An Optimal System for Evolutionary Cell Biology: the genus Paramecium

- Presence of a transcriptionally silent germline (micronucleus) and an expression-active somatic macronucleus.
- Geographically ubiquitous, large, free-living cells.
- Can be maintained as pure lines by autogamy.
- Direct effects of gene variants can be evaluated via macronuclear transformation.
- A product of two ancient whole-genome duplication events.
- Availability of pre-duplication outgroup species.
- Complete genome sequences for all species.
- One of the simplest genomic architectures in all eukaryotes.

Paramecium tetraurelia: a Descendant of Three Whole-Genome Duplications

• ~40,000 protein-coding genes in ~100 linkage groups, all grouping into sets of four syntenic groups (Aury et al., 2006, Nature).

Paramecium aurelia lineage: a cryptic species complex with at least 14 members.

Figure 5 | **Dating of genome duplication events.** The phylogenetic tree of the *Paramecium* genus was adapted from ref. 47. Phylogenetic analyses indicate that the old WGD occurred before the divergence of *Paramecium* and *Tetrahymena*, and the recent WGD before the divergence of *P. tetraurelia* and *P. octaurelia*. There are currently not enough data to date the intermediary WGD.

From Aury et al. (2006)

Key Unresolved Issues:

- When did the whole-genome duplications in the Paramecium lineage occur?
 - Are all Paramecium species "octoploids"?
 - Are just the *aurelia* species or just *P. tetraurelia* polyploid?
 - Are there phylogenetically independent genome-duplication events?
- How old are the *Paramecium* lineages and the underlying duplication events?
- What is the fundamental gene number in Paramecium?
- What are the fates of the duplicate genes?
- Is whole-genome duplication a causal factor in the emergence of the cryptic aurelia species complex?

Ohno's 2R Hypothesis and the Origin of Vertebrate Innovations

Susumu Ohno (1928-2000)

Analysis of Genome Stability with a Mutation-accumulation Experiment

- Starting with a single stem mother, sublines are maintained by single-progeny descent, preventing selection from removing spontaneous mutations.
- Mutations in the transcriptionally silent germline are invisible to selection.
- This protocol is continued for thousands of cell divisions.

Although *P. tetraurelia* Has the Lowest Known Mutation Rate Per Cell Division, Its Rate Per Sexual Episode is Compatible With Other Species

Further work underway:

Paramecium biaurelia
Paramecium sexaurelia
Tetrahymena thermophila

Nucleotide Diversity at Silent Sites in Protein-coding Genes Estimates $4N_eu$

u =base-substitution mutation rate

 $N_{\rm e}$ = genetic effective population size

Expected nucleotide heterozygosity at neutral sites:

2*u*

4N_eu for Paramecium Nuclear Genes is Exceptionally High

• Implies $N_e \approx 10^8$, the highest estimated value for a eukaryote.

Possibly downwardly biased:

Probably some selection on silent sites.

Population-genomic Sequencing – Parul Johri, Tom Doak, Sascha Krenek

Species	Locations
P. tetraurelia (11)	Australia (Littlehampton, Melbourne), Israel (Ein Afek), Japan (Honshu Island, Moriko City), Mozambique (Mafambiasse), Panama (Empire Range), Poland (Kraków), Spain (Madrid), USA (Berkeley, Bloomington, Spencer)
P. biaurelia (12)	Australia (Tasmania Island), Israel (Dan), Italy (Milan), Poland (Kraków), Russia (Syktykar), Spain (Avila), UK (Rieff), USA (Boston, Pinehurst, Spencer)
P. sexaurelia (13)	China (Beijing), Croatia (Krka River), Germany (Stuttgart), Greece (Loannina Lake), Indonesia (Palu), Japan (Yamaguchi), Mozambique (Mafambiasse), Puerto Rico, Russia (Astrahan Nature Reserve), Spain (Seville), Thailand (Phuket)
P. caudatum (12)	China (Beijing), Ecuador (Loja), Germany (Plön), Indonesia (Palu), Japan (Kanzawa), Norway (Etnedal), Peru, Portugal (Elvas), Spain (Embalse de Contreras), Sweden (Avesta), USA (Baton Rouge, Lake Monroe)
P. multimicronucleatum (11)	Australia (Sydney), Brazil (Rio de Janeiro), Germany (River Nuthe), Greece (Dorjan Lake), Italy (Perugia, Pisa), Mozambique (Chicamba Real Dam), Portugal (Coimbrã), South Africa (Stellenbosch), USA (Bloomington), Russia (Tulun)

Thanks to: Thomas Berendonk, Eike Dusi, Sergei Fokin, Alexey Potekhin, Eva Pryzbos

Cohesive Species Phylogenies Determined from Whole-genome Sequencing

Table 1 Genome statistics for P. caudatum as compared to P. biaurelia, P. tetraurelia, and P. sexaurelia

	P. caudatum	P. biaurelia	P. tetraurelia	P. sexaurelia
Genome size (Mb)	30.5	77.0	72.1	68.0
Genes	18,509	39,242	39,521	34,939
Gene length (exons + introns) (bp)	1,445.3	1,456.4	1,431.3	1,460.6
Exons/gene	3.5	3.6	3.3	3.6
Average exon length (bp)	399.0	377.9	418.8	379.3
Average intron length (bp)	24.7	31.4	24.2	30.3
Intergenic length (bp)	110.0	335.9	261.3	418.3
Genomic GC content (%)	28.2	25.8	28.0	24.1

Lengths given for genes, exons, introns, and intergenic regions are genome averages. Regions containing gaps were removed from the analysis before calculating averages.

- The two most recent whole-genome (WGD) duplication events preceded the emergence of the *Aurelia* species.
- These WGD events are unique to the *Aurelia* lineage and not shared by *P. caudatum* or *P. multimicronucleatum*.
- Very little post-WGD duplication: only ~300 tandem duplicates in each species, and only 8% of these are lineage specific.
- *P. caudatum* has ~1050 genes not found in any *Aurelia* species, and the latter have ~350 genes not shared by *P. caudatum*.

Evidence of On-going Gene Conversion Between Paralogs: Implications for the Age of WGD Events

2.5 x 10⁹ years?

 \sim 32 billion cell divisions \approx \sim 320 x 10⁶ years ago

A Powerful Resource for Studying the Evolutionary Demography of Gene Duplicates

- Almost no post-WGD chromosomal rearrangements.
- Almost no post-WGD single-gene duplications.
- Almost no transposable elements.

Patterns of gene loss for 6086 unambiguous co-orthologous genes present prior to the *aurelia*-specific whole-genome duplication events.

Inferring the Fates of Gene Duplicates

Stochastic, Divergent Losses of Duplicate Genes Leads to the Passive Origin of Reproductive Isolating Barriers by Inducing Microchromosomal Rearrangements

Dramatic Repatterning of Chromosomes by Divergent Resolution Drives Ongoing Emergence of Post-mating Isolating Barriers Among the *Aurelia* Lineages

- 2312 observed cases of divergent resolution between *P. sexaurelia* and *P. biaurelia / tetraurelia*.
- 2741 cases of ancestral / parallel loss.
- This balance is expected if the split between sexaurelia and biaurelia / tetraurelia occurred shortly after the last whole-genome duplication event.

- 113 divergent resolutions between P. biaurelia and P. tetraurelia.
- 5421 cases of ancestral / parallel loss.

The DDC Model

Expression Level is the Strongest Predictor of Duplicate-gene Retention Probability

The Expression Level of *P. caudatum* Genes Predicts the Retention Probability of Duplicate Genes in the *Aurelia* Species

P. biaurelia

P. sexaurelia

P. tetraurelia

Despite saturation at silent sites, expression levels of orthologous proteins remain correlated.

Quantitative Subfunctionalization: Joint Meandering of Paralog Expression Along the Drift Barrier

Ortholog 1 Expression

Extraordinary Constraints on Introns

Silent-site heterozygosity in protein-coding genes = 0.13

Table 1 Genome statistics for P. caudatum as compared to P. biaurelia, P. tetraurelia, and P. sexaurelia

	P. caudatum	P. biaurelia	P. tetraurelia	P. sexaurelia
Genome size (Mb)	30.5	77.0	72.1	68.0
Genes	18,509	39,242	39,521	34,939
Gene length (exons + introns) (bp)	1,445.3	1,456.4	1,431.3	1,460.6
Exons/gene	3.5	3.6	3.3	3.6
Average exon length (bp)	399.0	377.9	418.8	379.3
Average intron length (bp)	24.7	31.4	24.2	30.3
Intergenic length (bp)	110.0	335.9	261.3	418.3
Genomic GC content (%)	28.2	25.8	28.0	24.1

Lengths given for genes, exons, introns, and intergenic regions are genome averages. Regions containing gaps were removed from the analysis before calculating averages.

- Paramecium sps. have the smallest known intron sizes in eukaryotes.
- P. caudatum has one of the shortest average intergenic distances known in eukaryotes.

Strong Purifying Selection in Intergenic Regions

Nucleotide heterozygosities:	Silent sites	Intergenic regions
P. biaurelia	0.0079	0.0047
P. sexaurelia	0.0245	0.0155
P. tetraurelia	0.0051	0.0031
P. caudatum	0.1329	0.0311
P. multimicronucleatum	0.1589	0.0337

Regulatory Motifs Can be Detected Bioinformatically

- Putative activators have positive effects that decrease with distance from the gene.
- Putative repressors have negative effects that increase with distance from the gene.

Motif 0	Associated Gene Numbe	er	Average Distance (bp)	Reg. Coef.	Significance
CTCCTTT	110		00	0.24	2.405.4
GTCGTTT	110	H	92	-0.34	2.49E-4
ATCGTTTT		H	65	-0.28	8.58E-4
TGATTAAT	1601	H	92	-0.06	1.26E-2
TTCTAGAA	362	H	106	-0.24	3.81E-6
AAAGATTI	955	H	98	-0.32	2.20E-16
TGAGTAT	941	Н	101	-0.07	2.16E-2
GAACTT	1498	L	115	0.07	4.07E-3
TAATTCTA:	ΓΤΑ 110	L	88	0.27	5.09E-3
TAACAG	1418	L	92	0.05	4.04E-2
C[TA]GTAG	A 274	L	120	0.18	3.05E-3
ATTCTAC	624	L	123	0.06	1.49E-1
GATACA	1059	L	117	0.08	1.34E-2

Using Injected Mini-chromosomes to Study Gene Expression

Subcellular localization of fluorescent protein fusions indicates that functional change has occurred between paralogous Rab genes in *P. tetraurelia* (Lydia Bright).

A Strategy for Identifying Transcription-factor Binding Sites

- All 4096 possible 6-mers are contained in 184 unique 15-mers.
- The full set of constructs can be co-injected into the macronucleus, and interrogated for activity with high-throughput sequencing of the bar-coded regions.

Host	TFBS		
Cell	Source	Context	Linear model:
Α	Α	native use	$z_{AA} = \mu + h + f + x$
В	В	native use	$z_{BB} = \mu - h - f + x$
Α	В	cross-species	$z_{AB} = \mu + h - f - x$
В	Α	cross-species	$z_{BA} = \mu - h + f - x$

Full-parameter interpretation:

Grand mean:	$\mu = (z_{AA} + z_{BB} + z_{AB} + z_{BA})/4$

Host-cell (trans) effect:
$$h = (z_{AA} + z_{AB} - z_{BB} - z_{BA})/4$$

Binding-site (cis) effect:
$$f = (z_{AA} + z_{BA} - z_{BB} - z_{AB})/4$$

cis x trans interaction:
$$x = (z_{AA} + z_{BB} - z_{AB} - z_{BA})/4$$

Partial-parameter interpretation:

Net host-cell effect:
$$(h + x) = (z_{AA} - z_{BA})/2$$

Net binding-site effect:
$$(f + x) = (z_{AA} - z_{AB})/2$$

Host Species

Injected TFBSs

Casey McGrath

Tom Doak

Jean-Francois Gout

Lydia Bright

CC Chen

Hongan Long

Parul Johri

Georgi Marinov

Francesco Catania

John Preer

