Deuteron Compton Scattering in a potential model

A.I. L'vov, P.N. Lebedev Physical Institute, Moscow, Russia and M.I. Levchuk, B.I. Stepanov Institute of Physics, Minsk, Belarus

A few words about polarizabilities

The electric polarizability

$$\alpha = 2\sum_{n>0} \frac{\langle n | ez | 0 \rangle}{E_n - E_0}.$$

In a few particular cases the summation can be performed analytically. For instance, in the case of the hydrogen atom one obtains a well known result

$$\alpha({}^{1}H)=\frac{9}{2}a_{B}^{3},$$

where $a_B = 1/(em_e)$ is the Bohr radius.

The spin averaged Compton scattering amplitude on a nucleon target is of the following form

$$T(\omega) = -\frac{Z^2 e^2}{M_N} \mathbf{e} \cdot \mathbf{e'}^* + 4\pi \,\alpha \,\omega^2 \mathbf{e} \cdot \mathbf{e'}^* + 4\pi \,\beta \,\left[\mathbf{k} \times \mathbf{e}\right] \cdot \left[\mathbf{k'} \times \mathbf{e'}^*\right] + O(\omega^3)$$

where α and β are the electric and magnetic polarizabilities. The Baldin sum rule constrains $\alpha + \beta$

$$\alpha + \beta = \frac{1}{2\pi^2} \int_0^\infty \frac{\sigma_{tot}(\omega)}{\omega^2} d\omega$$

Numerically

$$\alpha_p + \beta_p = 14.0 \pm 0.3, \quad \alpha_n + \beta_n = 15.2 \pm 0.5$$

(units are 10^{-4} fm³). PDG2012 gives

$$\alpha_p - \beta_p = 10.1 \pm 0.6$$

The deuteron is a natural source of neutrons. There are two reactions to study the neutron polarizabilities.

 $\gamma d \rightarrow \gamma np$

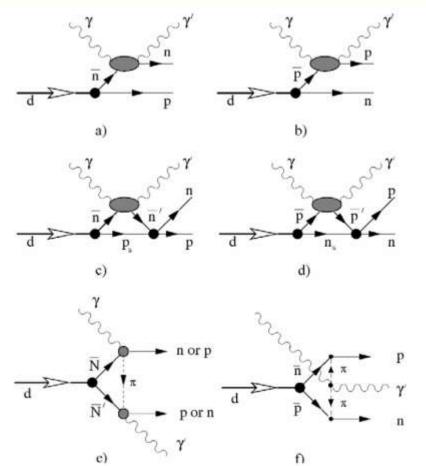


Fig. 1. Main graphs contributing to the reaction $\gamma d \rightarrow \gamma' np$.

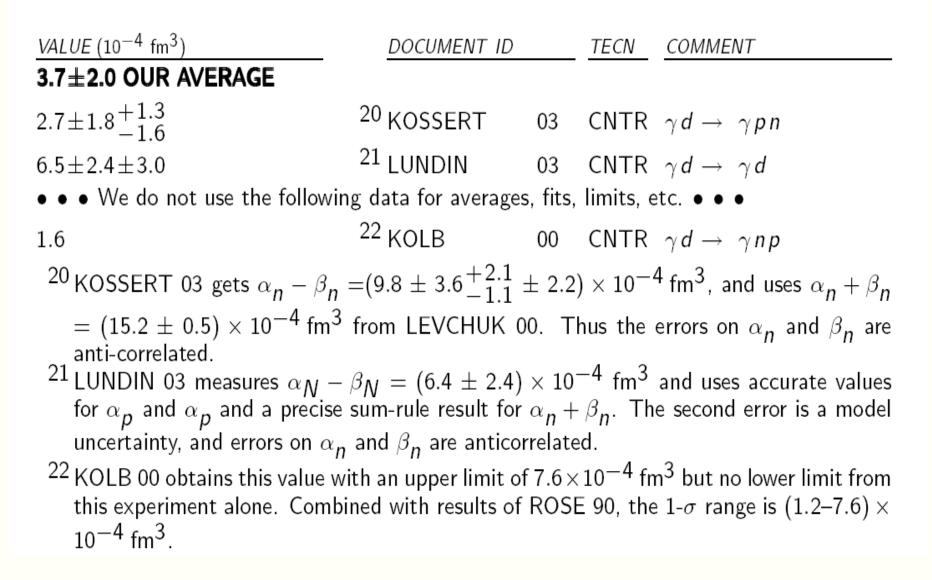
n ELECTRIC POLARIZABILITY α_n

Following is the electric polarizability α_n defined in terms of the induced electric dipole moment by $\mathbf{D} = 4\pi\epsilon_0 \alpha_n \mathbf{E}$. For a review, see SCHMIEDMAYER 89.

For a very complete review of the "polarizability of the nucleon and Compton scattering," see SCHUMACHER 05. His recommended values for the neutron are $\alpha_n = (12.5 \pm 1.7) \times 10^{-4}$ fm³ and $\beta_n = (2.7 \mp 1.8) \times 10^{-4}$ fm³, which agree with our averages within errors.

VALUE (10^{-4} fm^3)	DOCUMENT ID		TECN	COMMENT
11.6 \pm 1.5 OUR AVERAGE				
$12.5 \pm 1.8 {+1.6 \atop -1.3}$	¹⁶ KOSSERT	03	CNTR	$\gamma d \rightarrow \gamma p n$
$8.8 \pm 2.4 \pm 3.0$	17 LUNDIN	03	CNTR	$\gamma d \rightarrow \gamma d$
$12.0 \pm 1.5 \pm 2.0$	SCHMIEDM	91	CNTR	n Pb transmission
$10.7 \stackrel{+}{-} \stackrel{3.3}{10.7}$	ROSE	90B	CNTR	$\gamma d \rightarrow \gamma n p$
ullet $ullet$ $ullet$ We do not use the following data for averages, fits, limits, etc. $ullet$ $ullet$ $ullet$				
12.6	10			
13.6	¹⁸ KOLB	00	CNTR	$\gamma d \rightarrow \gamma n p$
0.0 ± 5.0	¹⁸ KOLB ¹⁹ KOESTER	00 95	CNTR CNTR	$\gamma d \rightarrow \gamma n p$ n Pb, n Bi transmission
	¹⁸ KOLB ¹⁹ KOESTER ROSE	95	CNTR	$\gamma d \rightarrow \gamma n p$ n Pb, n Bi transmission See ROSE 90B
$0.0\pm$ 5.0	¹⁹ KOESTER ROSE KOESTER	95 90 88	CNTR CNTR CNTR	n Pb, n Bi transmission

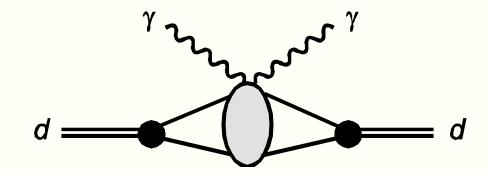
n MAGNETIC POLARIZABILITY β_n



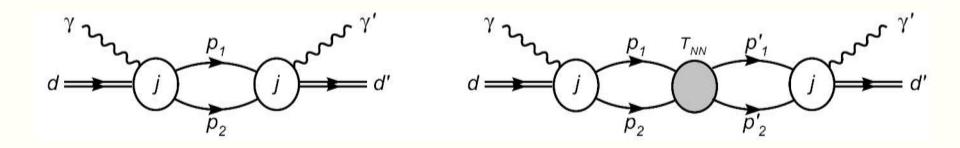
Deuteron Compton scattering is another reaction to study the neutron polarizabilities.

$$\gamma d \rightarrow \gamma d$$

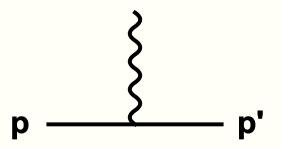
A potential model for this reaction was built by A.I. L'vov and M.I.L. in Nucl. Phys. A 674, 449 (2000). Recently it has been updated.



Resonance diagrams



One-body current



$$\boldsymbol{\epsilon} \cdot \boldsymbol{j}^{[1]}(\mathbf{k};\mathbf{p}',\mathbf{p}) = -\frac{eZ}{2M} \,\boldsymbol{\epsilon} \cdot (\mathbf{p} + \mathbf{p}') - \frac{e}{2M}(Z + \kappa) \, i\omega\boldsymbol{\sigma} \cdot \mathbf{s} - \frac{e}{8M^2}(Z + 2\kappa) \, i\omega\boldsymbol{\sigma} \cdot \boldsymbol{\epsilon} \times (\mathbf{p} + \mathbf{p}')$$

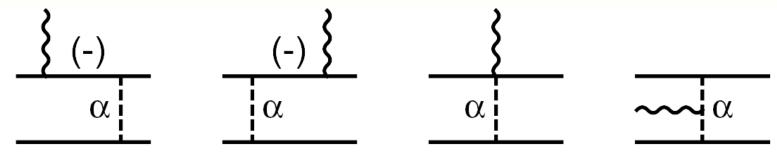
Bonn OBE potential

One pion exchange term

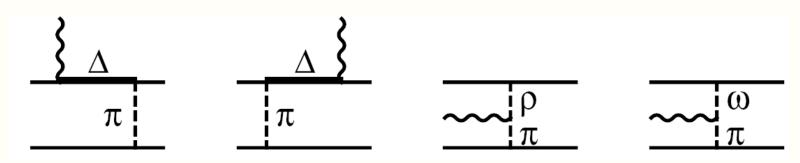
$$\begin{split} V_{\pi}(\vec{q}) &= -\frac{g_{\pi}^{2}}{4M^{2}} \ \vec{\sigma}_{1} \cdot \vec{q} \ \vec{\sigma}_{2} \cdot \vec{q} \ \vec{\tau}_{1} \cdot \vec{\tau}_{2} \ G_{\pi}(\vec{q}), \\ G_{\pi}(\vec{q}) &= \frac{F_{\pi}^{2}(\vec{q})}{\vec{q}^{2} + m_{\pi}^{2}}, \end{split} \qquad F_{\pi}(\vec{q}) = \frac{\Lambda_{\pi}^{2} - m_{\pi}^{2}}{\Lambda_{\pi}^{2} + \vec{q}^{2}}. \end{split}$$

The meson exchange current (MEC) operator

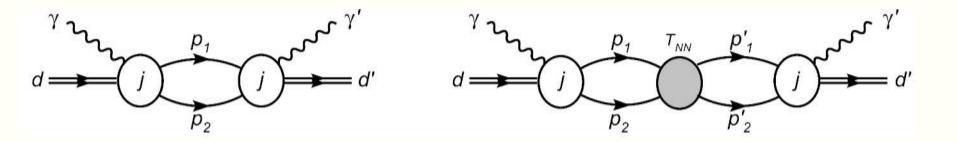
Potential contributions



Nonpotential contributions



Again about the resonance diagrams



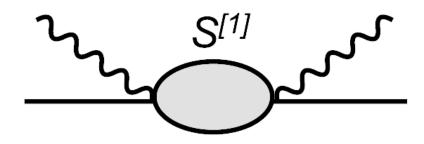
The amplitude of deuteron photodisintegration $T_{\gamma d \rightarrow pn}$ was built by M.I.L. in Few-Body. Syst. 19, 77 (1995). The model provides good description of available experimental data both for the direct and inverse reactions.

There was a bug in the computer code at evaluation of the resonance diagrams with the Δ -excitation.

The amplitude T_{NN} was calculated for a separable approximation of the Paris potential rather than for the Bonn OBEPR.

Seagull operators

One-body seagull



$$\begin{aligned} \epsilon'^{*\mu} \epsilon^{\nu} S^{[1]}_{\mu\nu}(-k',k) &= -\frac{e^2 Z^2}{M} \epsilon \cdot \epsilon'^* + \frac{e^2 Z}{4M^2} (Z+2\kappa)(\omega+\omega') \, i \boldsymbol{\sigma} \cdot \epsilon'^* \times \epsilon \\ &+ 4\pi \omega \omega' (\alpha+\delta\alpha_0) \, \boldsymbol{\epsilon} \cdot \epsilon'^* + 4\pi \omega \omega' \beta \, \mathbf{s} \cdot \mathbf{s}'^* + \epsilon'^{*\mu} \epsilon^{\nu} \delta S^{[1]}_{\mu\nu}(-k',k) \end{aligned}$$

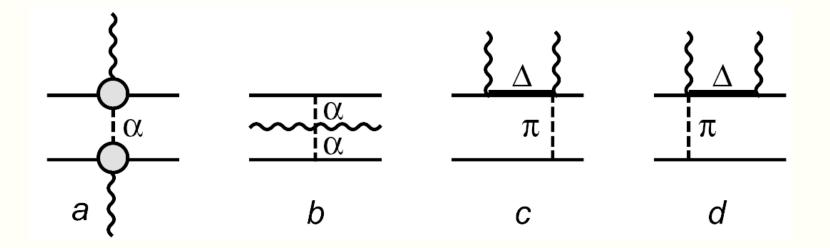
where

$$\delta\alpha_0 = -\frac{e^2}{4\pi} \frac{\kappa^2 + Z\kappa}{4M^3} = \begin{cases} -0.85, & \text{proton,} \\ -0.62, & \text{neutron} \end{cases}$$

is a relativistic correction.

 $S^{[1]}$ contains the polarizabilities as parameters.

Two-body seagull $S^{[2]}$



Results

The Thomson limit

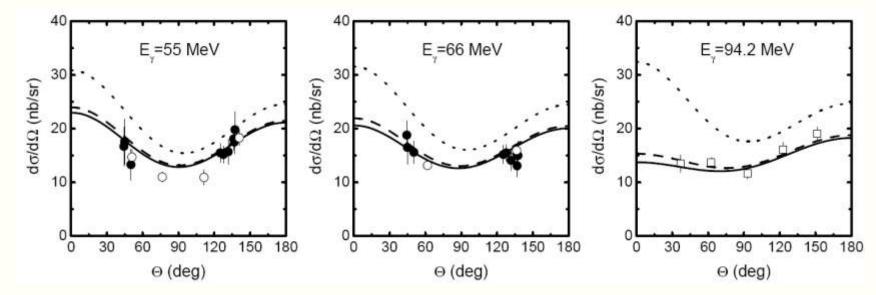
$$T(\omega = 0) = -\frac{e^2}{M_d} \mathbf{e} \cdot \mathbf{e'}^*$$

There was -0.94 instead of -1.

Separate contributions:

resonance diagrams without rescattering+1.68resonance diagrams with rescattering-0.20one-body seagull-2two-body seagulls-0.48Putting together all these numbers we obtain-1 !!!

Extracted polarizabilities



Two-parametric fit:

 $\alpha + \beta = 16.9 \pm 1.5, \ \alpha - \beta = 10.5 \pm 1.7, \ \chi^2 = 33/(29-2)$

One-parametric fit (the Baldin sum rule gives $\alpha + \beta = 14.2 \pm 0.5$):

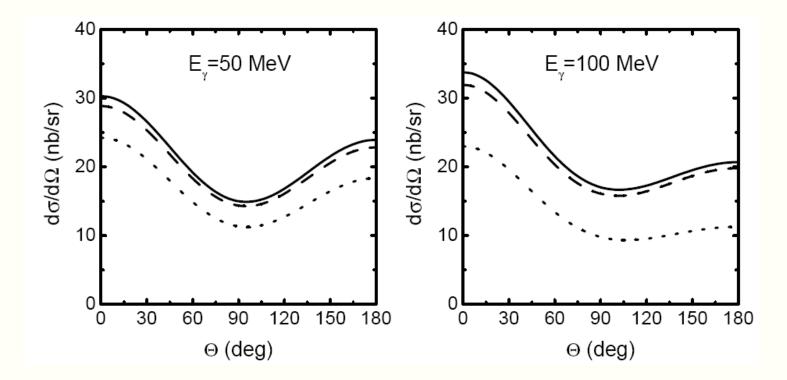
$$\alpha - \beta = 9.4 \pm 1.6, \ \chi^2 = 35 / (29 - 1)$$

Proton value

$$\alpha_p - \beta_p = 10.1 \pm 0.6$$

There is no visible isovector component in nucleon polarizabilities!

One has to estimate theoretical uncertainties!



- contributions from one-body current and seagull
- contributions from pion current and seagull are added
 contributions from heavy meson currents and seagulls are added

Thank you for your attention!