Atomic Photoionization Dynamics in Intense Radiation Fields

M. Meyer LIXAM, Centre Universitaire Paris Sud, Orsay France

- Introduction
- Two-Color (XUV + NIR) Experiments
 - intense NIR
 - intense XUV
- Time-resolved Pump-Probe Experiments
- Conclusion

Free Electron Lasers in Hamburg

Free Electron Lasers in Hamburg

FLASH (Free electron LASer in Hamburg)

Ackermann et al., Nature Photonics 1, 336 (2007)

LINAC : 1 GeV 30 m fixed-gap undulator macro-bunch at 10 Hz > 30 bunches, 1 µs separation

SASE (Self Amplified Spontaneous Emission)

Ackermann et al., Nature Photonics 1 336 (2007)

FEL output builds up from spontaneous emission (photon noise)

Free Electron Laser Sources

FLASH	LCLS (Stanford, CA) SCSS (Japan)	European XFEL (Hamburg)
6 - 60 nm (0.5-1% b.w.)	0.15 – 1.5 nm	0.1 – 4.9 nm
(20 – 200 eV)	(0.8 - 8.3 keV)	(0.25 - 12.4 keV)
5 Hz (up to 60 bunches)	120 Hz / 60 Hz	10 Hz (3000 bunches)
10 - 100 uJ (average)	> 100 uJ	> 100 uJ
10 - 30 fs	1 - 100 fs / 500 fs	< 100 fs
~ 10 ¹³ photons/pulse	10 ^{12 –} 10 ¹³ photons/p	10 ^{12 –} 10 ¹⁴ photons/p
> 10 ¹¹ W / cm ²	> 10 ¹¹ W / cm ²	> 10 ¹¹ W / cm ²

SCIENCE at FLASH

- Intense Source
- $\sim 10^{12}$ 10^{13} photons/pulse

Studies on dilute targets

(HCI, m-sel. cluster, HeH+...)

- Short Pulses

 $\Delta T = 10 - 20 \text{ fs}$

 $\sim 10 - 100 \,\mu J$ (> $10^{16} \,\text{W/cm}^2$)

Time-resolved studies (Two-Color Pump-Probe)

Non-Linear Processes (Multi-photon)

- Short Wavelengths

6 - 60 nm (20 - 200 eV)

Innershell Ionization

Photoionization Dynamics

hv₂ : fs – laser >10¹⁴ W / cm² >

 $hv_1 : FEL$ >10¹² W / cm²

I) Non-linear processes:

- Two-photon ionization
- Photoionization of dressed atoms
- 2) Dynamics in strong fields "Strong" field:

$$A + hv_1 + hv_2 \rightarrow A^+ + e^-$$

One-step process !!

Relaxation Dynamics of Core Resonances

 hv_2 : fs – laser >10¹⁴ W / cm²

 $hv_1 : FEL > 10^{12} W / cm^2$

3) Non-linear processes:

- Two-photon resonances
- Coupling of Autoionizing States

Photodissociation Dynamics

Time-resolved development of the electronic structure during dissociation or chemical reactions

Experiments at FLASH

FLASH + Optical Laser

Max-Born-Institut, Berlin I. Will, H. Redlin

Two-Color Photoelectron Spectroscopy

Two-color experiments

Intense optical field: Above Threshold Ionization of rare gases Above Threshold Ionization of Rare Gases

FLASH: 25.5 nm, 20 μJ, 50 μm focus, 20 fs Opt. Laser : 800 nm, 20μJ, 50 μm focus, 12 ps

Toma et al. PRA 62, 0618015 (2000)

Maquet/Taieb, J.Mod.Opt. 54, 1847 (2007)

Temporal resolution / Synchronization

IR 120 fs

FEL

20 fs

M. Meyer et al. PRA 74 011401R (2006), P. Radcliffe, et al., APL 90 131108 (2007) A. Maguet, R. Taïeb, J. Mod. Opt. 54 1847 (2007)

Polarization control in two-color photoionization

Polarization control: two-color two-photon

FLASH: 13.7 nm, 10-20 fs, 20µJ OL: 800nm, 4ps, 70µJ, 8 x 10¹⁰ W/cm²

$$\sigma(\theta) = 3S_d + (5S_s + S_d) \cos^2 \theta$$

 $S_{s} / S_{d} = 1.25 \pm 0.3$

90° \rightarrow only 'd' - emission 0° \rightarrow 1.5 times more 's' than 'd'

Polarization control: two-color multi-photon

Temporal Control of ATI

FLASH: 13.7 nm, 30 μJ, 50 μm focus, 20 fs Opt. Laser : 800 nm, ≤ 4 mJ, 50 μm focus, 120 fs - 4 ps

ATI : Strong NIR Dressing Field (Xe)

Optical laser: > 10¹⁴ W/cm²

Multi-photon processes

 $h_{V}(800nm) = 1.5eV$ $\Delta E(^{2}P_{3/2} - ^{2}P_{1/2}) = 1.3eV$

ATI : Strong NIR Dressing Field (Ne)

Multi-photon processes

A. Maquet, R. Taieb, J. Mod. Opt. 54, 1847 (2007)

XFEL: Laser-assisted resonant Auger decay

Laser Coupling of Final Ionic States

Ne 1s²2s²2p⁶

Southworth et al. PRA 52, 1272 (1995)

XFEL: Laser-assisted resonant Auger decay

Laser Coupling of Final Ionic States

A. Kazansky, N. Kabachnik, J. Phys. B (2009)

Angle-resolved Auger spectrum

OL: 20 fs, 1012 W/cm2

30.5

31

X-ray: 5 fs

Interference of electron emission within one cycle of the optical laser field!!!

Electron energy (a.u.)

29.5

Two-color experiments

Intense XUV field: Multi-photon Ionization

FLASH: Non-linear Processes

ion TOF spectrometer ions multiplier atoms of the stop EUV mirror

Ion spectroscopy in strong FEL fields

Sorokin, Bobashev, Feigl, Tiedke, Wabnitz, Richter, Phys. Rev. Lett. 99 213002 (2007)

> FEL : 93 eV, focus 2.6 μm ----> 7.8 x 10¹⁵ W / cm² ----> Xe⁺ Xe²¹

 λ (FEL) = 13.3 nm

IP(Xe 21+) ≈ 5 keV

Electron Spectroscopy on atomic Xe

hv (FEL) 93.3 eV ; ~ 10¹⁵ W / cm² One-photon Process Costello, Düsterer, Meyer, Richter et al.

d_{i}

Xe⁺ 4d⁹5s²5p⁶
$$^{2}D_{5/2} = 67.5 \text{ eV}$$

 $^{2}D_{3/2} = 69.5 \text{ eV}$

Two-photon Process

Electron Spectroscopy on atomic Xe

Costello, Düsterer, Meyer, Richter et al.

Two-photon Process

Electron Spectroscopy on atomic Xe

hv (FEL) 93.3 eV ; ~ 10^{15} W / cm²

2 x hv (FEL) 93.3 eV

 $x 10^{3}$ Xe, hv = 93.3eV x^{10} x^{10}

Two-photon Process

Costello, Düsterer, Meyer, Richter et al.

Two-photon one-color excitation : Kr* 3d⁹ 4d

One-photon ionization: $Kr + hv \rightarrow Kr^+ 4p^5 / 4s^1$

Two-photon ionization: $Kr + 2 h_V \rightarrow Kr^+ 4p^5 / 4p^44d$

5 μm; >10¹⁴ W/cm²

Resonant Auger Decay: Kr* 3d⁹ 4d

S. Fritzsche, P. Lambropoulos, A. Mihelic,

Kr** 3d⁹4s²4p⁶4d (J=0,2) ---> Kr⁺ 3d¹⁰4s²4p⁴4d + e⁻

Dissociation Dynamics in H₂

FEL: 13.7 nm, 90.5 eV **Opt.Las. : 800 nm, 1.55 eV** 400 nm, 3.1 eV H*(n=2) : E(bind) = 3.4 eV $H^{*}(n=3) : E(bind) = 1.5 eV$ H*(n=4) : E(bind) = 0.8 eV

E (kin.) < 1.5 eV

Photoionization of excited atomic fragments

Ultra-fast molecular dissociation

800 nm Laser

400 nm Laser

Fast fragmentation < 100 fs

Summary

- Above threshold ionization (ATI) of rare gases
 - Beyond Soft-Photon Approximation
- Non-linear (multi-photon) processes
 - Auger dynamics in dressed atoms (2-colour)
 - Ionization mechanisms (1-colour)
- Resonant two-photon excitation
 - 1-colour vs. 2-colour
- Molecular dissociation dynamics
 - Excitation of core resonances

Atomic Photoionization Dynamics in Intense Radiation Fields

Experiment

- LIXAM (Orsay, France) D. Cubaynes, M. Meyer
- DESY (Hamburg, Germany)
 - S. Düsterer, W.-B. Li, A. Azima, P. Radcliffe, H. Redlin, J. Feldhaus
- Dublin City University (Dublin, Ireland)
- J. Dardis, P. Hayden, P. Hough, M. Kelly,
- V. Richardson, E.T. Kennedy, J.T. Costello

Theory

- LCP-MR (Paris, France) R. Taïeb, A. Maquet
- State University Moscow (Russia)
 E.V. Gryzlova, S.I. Strakhova,
 A.N. Grum-Grzhimailo
- FORTH (Heraklion, Crete)
 P. Lambropoulos
- Jozef Stefan Institute (Ljubljana, Slov.) A. Mihelic
- GSI (Darmstadt, Ger.) / Univ. Oulu (Finl.) S. Fritzsche