Topological transition in a non-Hermitian quantum walk

Leonid Levitov (MIT)

Chernogolovka

19 February, 2010

Collaboration: Mark Rudner (MIT, now Harvard)

Journal Reference: M. S. Rudner, L. S. Levitov, Phys. Rev. Lett. 102, 065703 (2009).

Motivation of this work:

- Identify a simple system in which quantum behavior is robust and can be probed;
- A new kind of topological transition;
- Straightforward to realize in experimental systems of current interest

QMHO energy levels quantized as integers

Harmonic Oscillator

Spectrum

Deformation destroys integer quantization

Anharmonic Oscillator

Spectrum

Topological transitions and quantization

Two phases distinguished by topological invariant

Hall plateaus insensitive to shape, disorder, ...

Quantum Hall Effect

Non-hermitian quantum walk

Study displacement in ID quantum walk with decay

Total decay probability is sum over local terms

$$\langle \Delta m \rangle \equiv \sum_{m} m P_{m}; \quad P_{m} = \int_{0}^{\infty} \gamma |\psi_{m}^{B}(t)|^{2} dt$$

Time evolution block-diagonal in Fourier space

 $i\hbar \frac{d}{dt} \left(\begin{array}{c} \psi_k^A \\ \psi_k^B \end{array} \right) = \left(\begin{array}{c} \varepsilon_A & v_k \\ v_k^* & \tilde{\varepsilon}_B \end{array} \right) \left(\begin{array}{c} \psi_k^A \\ \psi_k^B \end{array} \right)$

 $v_k = v + v'e^{ik}$ $\tilde{\varepsilon}_B = \varepsilon_B - i\gamma/2$

Expected displacement related to winding number

Use decomposition:
$$\psi_k^B(t) = u_k(t)e^{i\theta_k(t)}$$

Quantum result shows non-analytic behavior

$$\psi_k^B(dt) = -iv_k^* dt/\hbar \qquad \qquad \theta_k^0 = \arg\{-i(v+v'e^{-ik})\}$$

System supports dark state for v = v'

 $k = \pi$

$$\psi_m \quad 0 \quad +1 \quad 0 \quad -1 \quad 0 \quad +1 \quad 0 \quad -1$$

Lifetime diverges at the transition

Simulation: robustness to noise and decoherence

Transition unaffected by time dependent Δ , projection

Generalization to N>2

Generalization to N>2

This slide intentionally left blank

Absorption threshold for Jaynes-Cummings system

$$\begin{split} \hat{H}_{\rm JC} &= \hbar \Omega \, \hat{a}^{\dagger} \hat{a} \,+\, \frac{1}{2} \Delta \left(\hat{\sigma}^z - 1 \right) \,+\, \left(\lambda e^{i\omega t} \hat{\sigma}^+ \hat{a} \,+\, \mu e^{i\omega' t} \hat{\sigma}^+ \,+\, h.c. \right) \\ \\ \tilde{\sigma}^+ &= e^{i\omega' t} \hat{\sigma}^+, \quad \tilde{a} = e^{i(\omega - \omega') t} \hat{a}; \quad \Omega = \omega - \omega' \text{ (two-photon resonance)} \end{split}$$

Quantum vortex transport in Josephson arrays

Alexander van Oudenaarden and J. E. Mooij, Phys. Rev. Lett. 76, 4947 (1996).

Nuclear polarization and electron transport in spin-blockaded quantum dots

- Two-electron singlet and triplet levels positioned so that electron can move only by flipping spin
- Spin flips by sweeping through S-T level crossing
- Combined effect of hyperfine and spin-orbital interaction

Coherent competition between SO and HF: Landau-Zener transition for static nuclear field

$$v_{\theta} \equiv \langle T_{+} | H | S \rangle = v_{SO} + v_{HF} e^{i\theta}, \qquad \begin{array}{c} \begin{array}{c} \text{nuclear polarization} \\ \text{XY component} \\ \text{described by angle } \theta \\ \end{array}$$

$$e^{i\theta} \text{ obtained by factoring } I^{-} = \sum_{i} I_{i}^{-} \\ B \parallel Z \text{ axis} \\ H_{ST_{+}} = \begin{pmatrix} 0 & v_{\theta} \\ v_{\theta}^{*} & \Delta(t) \end{pmatrix}, \quad \Delta(t) = \varepsilon_{S}(t) - \varepsilon_{T_{+}}(t) \\ P_{LZ} = 1 - \exp\left(-2\pi |v_{SO} + v_{HF}e^{i\theta}|^{2}/\beta\right) \\ \end{array}$$

$$\begin{array}{c} \text{the velocity at level} \\ \text{crossing} \\ \end{array}$$

$$\begin{array}{c} \frac{\mathrm{Im}[v_{\theta}]}{\sqrt{\varphi(\theta)}} & \frac{1}{\mathrm{Re}[v_{\theta}]} \\ v_{SO} & \frac{1}{\mathrm{Re}[v_{\theta}]} \\ \end{array}$$

Relative Phase θ

Dependence on transverse nuclear polarization Nuclear pumping: dynamics, backaction?

Mapping to nonhermitian walk

- Nuclear polarization buildup?
- The nuclear and electron spin-flip rates are **not the same** due to SO;
- Landau-Zener transitions for Bloch states on a 1D bipartite lattice

Nuclear spin-flip rate for a state with constant m_z ("averaged over angle θ ")

Nonmonotonic dependence on the sweep velocity $\boldsymbol{\beta}$

Resembles results by Foletti et al 2008

New phenomena in nuclear spin pumping in the presence of SO interaction

- Electron spin flips depend on the **transverse** nuclear polarization; influence on pumping seen by Foletti et al 2008
- Nonmonotonic dependence on the sweep velocity
- Oscillations and reverse pumping under periodic sweeping back and forth
- Agrees with experiment (Foletti et al arXiv:0801:3613)

Rudner, Neder, LL & Halperin arXiv:0909:0660

This slide intentionally left blank