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Abstract: Geometric sequents “A implies C” where all axioms A and conclusion C are universal closures of implications of
positive formulas play distinguished role in several areas including category theory and (recently) logical analysis of Kant’s
theory of cognition. They are known to form a Glivenko class: existence of a classical proof implies existence of an intuitionistic
proof. Existing effective proofs of this fact involve superexponential blow-up, but it is not known whether such increase in size is
necessary. We show that any classical proof of such a sequent can be polynomially transformed into an intuitionistic geometric
proof of (classically equivalent but intuitionistically) weaker geometric sequent.
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Introduction
Geometric sequents (see definition below) play distinguished role in several areas including
category theory (Goldblatt, 1984). This fragment of first order logic attracted new attention in
the light of recent work by Theodora Achouriotti and Michiel van Lambalgen (Achourioti &
van Lambalgen, 2011) who propose a translation of the philosophical language of Kant’s theory
of judgements into the language of elementary logic and provide a convincing justification of
their view.

Geometric sequents are known to form a Glivenko class: existence of a classical proof of
a geometric sequent S implies existence of an intuitionistic proof. Existing proofs of this fact
involve superexponential blow-up, but we do not know whether such increase in size is neces-
sary. We show that any classical proof of S can be polynomially transformed into an intuition-
istic geometric proof of (classically equivalent but intuitionistically) slightly weaker geometric
sequent.

We consider formulas of first order logic.

Definition 1. Positive formulas are constructed from atomic formulas and the constant ⊥ by
&,∨,∃.

Geometric implications are positive formulas, implications of positive formulas and results
of prefixing universal quantifiers to such implications.

Geometric sequents are expressions of the form

I1, . . . , In ⇒ I

where I1, . . . , In, I are geometric implications.
A geometric derivation is a derivation consisting of geometric sequents.

The second proof of Theorem 1 given below is non-effective, but the first one allows one
to derive some complexity bound. The proof begins with construction of a cut-free derivation,
therefore the only obvious bound is the same as for cut-elimination, that is hyperexponential
one. This contrasts with the most prominent Glivenko class, namely that of negative formu-
las. When a classical derivation of a negative formula is given, its intuitionistic derivation is
constructed by “negativizing” all formulas in the derivation plus local changes to reinstate the
inferences that were destroyed by this transformation. These transformations are polynomial.



We show here a weaker result for geometric sequents. Any classical proof (with cut) of a geo-
metric sequent Γ ⇒ I can be polynomially transformed into an intuitionistic geometric proof
of a geometric sequent sequent D,Γ⇒ I where D is obtained by introducing abbreviations for
some formulas. In fact D,Γ ⇒ I is intuitionistically derivable iff Γ ⇒ I is intutionistically
derivable, but on the surface the definitions in D are only classical.

In section 1 we give two proofs of the Glivenko property of geometric sequents.
Section 2 describe depth-reducing transformations we need for our proofs. As far as I know,

this use of formulas (17-19) especially to achieve that the whole proof is geometric is new. It is
inspired by similar use of (18) by V. Orevkov (1968) in a different situation.

Section 3 contains the proof of the main result.
We use≡ for literal coincidence of syntactic objects and↔ for a logical equivalence connec-

tive.
LK,LJ are Gentzen’s systems for classical and intuitionistic logic, both with cut.
`c,`i denote derivability in classical or intuitionistic logic, that is in LK,LJ with cut.
A formula translation of a sequent S ≡ A1, . . . , An ⇒ B1, . . . Bm is a formula Sf ≡

(A1& . . .&An → B1∨. . .∨Bm). Many notions defined for formulas are generalized to sequents
via the formula translation. For example S ↔ T for sequents S, T means Sf ↔ T f .
c-models are ordinary models for the classical predicate logic, i-models are Kripke models.

1. Geometric Sequents Have Glivenko Property
The next theorem is well-known. The deductive proof given here is due to V. Orevkov (1968)
and can be traced back to the work of H. Curry (1977).

Theorem 1. A geometric sequent is derivable classically iff it is derivable intuitionistically.

1. A deductive proof. Consider a cut-free proof of a geometric sequent

Γ→ I

in LK. Since the succedent rules for →, ∀ are invertible in LK, we can analyze away initial
universal quantifiers and implication in I , then assume that I is a positive formula. After that
the sequent Γ⇒ I contains only connective occurrences that give rise to rules

⇒ &,⇒ ∨,⇒ ∃,&⇒,∨ ⇒,∃ ⇒,→⇒ .

These rules are common for LK and LJm, hence our LK-derivation is already LJm-derivation,
as required. `

2. A model-theoretic proof. The idea here is rather similar, but I have not seen this proof in
literature. Suppose a geometric sequent Γ ⇒ I with positive formula I is underivable in LJm.
Consider its proof search tree in LJm (see for example Mints, 2000). This tree is not a derivation,
and hence has a non-closed branch generating a Kripke countermodel for Γ⇒ I . The rules for
analysis of the connectives ∀,→ in succedent are not applied in this tree. But these are exactly
the rules that add new worlds to a model. Therefore resulting model has just one world, and
hence it is a classical model refuting our sequent. `

2. Reducing Formula Depth
Familiar depth-reducing transformations by introduction of new predicate variables are modi-
fied here to preserve geometric sequents. There are subtle points noted below. Let’s first recall
well-known facts.
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Let’s define a relation between formulas (widely used in literature without a special name)
which is weaker than provable equivalence but in some respects similar to it.

Write F �s G where s ∈ {c, i} if

G ≡ F ′ → F and `s F ′[P1/F1, . . . , Pn/Fn]

where Pi/Fi are substitutions (performed in this order) for predicate variables P1, . . . Pn not
occurring in F .

Lemma 1. Assume F �s G. Then

1. `s F iff `s G,

2. s-models for G are expansions (with respect to P1, . . . , Pn) of s-models for F .

Proof. 1. `s F → G is obvious. If `s G then since G ≡ (F ′ → F ) the substitutions
P1/F1, . . . , Pn/Fn and modus ponens yield `s F .

2. Similarly to 1.
`

Notation x below stands for x1, . . . , xn with distinct variables x1, . . . , xn.

Lemma 2. If x contains all free variables of formulas A(x), B(x) then

LJ ` ∀x(A(x)↔ B(x))→ (F (A)↔ F (B)).

Proof. Induction on F . `

Lemma 3. If P is a fresh n-ary predicate symbol, x contains all free variables of the formula
A(x) then for L ∈ {LJ, LK}

L `⇒ F (A) iff L ` ∀x(A(x)↔ P (x))⇒ F (P )

Proof. If L ` F (A), apply the previous Lemma.
If L ` ∀x(A(x) ↔ P (x)) ⇒ F (P ), substitute A for P . The antecedent of the sequent

becomes ∀x(A(x)↔ A(x)). `

For a given formula F assume that for every non-atomic subformula G of F a fresh predicate
symbol PG is chosen with the same arity as the number of free variables of G. In particular PF

has free variables of F as arguments. Atomic subformula P (t1, . . . , tn) is not changed.
Symbols PG can be treated as pointers to subformulas of F . This informal observation can

be formalized by assigning equivalences EG to subformulas G in the following way:
If G(x) ≡ H(y)�K(z) for � ∈ {&,∨,→} then

EG ≡ ∀x(PG(x)↔ (PH(y)� PK(z))) (1)

where y, z ⊆ x.
If G(x) ≡ QyH(x, y) for Q ∈ {∀,∃} then

EG ≡ ∀x(PG(x)↔ QyPH(x, y)). (2)

Lemma 4. Let G,H . . . , F be all non-atomic subformulas of F . Then for L ∈ {LJ, LK}

L ` F ↔ L ` EG, EH , . . . EF ⇒ PF .
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Proof. Apply previous Lemma successively to subformulas, beginning with the innermost ones.
`

Let’s rewrite equivalences (1),(2) as pairs or triples of implications, transforming these im-
plications in LJ-equivalent way.

∀x(PG&H(x) → PG(y)), (3)
∀x(PG&H(x) → PH(z)), (4)

∀x(PG(y)&PH(z) → PG&H(x); (5)
∀x(PG(y) → PG∨H(x)), (6)
∀x(PH(z) → PG∨H(x)), (7)

∀x(PG∨H(x) → (PG(y) ∨ PH(z)); (8)
∀x(P∃yPG

(x) → ∃yPG(x, y)) (9)
∀x∀y(PG(x, y) → P∃yPG

(x)) (10)
∀x∀y(P∀yPG

(x) → PG(x, y)); (11)
∗ ∀x(∀yPG(x, y) → P∀yPG

(x)) (12)
∗ ∀x(¬PG(x) → P¬G(x)) (13)

∀x(PG(x)&P¬G(x) → ⊥) (14)
∀x(PG→H(x)&PG(y) → PH(z)) (15)
∗ ∀x((PG(y)→ PH(z)) → PG→H(x)) (16)

All these universally quantified implications are geometric except the three marked by a *. Let’s
replace them by classically equivalent geometric implications.

∀x∃y(PG(x, y) → P∀yPG
(x)) (17)

∀y(PG(y) ∨ P¬G(y)) (18)
∀x((PH(z)→ PG→H(x)) & (PG(y) ∨ PG→H(x))) (19)

Denote the resulting set of geometric implications (3-11), (14,15) and (17,18,19) for subformu-
las of a set F of formulas by DEFF.

3. Transformation of Classical Derivations
In this section we mean by intuitionistic predicate calculus a multiple-succedent formulation
LJm (cf. Mints, 2000) which differs from LK only in the requirement that the list ∆ is empty in
the succedent rules for→,¬,∀:

A,Γ⇒ ∆
Γ⇒ ∆,¬A

A,Γ⇒ ∆, B
Γ⇒ ∆, A→ B

Γ⇒ ∆, A(b)

Γ⇒ ∆,∀xA(x)

Definition 2. Formulas ¬A,A → B, ∀xA introduced by these rules in an LK-derivation are
called below special formulas when ∆ is non-empty.

Let d be a derivation of a geometric sequent S in LK. Then f(d) denotes the set of all cut
formulas in d and DEFd denotes DEFf(d).
Theorem 2.

1. Let d be a derivation of a geometric sequent Π ⇒ Φ in LK. Then it can be polynomially
transformed into a geometric derivation in LJm of the sequent

DEFd,Π→ Φ

consisting of geometric sequents.
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2. DEFd,Π⇒ Φ �c Π⇒ Φ.

3. `c DEFd,Π⇒ Φ iff `i DEFd,Π⇒ Φ iff `i Π⇒ Φ

Proof. We assume that all axioms A,Γ → ∆, A have atomic A. Using if needed inversion
transformations we assume that Φ consists of positive formulas. Then every special formula F
is traceable to a cut formula. More precisely, F ≡ F ′(t) where F ′(x) is a subformula of some
cut formula. Formula F ′ has a “representative” PF ′(x) in DEFd where x are free variables of
F ′. In this sense any occurrence of a formula F traceable to a cut formula has a representative
which we write as PF (t).

Denote by d+ the result of replacing every such occurrence of F (t) as a separate formula in
a sequent in d by PF (t).

This replacement destroys inferences having such F (t) as principal formulas. Consider these
inferences in turn to show they can be repaired using DEFd.

Axioms are assumed to be atomic, therefore they are preserved. The cut inferences become
cuts on atomic formulas.

Antecedent inferences are repaired using geometric implications in Defd. For example→-
antecedent inference

Γ⇒ ∆, G(t1) H(t2),Γ⇒ ∆

G(t1)→ H(t2),Γ⇒ ∆

goes into the figure
Γ⇒ ∆, PG(t1) PH(t2),Γ⇒ ∆

PG→H(t),Γ⇒ ∆

which is transformed using the formula PG→H(t)&PG(t1) → PH(t2) denoted below by I
which is an instance of a formula (15) in DEFd.

axiom
PG→H(t)⇒ PG→H(t) Γ⇒ ∆, PG(t1)

PG→H(t),Γ⇒ ∆, PG→H(t)&PG(t1) PH(t2),Γ⇒ ∆

I, PG→H(t),Γ⇒ ∆

DEFd, PG→H(t),Γ⇒ ∆
∀ ⇒

Other antecedent rules and succedent rules common to LK and LJm are treated similarly. Of
the remaining rules consider ¬,→ and ∀ in succedent. Given derivations are transformed as
follows. The derivation

G,Γ⇒ ∆
Γ⇒ ∆,¬G

goes to
PG(t),Γ⇒ ∆ P¬G(t)⇒ P¬G(t)

PG(t) ∨ P¬G(t),Γ⇒ ∆, P¬G(t)
∨ ⇒

DEFd,Γ⇒ ∆, P¬G(t)

The derivation
G,Γ⇒ ∆, H

Γ⇒ ∆, G→ H

goes to

PG(t1),Γ⇒ ∆, PH(t2) axioms
PH(t2)→ PG→H(t), PG(t1) ∨ PG→H(t),Γ⇒ ∆, PG→H(t)

∨ ⇒,→⇒

DEFd,Γ⇒ ∆, PG→H(t)
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The derivation
Γ→ ∆, G(b)

Γ→ ∆,∀yG(y)

goes to
Γ→ ∆, PG(t, b) P∀yG(y)(t)→ P∀yG(y)(t)

PG(t, b)→ P∀yG(y)(t),Γ→ ∆, P∀yG(y)(t)
→⇒

∃y(PG(y, t)→ P∀yG(y)(t)),Γ→ ∆, P∀yG(y)(b, t)
∃ →

DEFd,Γ→ ∆, P∀yG(y)(t)

This completes the proof of the first part of the theorem.
The second part follows from classical derivability of the results of substitution PG/G into

formulas in DEFd.
For the third part, if `c DEFd,Π → Φ then substitution PG/G for G ∈ f(d) yields `c

Π ⇒ Φ, then (by Theorem 1) `i Π ⇒ Φ and hence `c DEFd,Π ⇒ Φ completing the chain
of equivalences. As pointed out in the Introduction, the transformation in Theorem 1 is not
polynomial. `
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