMOSPHERE

But before that our SIR works perfectly
(almost 3 hours of flight!). Furthermore,

all devices are OK after landing. m———

Next flight was successful with 12

MESOSPHERE

The tropopause is

hours February 2009 in Kiruna, between the
Sweden troposphere and the
stratosphere.
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ALMA —
The Atacama Large Millimeter Array

ALMA = Interferometer of 50+ antennas (12 m dia. each)
Working from 30 to 950 GHz

To be located in Northern Chile at 5000m altitude
Construction started, completion in 2012

Joint project Europe — North America — Japan
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ESO’s ALMA project in Chile
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ALMA at Chajnantor
(Courtesy NAO))
ESO PR Photo 14/01 (6 April 2001 ) © European Southern Observatory
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Spectral linewidth of the FFO
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Central part of microcircuit used for FFO
linewidth measurements

i
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Theoretical linewidth of ideal FFO

(as of most other (all?) Josephson oscillators)

Av (FWHP, full width half power) of the short Josephson oscillator
Is determined by internal low frequency current fluctuations

Ry
Av=r > S, (0)
with

S, (0)=2e{1_ coth(e) + 21 coth(2er)}

and

o=V, )I(2k, T, )

FFO-NN-2009
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Measurement of pair and quasiparticle current
components on FFO I-V curves

FFO-NN-2009

FFO bias current / mA

18 4
16 -
14—-
12—-

10

12 mA <1 < 16mA b

P

r r+ 1 ‘+ T+ T ‘+ T+ T *t T T 1
0.2 0.4 0.6 0.8 1.0 1.2 14 1.6

FFO voltage / mV
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Y

Experimental linewidth can be fitted with

oD
o
oD
RZ
Av = 72';% SI (O)
Using a modified dynamic resistance R; = (ROI + K- R;' )’

where R(; = oV /5|b and Rgl = oV /é?lCI

are the derivative of the measured voltage, V, with respect to the

DC bias current, I, and DC control line current, |, respectively.

Note: No theoretical justification

FFO-NN-2009



Measure dynamic resistances from |-V curve

FFO Bias Current

A lcl

using

we calculate:

FFO-NN-2009

R,

FFO Voltage
AV 9
— an
Al
ICL

=
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AV =500 MHz
~1 uV



FFO linewidth, example of spectrum

-10

-15:
-20:
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-30;

.35

FFO Power (dBm)

-40 -
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s
-

-« = Experimental Data

¢ Symmeterizated Data
Lorentzian
= = = Gaussian

431,56
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[J[
HD7 FFO linewidth vs differential resistance R’ s
Curves
1) K=0 100 ————r —
2+3) K=2.9, i g 1
fixed R CH
Full curve:
calculated for
experimental
parameters.
E.g. for
Vy=1mV,
lp=3 MA,
|.=7 MA,
T=42K 0,1+
best fit:
K=2.9 (ext)

FFO-NN-2009
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FFO spectra @ 707.45 GHz > —
o
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Frequency
locked; the E ﬁ
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-10

FFO spectrum @ 707.45 GHz
Phase-locked
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30-
-4[]—-
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=00 -

FFO Phase Locked
at 707.45 GHz
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pat /Y

renvg

399,99995
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Experimental phase noise at 450 and 707 GHz s
-
Note: -4 Phase locked FFO,T__=707.45 GHz (5f,, = 6.3 MHz)
. -4 Phase locked FFO,f__= 450 GHz (&, = 0.5 MHz)
—o— Synthesizer at 18 GHz *n’ (n = 24)
SyntheSIZer nOISe == Ahsolute FFO phase noise, f___ = 450 GHz (n = 24)
1 1 — Absolute FFO phase noise, f__= 707.45 GHz (n = 39)
mUItIpIIed by a --5F-- HP Synthesither at 18 GHz
& HIFI Specification for 24-35 GHz Synthesither

factor n?, should
be added 40
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Mono-crystalline Sapphire
Dielectric Resonator

in cylindrical copper cavity

Coupling loop = ==}/ E ' Cylindrical sapphire crystal

Operated in high-order eigen-solutions to Maxwells equations so-called

"Whispering Gallery Modes” (WGM).

Sapphire axis —

FFO-NN-2009
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S5B Phase Noise dBc/Hz
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Simple theory for the linewidth of
the FFO (or any Josephson oscillator)

FFO-NN-2009
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Bare junction
again
(sine-Gordon)

FFO-NN-2009

The normalized magnetic field K| » enters as the boundary
condition

¢'.1'(0:r) =K and ¢'.1'{"I:r) = Kz, (3)

specifying the magnetic field at the two ends of the junction.
The total normalized current through the junction is

| = r‘ﬂ'p+ j.!'!r — W(nl'i + K2 _I‘:L); (4)

where i,, = nwl = (J3 w(x)n(x)dx) is the normalized overlap
current, (K2 — K| )w = iy, is the inline part of the normalized
junction current, and

K| + Ko
K= ——— (5)

2

is the normalized magnetic field, which we assume is ap-
plied in the plane of the junction and perpendicular to the x-
direction. The overlap fraction of the junction current is [15]

Loy

A= - —. (6)
Toe == 17_..
and the normalized I-V curve is
m:m(n:KL:KZ) :m{i:]{): (7)
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Bare junction, dynamic resistances

We define two normalized dynamic resistances r; and r}
for the junction by

S do . dol
ME T 5w

(8)

where the dynamic resistance r%; is derived from a current wk
equivalent to the magnetic field k.

Until now everything relates to the ideal ("bare™) junction
where all partial derivatives are defined from Eq. (7) with i

and K as independent variables.

FFO-NN-2009
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Measure dynamic resistances from |-V curve

FFO Bias Current

A lcl

using

we calculate:

FFO-NN-2009

R,

FFO Voltage
AV 9
— an
Al
ICL

=
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s

AV =500 MHz
~1 uV



Long Josephson junction with magnetic field

generated by the bias current

We now assume that the normalized magnetic field in the
junction consists of two contributions, an externally applied
field K,,,; proportional to a DC current, i in a control line:
Kappl = Bff;rt, and a field proportional to the DC bias current
through the junction i1 —Gi. As exemplified below the latter
may be due to asymmetry of the junction or the way the bias
current is fed to the junction.

Kw = K

tw,;w — Gl = Bfr:; — Gi. (9)

Here P and ¢ are dimensionless factors determined by junc-
tion geometry and bias conditions. Now the measured nor-
malized 1-V curve is

® = o(i,Pi.; — oi), (10)

and correspondingly the measured normalized dynamical re-
sistance r/; is given by :

,  do 0 Jdo 1 y
= di T JK w( o) =ra =01 (t1)

bt

FFO-NN-2009
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Short JJ with coll

L
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Magnetic field generated by the bias current

I

—

—

We define a normalized control line dynamical resistance r9
given by

i

_ do| Jml
o
i dij |, 9K wB ri-

{

(12)

i.e. the measured control ]ine dynamical resistance (r)’ is
the same as before (r5')’ = r'. The normalized dynamlc re-
sistance, ry, entering the linewidth expression Eq. (1) for the

ideal junction is related to the measured dynamic resistances

by
! G, v f cly !
FJ=FJ+E{FJ)=FJ+K{FJ)= (].3:!

where we have defined the ratio between the two geometrical
cucrent factors, & for the bias current and [ for the control line

current as K = % With the measured dynamical resistances

introduced as in Eq. (13), and returning to unnormalized quan-
tities, the linewidth expression Eq. (1) is replaced by

R KR::F 2
ﬂV:TE( “’+¢3 2) 5:(0), (14)
0

The derived equation contains just the empirical correction

factor (R, + KR)* which was used by Koshelets et al. [12]
FFO-NN-2009




Construction of “measured” I-V curve from

three “bare” junction /-V curves

Note:

ry =0

and even
“back-bending”
IS possible

The long lasting
mistake

FFO-NN-2009

Bias current

G, . .
ro =ry+ 5 (1) =y +K(rg)’

B

Icll> IcI2> Icl3

Icl 3

cf 2

Icl 1

Voltage



FFO with “unbiased tail”

The bias current generates a magnetic field
that gives a steeper flux flow step

/ i Bias Current
<~Lp—
o

—I> u

- =

He

-
I_L
=

i
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The three examples where we can clculate K

FFO-NN-2009

In general we can write

WK| = D'Lf-FﬁLEL-;
WKy = D'gf-FﬁgfL-;

nwl = &3i + Psiy.
From Eq. (4) we get
G:—0+063=1 and BE_BL+B3 =0.

G> — G| 1s just the inline fraction 1 — % of the junction current
and 3 is the overlap fraction %. From Eq. (5) we get

8] G2 "y
k=OLT%2 BH,;B‘ i

2

This should be identical to Eq. (9) therefore we have

G|+ 0> -+ P2
: — and P = Pt P
3

2

= : (15)

It is clear that © can be ascribed to an asymmetric feed of
the junction. K = % = | means that the bias current i and the
control lne current i; (if equal) produce the same magnetic

field.

HEE



Examples no 1 and no 2

1) Pure overlap. If the bias current i is purely overlap (y =
1) there is no asymmetry in the bias current, therefore ¢ = 0
and K = 0.

2) Half inline. In the half inline case (} = %) there are
two different cases. 2a) First the situation in Fig. 2. Simple
considerations give

| |
Go~03~—, Pp=P1 ==, and 6] ~ P53 ~0,
2 2
or} = % and ¢ = %1 and therefore K = % 2b) The other situa-

tion with half inline is shown in Fig. 3. Simple considerations
now give

1
022032[312[3325 and 6; ~ B, ~0,

or p = ; and 6 = # and therefore K = 1.
FFO-NN-2009

s



Note:
Figures not to scale

The currents flow
In the top or
bottom of the
superconducting
films connecting to
the “tunnel region”

FFO-NN-2009

Example 2, Half-inline

FIG. 3: Illustration of example 2b, K

_ o _

=8 =

, half inline, ¥ =

1, half inline, ¥ =

b=
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Example no 3, pure inline Uy

el
ailliiee—ogllie-
Gi+i ])fz i /2

cl .

— = ; . —- . . 1

141 (+i)r2 ¢ el > > : i (/2 i+ti2 a—

i c —
cl = o — cl — L —
- (i—1i)2 .- - 1+1CI,"2 —.-»- -
(i+i,)n2 (i+i )2 el iey/2 /2 S|
(a) (b)

3) Pure inline. If the bias current is purely inline (} = 0)
there are two cases to consider. Let the control line current i,
flow in the bottom film. If the bias current i flows into one end
of the junction from the bottom film and leaves the junction
through the top film and the other end of the junction (Fig. 4a)
there is no asymmetry in the current, § = % therefore 6 = 0
and K = 0. If the bias current i leaves the junction from the
same end as it enters (Fig. 4b) the asymmetry in the current is

G = %, B= % and therefore K = 1.
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Sobolev’s experimental proof of
Ry
AV = 7Z'()Tg SI (O)
Using a modified dynamic resistance R; = (Rd + K- R;' )’

where R(; = oV /@|b and R;I = oV /8|CI

are the derivative of the measured voltage, V, with respect to the
DC bias current, I, and DC control line current, |, respectively.

Note: No theoretical justification
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The 5 different bias configurations
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Bias configurations with K= +0.25 and K= -1.1
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Connection (4)
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& experimental
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* experimental
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Note:

factor 3 scales
green curve

to red curve

Factor 2.3
scales black
curve to
green curve
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I, -V curves for different FFO bias

configurations, K-values
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Conclusion and outlook UJU
N

Does the proposed simple theory for the linewidth of the FFO **

solve the long lasting discrepancy between theory and

experiments?

Do all Josephson oscillators - also those with additional

magnetic bias - obey the short junction linewidth equation?

The functional dependence on the two dynamic resistances
seems to agree with recent measurements with different K-
values, both positive and negative. Correlation. More
experiments are needed!

Accurate design rules for the FFO giving power and linewidth
are required.

Has anybody observed the parametric magnetic effect in short
junctions with strong magnetic coupling (coil)? Make
simulations! Is this effect important in the FFO?
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