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The open book approach sets a deep relationship between 2-dimensional topology and geo-
metric structures in dimension 3 and 4. Here is a striking example, which is a consequence of
difficult results in contact geometry. Consider a compact oriented surface S with non-empty
boundary and the relative mapping class group MCG(S, ∂S) of the isotopy class of diffeomor-
phisms of S which are the Identity on the boundary.

There exists a diffeomorphism f of some S which is which is the identity on ∂S and
right-veering, but which is not composed of positive Dehn twists.

Here are the necessary definitions. A diffeomorphism f : S → S which is the identity on the
boundary is said to be right-veering if for every proper simple α (proper means that the ends
points are in ∂S) the image f(α) lies on the right of α, up to isotopy, in the following sense.

If α̃ is a lift of α to the universal cover S̃ and if β̃ is a lift of the image f(α) from the same

origin, β̃ lies on the right of α̃ (except its origin), which makes sense since α̃ separates S̃ into
two parts, a right one and a left one (with respect to the orientation of Of course, a positive
Dehn twist along any simple closed curve which is not null-homotopic in S has this property.

The above-mentioned statement is not reachable in this course which intends to be only
an introduction to open books. Just for exciting curiosity, this statement is a consequence of
the fact that there are tight contact structures in dimension 3 which are not Stein fillable in
dimension 4 (Giroux, Honda-Kazez-Matić, Etnyre-Honda).


