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Introduction

• Black Holes in a quantum theory of gravitation are
expected to have entropy.

SBH =
AH

4GN

• This formula is obtained in two approximations:
• Low energy,
• Semi-classical.

• A complete theory of quantum gravity will encode
corrections to this formula.

• They arise by weakening the two approximations:
• Higher-derivative corrections to GR,
• Quantum Corrections.
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Introduction

• Higher-derivative corrections can be computed by means
of the Wald formula.

• What about quantum corrections?

• It would be helpful to seek simpler settings where the
problem can be solved explicitly.

• This might teach us useful lessons which can be
extrapolated to the more general case.

• Extremal black holes are an ideal laboratory:
• Their classical entropy is already very simple,
• The quantum answer is explicitly known from string theory.

• Using AdS/CFT one can compute quantum entropy.



The Heat
Kernel on the
AdS(2) Cone

and
Logarithmic

Corrections to
Extremal

Black Hole
Entropy

Shailesh Lal

A Primer on
Gaussian
Integration

The Heat
Kernel and
Log Terms

The Heat
Kernel on
Conical
Spaces

The (No)
Effect of The
Graviphoton
Background

Counting Zero
Modes

Log Terms for
N = 2, 4, 8
Supergravity

Conclusions

Extremal Black Holes

• Black holes generically have two event horizons.

• Consider a limit where the horizons coincide.

• This is an extremal black hole.

• The near horizon geometry is always AdS2 ⊗M.

• We can use AdS/CFT to compute quantum entropy.

• Prescription: Calculate the string theory path integral in
the black hole near horizon geometry. [Sen]

• This is the degeneracy associated to the event horizon.

• Reproduces SBH in the classical limit.

• Can we compute more extensively? Quantum Effects?
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Introduction

• Consider black holes for which the full quantum answer is
known from string theory.

• This takes the form of a degeneracy d (Q,P)

d (Q,P) ∼ e
AH (Q,P)

4

• (Q,P) are black hole electric and magnetic charges.

• Taking the log of both sides, we recover SBH .

• If we zoom in closer on the degeneracy

d (Q,P) ' Am
He

AH
4 +

∑
N

Ap
He

AH
4N

• m and p are numbers which have been computed.

• In principle, p can depend on N.
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Introduction
Can we match this answer from the string path integral?

Zstr .
?' Am

He
AH

4 +
∑
N

Ap
He

AH
4N

Useful to recall the origin of e
AH

4 :

• We will use the saddle-point approximation.

• Black holes with horizon geometry AdS2 ⊗ S2.

• A saddle-point of Zstr . is the near horizon geometry itself.

ds2 = a2
(
dη2 + sinh2 ηdθ2

)
+ a2

(
dψ2 + sin2 ψdφ2

)
• a2 ' AH upto constants. We will work in terms of a.

• The value of Zstr . at the saddle point is e
AH

4 .

• Quantum fluctuations about the saddle point give Am
H .
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Introduction

Question: Do the other terms have a similar origin?

• Consider the ZN orbifold of the near-horizon geometry

(θ, φ) 7→
(
θ +

2π

N
, φ− 2π

N

)
• This is an admissible saddle-point of Zstr ..

• At the saddle-point Zstr . = e
AH
4N .

• Reproducing Ap
H is the subject of this talk.

Terminology:

• Am
H and Ap

H are called ‘log terms’.

• String Path Integral ⇒ Quantum Entropy Function.
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Introduction

Question: Just like Am
H , can we reproduce Ap

H from quantum
fluctuations about the alternate saddle points?

• Why is this important?
• Requires us to go beyond the classical limit and study

quantum corrections to black hole entropy.
• We can push the analysis to cases where the string theory

answer is not available. New predictions!

• Why is this doable? Sen, 1205.0971
• The log terms are determined purely from one-loop

fluctuations of massless fields around the saddle-point.
• Knowledge of two-derivative supergravity is enough to

compute this contribution to the string path integral!
• Remarkable simplification as string theory has an infinite

number of massive fields of arbitrary spin.

Bonus: find new maths results while solving the problem!
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Gaussian Integrals

All the techniques we use can be explicitly demonstrated here.

• Consider an integral Z =
∫ ∏n

i=1 dxi e
−xiMijxj .

• Then Z = det−
1
2 M.

We will now ‘define’ the determinant of M.

• Let M have eigenvalues κm with degeneracy dm.

• Since determinant = product of eigenvalues

ln detM =
∑

dm lnκm,

∑
dm lnκm =

∑
m

∫ ∞
0

dt

t
dme

−tκm .

We will evaluate det(M) by explicitly enumerating κm and dm.
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Gaussian Integrals (Pitfalls!)

Let’s look closer at Z = det(M). Suppose Mij = κiδij .

Z =

∫ ( n∏
i=1

dxie
−κix2

i

)
=

√
1∏n

i=1 κi
= det−

1
2M.

• This is true only if κi > 0 ∀ i .
• What if say κn = 0? i.e. M has a zero mode?

In that case

Z =

∫ (n−1∏
i=1

dxie
−κix2

i

)∫
dxn =

(
det′M

)− 1
2

∫
dxn.

• We get a determinant over non-zero modes,

• The zero mode contribution has to be analyzed separately.
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The One-Loop Determinant

• Consider a path integral for a field φ (x)

Z [Φ] =

∫
DΦe−

i
~S[Φ].

• As ~→ 0, this is dominated by classical configurations Φcl

δ

δΦ
S [Φ] |Φ=Φcl

= 0

• In an expansion about Φcl , we have

S [Φcl + φ] ' S [Φcl ] +

∫
dnx
√
gφ(x)Dφ(x).

• We can easily evaluate the one-loop path integral.

Z1−` [φ] = det−
1
2 (D) .
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The Degeneracy

• We will define detD exactly as we defined detM.

ln detD =
∑
m

∫
dt

t
dme

−tκm

• A prescription for the degeneracy dm:
• Let ψn,m denote a complete set of orthonormal

eigenfunctions of D with eigenvalue κm.
• Then dm is given by

dm =
∑
n

∫
dx
√
gψ∗n,m (x)ψn,m (x) .

• This is perfectly well defined on S2.

• AdS/CFT will make it well defined on AdS2 ⊗ S2.
⇒ new maths!
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Extracting The Log Term

• Consider Zstr . ∼ Ape
A

4N . We need the term Ap.

Zstr . ∼ Ap
He

AH
4N ⇒ lnZstr . = p lnAH + · · · .

lnZstr . = ln detD + · · · ⇒ ln detD = p lnAH + · · · .

• Only the one-loop determinant contributes to lnAH .

• Only massless fields contribute to lnAH .

• Further simplification: define the heat kernel

K (t) =
∑
m

dme
−tκm .

• Only the t0 term in K(t) contributes.

p =
1

2
K (0; t).

• This limit should be taken carefully.
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Extracting The Log Term

• In principle, the zero mode integral can also contribute.

• Suppose a field φ has one zero mode of D.

Zzero
str . = A

βφ
2

H Z0.

• βφ is a number which is known. Z0 does not scale with
AH .

• If φ has n0
φ zero modes, then

Zzero
str . = A

βφ
2
n0
φ

H Z0.

• Recall AdS2 ⊗ S2 radius a: AH ∼ a2.

• A–dependence of Zzero
str . arises from the length scale a that

the saddle-point has.
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Extracting The Log Term

• We trade in the area AH for the length scale a as AH ∼ a2.

• Also K (t) computes ln detD. We need ln det′D.

• Consider a path integral over a field φ.

• Suppose for some m0, κm0 = 0. Then dm0 = n0
φ.

• Define K ′(t) = K (t)− dm0 .

• We then have

lnZ =
(
K ′(0; t) + βφn

0
φ

)
ln a + · · · .

• If we have multiple fields

lnZ =

K (0; t) +
∑
φ

(βφ − 1) n0
φ

 ln a + · · · .
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A toy model: The scalar on S2

• Let’s put this to work for the Laplacian!

• Consider a scalar field on a sphere of radius a.

• Eigenvalues: E = ` (`+ 1) degeneracies: (2`+ 1).

• Then the heat kernel is

K (t) =
∞∑
`=0

(2`+ 1) e−
t
a2 `(`+1)

• The small-t expansion is

K (t) =
a2

t
+

1

3
+

t

15a2
+ · · · .

• The log term is 1
3 ln a.

Caveat: ` = 0 is a zero mode, but β = 1 for the scalar.
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A toy model: The scalar on AdS2

• Another simple setting to understand the overall strategy.

• The metric on AdS2 is

ds2 = a2
(
dη2 + sinh2 ηdφ2

)
.

• We need the spectrum of the scalar Laplacian, i.e.
eigenvalues and degeneracies.

• eigenvalues are Eλ = 1
a2

(
λ2 + 1

4

)
.

• degeneracies are problematic! Eigenfunctions are

Ψλ,m = e imθ Fλ,m (η) , m ∈ Z.

• ‘degeneracy’ ∼ ‘number of eigenfunctions’ of given Eλ.

• There are an infinite number of them!
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A toy model: The scalar on AdS2

We will use the following definition of degeneracy

dλ =
∑
m∈Z

∫
AdS2

Ψ∗λ,m (x) Ψλ,m (x) ,

since AdS2 is a homogeneous space,

dλ =

(∑
m∈Z
|Ψλ,m (0) |2

)
(VolAdS2).

• |Ψλ,m (0) |2 = 0 unless m = 0.

• |Ψλ,m (0) |2 = 1
2πa2λ tanhπλ if m = 0.

Then

dλ =
(VolAdS2)

2πa2
λ tanhπλ.
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Regulating the AdS Volume
The divergence in dλ hides in the infinite volume of AdS2.

VolAdS2 =

∫ ∞
0

dη

∫ 2π

0
a2 sinh η.

We regulate it by cutting off the AdS2 radius at a large η0.

VolAdS2 =

∫ η0

0
dη

∫ 2π

0
a2 sinh η = 2πa2 (cosh η0 − 1)

⇒ Vol .AdS2 = 2πa2 (eη0 − 1) +O
(
e−η0

)
.

The regularised volume is the order-1 term. ⇐ AdS/CFT.

VolAdS2 = −2πa2.

The regularised degeneracy is then

dλ = −λ tanhπλ ⇒ Plancherel Measure!
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A toy model: The scalar on AdS2

Then the regulated heat kernel is

K (t) =

∫ ∞
0

dλ dλe
−tEλ = −

∫ ∞
0

dλλ tanhπλ e−
t
a2 (λ2+ 1

4 ).

The short-time expansion of K (t) is

K (t) =

(
−a2

2t
+

1

6
− t

30a2

)
+ · · · .

• The log term is 1
6 ln a.

• There are no zero modes.

∴ we have a well-defined heat kernel and log term.
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The Analytic Continuation

The scalar heat kernel on S2 is

K (t) =

(
a2

t
+

1

3
+

t

15a2

)
+ · · · .

The scalar heat kernel on AdS2 is

K (t) =
1

2

(
−a2

t
+

1

3
− t

15a2

)
+ · · · .

• The bracketed terms are related by a 7→ ia.

• The overall half is an artefact of the analytic continuation.

• Origin: VolS2 = 4πa2 7→ −4πa2 under a 7→ ia.

• But VolAdS2 = −2πa2. This is the reason for the 1
2 .

This will be useful for us because we can’t use homogeneity to
evaluate the heat kernel on the quotient space.
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Summary: I

• Our overall goal is to extract log terms from Zstr .

• We have seen how the heat kernel will help us do that.

• The methods we presented can compute the log term
about the leading saddle point. 1005.3044, 1106.0080

• We want the log term about ZN orbifolds of AdS2 ⊗ S2.

• These heat kernel computations rely on homogeneity of
spacetime and break down here.

• We will first extend the heat kernel techniques.
⇒ generalise the Plancherel formula!

• We will then apply them to saddle-points of Zstr .
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The ZN Orbifold

The AdS2 ⊗ S2 spacetime is described by the metric

ds2 = a2
(
dη2 + sinh2 ηdθ2

)
+ a2

(
dψ2 + sin2 ψdφ2

)
We impose the following ZN orbifold

(θ, φ) 7→
(
θ +

2π

N
, φ− 2π

N

)
.

This has fixed-points

• (η = 0, ψ = 0) and

• (η = 0, ψ = π)

Near the fixed points the metric has the form

ds2 = a2
(
dη2 + η2dθ2

)
+ a2

(
dψ2 + ψ2dφ2

)
⇒ conical singularities, break translational invariance!
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Analytic Continuation

Metric on S2 ⊗ S2

ds2 = a2
1

(
dχ2 + sin2 χdθ2

)
+ a2

2

(
dψ2 + sin2 ψdφ2

)
We impose the following ZN orbifold

(θ, φ) 7→
(
θ +

2π

N
, φ− 2π

N

)
.

The only difference: number of fixed points is doubled

• (χ = 0, ψ = 0)

• (χ = 0, ψ = π)

• (χ = π, ψ = 0)

• (χ = π, ψ = π)
Structurally, the fixed points are the same

ds2 = a2
1

(
dχ2 + χ2dθ2

)
+ a2

2

(
dψ2 + ψ2dφ2

)
⇒ the same conical singularities.
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Analytic Continuation

Consider now the orbifold space
(
S2 ⊗ S2

)
/ZN .

ds2 = a2
1

(
dχ2 + sin2 χdθ2

)
+ a2

2

(
dψ2 + sin2 ψdφ2

)
Analytically Continue: (a1, a2) 7→ (ia, a), χ 7→ η.

⇒ ds2 = a2
(
dη2 + sin2 ηdθ2

)
+ a2

(
dψ2 + sin2 ψdφ2

)
which is AdS2 ⊗ S2. The ZN orbifold is the same

(θ, φ) 7→
(
θ +

2π

N
, φ− 2π

N

)
.

∴
(
S2 ⊗ S2

)
/ZN

analytic continuation←→
(
AdS2 ⊗ S2

)
/ZN

This will give us the heat kernel on
(
AdS2 ⊗ S2

)
/ZN .



The Heat
Kernel on the
AdS(2) Cone

and
Logarithmic

Corrections to
Extremal

Black Hole
Entropy

Shailesh Lal

A Primer on
Gaussian
Integration

The Heat
Kernel and
Log Terms

The Heat
Kernel on
Conical
Spaces

The (No)
Effect of The
Graviphoton
Background

Counting Zero
Modes

Log Terms for
N = 2, 4, 8
Supergravity

Conclusions

Scalar on S2/ZN

Strategy

• Enumerate eigenvalues and degeneracies on the sphere.

• Compute the heat kernel.

• Analytically continue to AdS.

We do this for the scalar on S2/ZN first.

• ds2 = a2
(
dψ2 + sin2 ψdφ2

)
• ZN : φ 7→ φ+ 2π

N .

We now compute the heat kernel on this quotient space.
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Scalar on S2/ZN

The spectrum of the scalar Laplacian on S2:

• Eigenvalues: E` = ` (`+ 1)

• Eigenfunctions: Y`,m (ψ, φ) = Pm
` e imφ, −` ≤ m ≤ `.

The heat kernel is

K (t) =
∞∑
`=0

∑̀
m=−`

1 · e−
t
a2 `(`+1)

The ZN orbifold:

• No change in eigenvalues

• Modes restricted to m = Np, p ∈ Z, −` ≤ m ≤ `,
The degeneracy changes:

d` =
∑̀
m=−`

δm,Np.
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Scalar on S2/ZN

We will use the following representation for δ

δm,Np =
1

N

N−1∑
s=0

e i
2πms
N

Then the heat kernel on S2/ZN is

K (t) =
∞∑
`=0

∑̀
m=−`

(
1

N

N−1∑
s=0

e i
2πs
N

m

)
· e−

t
a2 `(`+1)

Doing the sum over m

K (t) =
1

N

∞∑
`=0

N−1∑
s=0

sin (2`+1)πs
N

sin πs
N

e−
t
a2 `(`+1)
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Conclusions

Scalar on S2/ZN

Degeneracy of E` on S2/ZN :

d` =
2`+ 1

N
+

1

N

N−1∑
s=1

χ`

(πs
N

)
χ` is the Weyl character of SU(2).

The heat kernel on S2/ZN is given by

KS2/ZN
(t) =

1

N
KS2 +

N2 − 1

6N
+O (t) .

The structure of the answer:

• The first term is from the smooth part of S2/ZN .

• The second term is from the fixed points.

• Note: No 1
t from the second term!
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Scalar on AdS2/ZN

A natural analytic continuation suggests itself.

• 1
NKS2 7→ 1

NKAdS2

• a 7→ ia in second term (trivial, but not for O (t)).

• multiply second term by 1
2 (∵ # fixed points is halved).

We then obtain

KAdS2/ZN
(t) =

1

N
KAdS2 +

1

2
· N

2 − 1

6N
+O (t) .

Log Terms:

KS2/ZN
(0; t) =

1

3N
+

N2 − 1

6N

KAdS2/ZN
(0; t) =

1

6N
+

N2 − 1

12N
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Group Theory & Analytic Continuation

d` =
2`+ 1

N
+

1

N

N−1∑
s=1

χ`

(πs
N

)
• Weyl character of SU(2): S2 ≡ SU(2)/U(1).
• Now AdS2 ≡ sl(2,R)/U(1).

Question: Weyl Character 7→ Harish-Chandra Character?
It has worked in the past! 0911.5085, 1103.3627
Proposal:

χ`

(πs
N

)
7→ χλ

(πs
N

)
=

cosh
(
π − 2πs

N

)
λ

coshπλ sin
(
πs
N

) .
Then the degeneracy on AdS2/ZN is

dλ = −λ tanhπλ

N
+

1

2N

N−1∑
s=1

χλ

(πs
N

)
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Scalar on
(
AdS2 ⊗ S2

)
/ZN

We follow the same procedure, so just the final results:

• The scalar is moded by e imθ e inφ.

• The ZN orbifold is (θ, φ) 7→
(
θ + 2π

N , φ−
2π
N

)
.

• ZN projects onto (m, n) : m − n = Np, p ∈ Z.
The heat kernel on

(
S2 ⊗ S2

)
/ZN is

KZN
=

1

N
K +

1

N

N∑
s=1

∞∑
`,`′=0

χ`

(πs
N

)
χ`′
(πs
N

)
e−tE`,`′

As t 7→ 0 evaluate the second term

KZN
=

1

N
K +

N4 + 10N2 − 11

180N
+O (t)

Again conical terms are finite as t 7→ 0.
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Conclusions

Scalar on
(
AdS2 ⊗ S2

)
/ZN

The analytic continuation to
(
AdS2 ⊗ S2

)
/ZN is carried out by

χ`

(πs
N

)
χ`′
(πs
N

)
7→ χλ

(πs
N

)
χ`′
(πs
N

)
The heat kernel is then given by

KZN
=

1

N
K +

1

2N

N∑
s=1

∞∑
`=0

∫ ∞
0

dλχλ,`

(πs
N

)
e−tEλ`

The degeneracy dλ` of the eigenvalue Eλ` is

dλ` = −λ tanhπλ (2`+ 1)

N
+

1

2N

N∑
s=1

χλ,`

(πs
N

)
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Conclusions

The Graviphoton Background

• We have computed the heat kernel of the Laplacian on(
AdS2 ⊗ S2

)
/ZN .

• This defines the determinant of the Laplacian and yields
the log term.

• However this is not the full story. We need to compute the
determinant of the full kinetic operator.

• Fields couple to each other through the background
electromagnetic fields.

• This shifts eigenvalues but not degeneracies.

• We now explain this in the context of fields on S2.

• This will illustrate the last ingredients that go into the
computation.
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The Graviphoton Background

Consider a subset of the full heat kernel computation.
⇒ S2 with the magnetic field

Fψφ =
p

4π
sinψ.

A transverse vector and a scalar couple to each other.

Lkin =
(

Φ Aα
)( −�− 2

a2
2i
a ε

γβDγ
2i
a ε

αγDγ −gαβ�+ . . .

)(
Φ
Aβ

)
We have to compute the heat kernel of this operator.
Our approach generalises to the whole calculation.
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The Graviphoton Background

Aα is a transverse field on S2

Aα = εαβ∇βΦ̃

So modes of A are in 1-1 correspondence with scalar modes.

• Modes labelled with quantum numbers `, m

• Eigenvalues labelled with `

• Degeneracy d` = 2`+ 1 ⇐ e imφ moding.

Key Simplification: Not all modes mix!

• The only modes of A and Φ that mix with each other
share the same ` and the same m.

• We can analyse the mixing just on this subset of modes.
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The Graviphoton Background

We will just focus on the general structure.

• Suppose we turn off the flux for a moment. Fix an `.

• We have (2`+ 1) modes Y`m from Φ with eigenvalue E s
` .

• We have (2`+ 1) modes A`m from A with eigenvalue E v
` .

• Fix m to m̃. Now one mode Y`m̃ and one mode A`m̃.

• Now turn the flux back on. Y`m̃ and A`m̃ interact.

• The interactions change the eigenvalues to E a
` and Eb

` .

• But there is still one mode each for E a
` and Eb

` .

Thus we arrive at the new spectrum:

• Eigenvalue E a
` , degeneracy 2`+ 1.

• Eigenvalue Eb
` , degeneracy 2`+ 1.

This happens for all fluctuations we are computing over.
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Conclusions

The Graviphoton Background

Now consider all fluctuations in
(
AdS2 ⊗ S2

)
/ZN .

• Bosonic fields are scalars, vectors and the graviton.

• Vectors and gravitons ⇒ derivatives of scalars.

• Quantum numbers (λ, `,m, n) label all modes.

• Suppose we have n fields in AdS2 ⊗ S2. Turn off the flux.

• Eigenvalues are E
(i)
λ` . Degeneracy of each is dλ`.

We have computed dλ` above.

• Turn the flux back on.

• Eigenvalues are Ẽ
(i)
λ` . Degeneracy of each is dλ`.

• Same heat kernel formula. New eigenvalues.

The same thing happens for fermions as well.
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The Graviphoton Background

So all we have to do is to diagonalize one block and compute
the new eigenvalues.

• For bosons the largest block is 12× 12.

• For fermions the largest block is 40× 40.

While very hard, its not impossible. 1106.0080

However, we find more simplifications.

• We just want the t0 term of the heat kernel.

• The conical terms are finite.

lim
t 7→0

∫ ∑
χλ`e

−tEλ` =

∫ ∑
χλ` = ‘finite’.

• The ‘global’ contribution is already known. 1106.0080

• So we don’t have to diagonalise a 40× 40 matrix. We have
to multiply a number by 40, and add it to other numbers.
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Counting Zero Modes

• The final piece of the puzzle is the zero mode contribution.

• It is determined by the number of zero modes.

• We compute the number of zero modes of the vector field
on
(
AdS2 ⊗ S2

)
/ZN .

• This is also a chance for us to explicitly evaluate the
degeneracy without relying on analytic continuations.

The zero modes on are given by

Aη = ∂ηΦ, Aθ = ∂θΦ, Aψ = Aφ = 0,

where

Φ =

(
sinh η

1 + cosh η

)|m|
e imθ, |m| = N, 2N, · · · .
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Conclusions

Counting Zero Modes
The number of zero modes is

n0 =
∑
m

∫ η0

0
dη sinh η |A|2.

The integral can be done to obtain

n0 = 2
∞∑
p=1

(
tanh

η0

2

)2Np
' 1

2N
eη0−1 +O (η0) .

The number of zero modes is the O (1) term

n0 = −1

• This is exactly how we defined degeneracy.

• It should be: n0 = the ‘degeneracy of the zero eigenvalue’.
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N = 4 Supergravity
• The bosonic fields contribute

KB
ZN

(0; t) =
1

N
KB (0; t)+2

(
N4 − 65N2 + 135N − 71

45N

)

• The fermionic fields contribute

KF
ZN

(0; t) =
1

N
KF (0; t)−2

(
N4 − 65N2 + 180N − 116

45N

)

• The total contribution to the log term is then

KZN (0; t) =
1

N
K (0; t)−2 +

2

N

Further, K (0; t) = −2, so
KZN (0; t) = −2.

The net zero mode contribution is
ñ =

∑
φ

n0
φ

(
βφ − 1

)
= +2

The coefficient of ln a in lnZstr , the log term is then

KZN (0; t) + ñ = 0.

⇒ perfect match with microscopic counting.
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N = 8 Supergravity
N = 8 ⇒ N = 4 fields and additional fields. No extra zero modes

• The contribution of the N = 4 fields already vanishes.

• Consider the contribution of the extra fields.

The final results are:
• The Bosonic fields contribute

KB
ZN

(0; t) =
1

N
KB (0; t)+8

(
N4 − 20N2 + 19

45N

)

• The fermionic fields contribute

KF
ZN

(0; t) =
1

N
KF (0; t)−8

(
−26 + 45N − 20N2 + N4

45N

)

• The total contribution is

KZN (0; t) =
1

N
K (0; t)−8 +

8

N
.

Further, K (0; t) = −8, so

KZN (0; t) = −8.

⇒ perfect match with microscopic counting.
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N = 2 Supergravity

• We can also calculate for black holes in N = 2 Supergravity.

• Here the microscopic answer is not known. ⇒ prediction?

• Suppose we have nH hypermultiplets and nV vector multiplets.

Then

lnZstr =
AH

4N
+
(

2− N
χ

24

)
lnAH .

Here χ = 2 (nV − nH + 1) is the Euler character of the CY that the
string theory is compactified on.

• This is puzzling. If N '
√
AH then the 1-loop correction is

bigger than the classical answer. What does this mean?

• In general the N dependence is interesting. It does not appear
for N = 4 and N = 8. Can we reproduce this growth from the
microscopic side?
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Conclusions

• The QEF computes all possible corrections to
Bekenstein-Hawking entropy of extremal black holes.

• We can test this against the string answer for N = 4 and
N = 8 black holes.

• We find a perfect match with asymptotic expansion for
the string theory answer.

• To compute this expression we developed new techniques
for evaluating the heat kernel on AdS spaces.

• In particular, we generalised the Plancherel Formula to
quotients of AdS spaces.

• We also obtained the corresponding answer for N = 2
black holes.

• The answer has curious properties. It would be interesting
to better understand them.
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Thank You
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