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Abstract: New emphasis on finitist methods and results in mathematics indicates a turn in foundations 
happening under the slogans of HARD ANALYSIS and PROOF MINING. While previously non-
constructive or infinitistic methods were thought  (by an influential minority) to be philosophically 
defective, the revival of interest is caused by mathematical needs. Some of the central results needed 
development of new tools that turned out to be instances of well-known constructions of proof theory. 

The finitist trend is called “hard (quantitative) analysis” by T. Tao and contrasted with the or-
dinary or “soft” (qualitative) mathematical analysis. The latter works without any restrictions 
on the abstract notions and infinitistic methods. Proof mining initiated by G. Kreisel and de-
veloped by U. Kohlenbach applies proof theoretic tools to get essential strengthening of re-
sults proved in the mainstream mathematics. We present some examples. 

The distinction between finitist and non-finitist methods crystallized in Hilbert’s founda-
tional program. We discuss new developments in mathematics and its foundations emphasis-
ing finitist methods, and as a consequence of this, constructive methods. This is done under 
the slogans of hard analysis and proof mining. 

Previously constructive methods were distinguished mainly on ideological grounds when 
non-constructive or infinitistic methods were thought to be defective from some philosophical 
considerations: 

L.Brower, H. Weyl, A.Markov, E. Bishop, Dummet, E. Nelson, G. Stolzenberg. 
H. Weyl: “So gebe Ich also jetzt meinen eigenen Versuch Preis und schliesse mich Brou-

wer an” (Weyl 1921, 56). [So I leave my own attempts aside and join Brouwer]. 
H. Weyl describes [in his obituary of Hilbert] how he restricted his research methods to in-

tuitionistically acceptable ones. 
Present revival of interest is caused by mathematical needs: obtaining estimates for some 

of the central results of modern number theory demanded development of new tools that 
turned out to be instances of well-known constructions of finitist approach. This new direction 
had been called “hard analysis” by T. Tao and contrasted with the ordinary or “soft” mathe-
matical analysis. The latter works without any restrictions on the abstract notions and infini-
tistic methods. The idea that methods of logical proof theory can be useful in the mainstream 
mathematics independently of constuctivist or finitist ideology had been stressed by G. 
Kreisel beginning with 1950s under the slogan of “unwinding” proofs. This approach led to 
several good but isolated results before it was jump-started by U. Kohlenbach at the begin-
ning of 1990s and given the name “proof mining” (following suggestion by D. Scott). 

The distinction between finitist and infinitistic methods goes back to D. Hilbert. It is based 
on the distinction between real (finitist, combinatorial) objects that can be completely en-
coded by natural numbers and imaginary or infinitistic objects that do not allow such coding. 

3



 

For example real number defined by an infinite sequence of decimal approximations is an in-
finitistic objects. Finitist methods work with finitist objects (=natural numbers) using comput-
able functions on such objects (given in principle by computer programs). 

In fact a sharpening of finitist restrictions to Kalmar-elementary (exponential) or even 
polynomial functions is often desirable: mathematicians accept faster growing functions only 
reluctantly. 

Unnoticed by philosophers, these dictinctions penetrated the working environment of 
mathematicians. 

Here are some quotations from the blog by T. Tao of UCLA partially published in T. Tao, 
Structure and Randomness: pages from year one of a mathematical blog, American Mathe-
matical Society, 2008. 

“In the field of analysis, it is common to make a distinction between “hard”, “quantita-
tive”, or “finitary” analysis on one hand, and “soft”, “qualitative”, or infinitary” analysis on 
the other. “Hard analysis” is mostly concerned with finite quantities (e.g. cardinality of finite 
sets, the measure of bounded sets, the value of convergent integrals, the norm of finite-
dimensional vectors, etc.) and their quantitative properties (in particular upper and lower 
bounds). “Soft” analysis, on the other hand, tends to deal with more infinitary objects (e.g. 
sequences, measurable sets and functions, σ-algebras, Banach spaces, etc.) and their qualita-
tive properties (convergence, boundedness, integrability, completeness, compactness, etc.). 

To put it more symbolically, hard analysis is the mathematics of ε, N, O () and ≤; soft 
analysis is the mathematics of 0, ∞, ε and →. 

...Because of all these difficulties it is common for for analysts to specialize in only one of 
the two types of analysis. For instance, as a general rule (and with notable exceptions), dis-
crete mathemaricians, computer scientists, real-variable harmonic analists, and analytic num-
ber theorists tend to rely on “hard analysis” tools, whereas ‘functional anlysts’, opoerator al-
gebraists, abstract harmonic analysts, and ergodic theorists tend to rely on “soft analysis” 
tools. ... There are examples of evolution of a field from soft analysis to hard (e.g. recent de-
velopments in extremal combinatorics, particularly in relation to the regularity lemma). 

...In many cases qualitative analysis can be viewed as a convenient abstraction of quan-
titative analysis, in which the precise dependencies between various finite quantities has been 
effectively concealed from view by the use of infinitary notation. Conversely, quantitative 
analysis can often be viewed as a more precise and detailed refinement of qualitative analysis. 
Furthermore, a method from hard analysis often has some analogue in soft analysis and vice 
versa, though the language and notation may look completely different from that of the origi-
nal. I therefore feel that it is often profitable for a practitioner of one type of analysis to learn 
about the other, as they both offer their own strengths, weaknesses and intuition, and knowl-
edge of one gives more insight into the working of the other. I wish to illustrate this point here 
using a simple but not terribly well known result, which I shall call the “finite convergence 
principle”... Sometimes a careful analysis of a trivial result can be surprisingly revealing, as I 
hope to demonstrate here. 

The infinite convergence principle is well known: every bounded monotone sequence xn of 
real numbers is convergent. 

Again: if ε > 0 and 
 1 20 ... 1,x x≤ ≤ ≤ ≤  

there exists an N such that 
 | | for all , .n mx x n m N− ≤ε ≥  
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Randomness 

Logic and especially proof theory accumulated a good supply of tools for conversion of ordi-
nary mathematical proofs into proofs satisfying the needed restrictions. We consider different 
ways of obtaining bounds from existential proofs. 

The simplest situation is direct constructivization. The original statement is existential 
 ( )xR x∃  

and the original proofs is non-constructive, since it proceeded by contradiction. An assump-
tion to the contrary, 
 ( )x R x∀ ¬  

leads to an explicit contradiciton. Constructivized proof provides a method of computing an 
object x satisfying R (x). 

Sometimes inessential modification of the original proof suffices. 
Example. Infinity of primes. Euclid’s proof (formally going by contradiction) already con-

tains a bound for the next prime 
 1 1 ... 1.n np p p+ ≤ ⋅ +  

In other cases new constructions or even new ideas are needed. 
Constructivization have been the core of several foundational schools, including intuition-

ism, Russian constructivism, Bishop analysis etc.; with some restrictions also explicit math-
ematics developed by S. Feferman can be mentioned here. 

Proof mining has broader goals. It applies proof theoretic tools to get essential strength-
ening of results proved in the mainstream mathematics. New results are interesting to special-
ists in a given field (main example is non-linear analysis), and new proofs are stated com-
pletely in the framework of the field: no need for practitioners to learn any logic or construc-
tive mathematics. The need to understand the underlying logical theory arises only when one 
tries to understand sources of the constructions used in the new proof and the reason exactly 
these constructions are used. 

Examples follow 

Important part of the picture is treatment of intermediate results. As pointed out before, the 
final result of interest is often an existential statement 
 ( )xA x∃  

or more generally a statement 
 ( , )x y A x y∀ ∃  

with finitist (quantifier free) A (x, y). We are interested in a function Y (x) satisfying for every x 
 , ( ) .( )A x Y x  

However really deep mathematical proof of our goal statement in general contains lemmas 
of much more complicated form and uses deductive means which ordinarily are not expected 
to occur in proofs of such simple statements. There are several reductive tools that eliminate 
such “detours” from proofs of simple statements. Let’s recall some of them having more ob-
vious philosophical significance. 
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Absoluteness. Suppose an arithmetical statement is proved in ZFC using the axiom of 
choice AC. Then the relativizitaion of this proof to constructible sets (slogan: V = L) does not 
use AC. 

Functional interpretation. Gödel designed a transformation called Dialectica interpreta-
tion of arbitrary statement F of arithmetic or even analysis to a form 
 ( , ).F Y xB x Y′ = ∃ ∀  

Here B is quantifier free, objects x, Y (x) are in general of more complicated nature (of 
higher type) than natural numbers or numerical functions. This transformation preserves con-
structive proofs: if F1, ..., Fn is a proof, then 1, ..., nF F′ ′  is a proof too (after a simple exten-
sion), moreover it is a quantifier free proof, finitistic in anextended sense. 

As noticed by Kolmogorov, Gödel, Gentzen there is a simple translation of non-
constructive proofs into constructive proofs of a weaker statement: just double-negate every-
thing: ¬ ¬. 

This operation (negative translation) transforms 
 ( ) into ( )xR x x R x∃ ¬¬∃ ¬¬  

when R is atomic. Dialectica interpretation provides (from a non-constructive proof of 
( )xR x∃ ) some instance n for ∃x. 

Modifications of Dialectica interpretation turned out to be suitable for analysis and 
strengthening of theorems of the mainstream mathematics (mainly non-linear analysis). 

Example. Existence of the best approximation by polynomials in L1-metric. 
U. Kohlenbach gave the first constructive proof and very specific estimates. 
Friedman-Dragalin translation. 
Example 1. There are irrational numbers x, y such that x 

y is rational. 
A non-constructive proof. If 

2
2  is rational, then we are done: : : 2.x y= =  

Otherwise 
2

: 2 , : 2,x y= =  since 

 
22 ( 2 2 ) 2

2 2 2 2.
⋅⎛ ⎞ = = =⎜ ⎟

⎝ ⎠
 

This proof does not immediately provide x and y unless sophisticated proof (by A. Gel-

fond) that 
2

2  is irrational is used. 

Constructivization by Dana Scott (cf. FOM newsgroup). Take 

 : , : ln 2; 2.yx e y x= = =  

From the power series expansion of ex it is easy to see that all integer powers of ex are irra-
tional. Now note 
 / 2 2 ,m n m ne e= ⇒ =  

Another example from FOM. 
Between any two irrationals a < b there is another rational. 
Proof (P. Halmos). Let : ( ) / 3.h b a= −  Then one of a + h, a + 2h is irrational, since other-

wise h is rational, hence a is rational too. But which one of a + h, a + 2h? 
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Constructivization (D. Scott). Since a < b, there is an n such that 
 a < a + 1/n < b. 

a + 1/n is irrational, since otherwise a = (a + 1/n) – 1/n is rational. 

My contribution. Constructivization of the non-constructive proof of Herbrand’s Theorem. 

Reference 
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