Dissipative coupling of polariton condensates

P. Lagoudakis

June 2013

Outline

- Introduction
- Phase coupling
- Pseudospin coupling
- Conclusions

Coupling mechanisms in polariton condensates

coherent (Josephson coupling)

-tunnelling

• K. G. Lagoudakis et al., Phys. Rev. Lett. 105, 120403 (2010)

incoherent / dissipative

• I. L. Aleiner, B. L. Altshuler & Y. G. Rubo, *Phys. Rev. B* 85, 121301 (2012)

Josephson vs. Dissipative

Josephson (coherent)

symmetric (in-phase) states

Dissipative (incoherent)

reduction of threshold

in-phase and anti-phase states

Geometry

- non-resonant
- pulsed excitation
- spot diameter ~1.3µm

two spatially separated polariton condensates:

- reduction of threshold
- in-phase and anti-phase synchronization
- symmetry flipping by changing separation

Southampton

- symmetry flipping in time
- correlation of pseudospins

Threshold vs. separation (first signature)

Ē

in-phase/anti-phase states (second signature)

point source intensity pattern

Ē

similar to G. Tosi et al,. Nat Phys 8, 190 (2012)

Southampton ⁸ out of 20

Coupling mechanism

Southampton

Phase vs. separation

Southampton

Interferometry

Symmetry flipping in time

Southampton 12 out of 20

Symmetry flipping in time

Southampton ¹³ out of 20

momentum-space

decay rate =
$$\Gamma(1 + J_0(k_c a) \cos \theta)$$

6 0.4 — 0.2experiment decay rate 0.0 —

 $k_{\parallel} \ (\mu m^{-1})$

Southampton 14 out of 20

Energy (meV)

multi-particle wave function

15 out of 20

F. P. Laussy et al., Phys. Rev. B 73, 035315 (2006)

Spontaneous symmetry breaking

order parameter space

Y. G. Rubo, physica status solidi (a) 201, 641–645 (2004)

Stochastic polarization buildup

Single-shot measurements

non-condensed

condensed

Southampton

17 out of 20

H. Ohadi et al. Phys. Rev. Lett. 109, 016404 (2012)

also: J.J. Baumberg et al. Phys. Rev. Lett 101, 136409 (2008) sample: D. Bajoni et al. Phys. Rev. B 76, 201305 (2007)

Two Condensate Setup

Pseudospin correlation

Ę

Single-shot measurements

Southampton ¹⁹ out of 20

Theoretical simulation

$$\gamma = \pm \Gamma J_0(k_c a)$$

Southampton

- Aleiner, Altshuler & Rubo, Phys. Rev. B, 85, 121301 (2012)
- Read, Rubo & Kavokin, Phys. Rev. B, 81, 235315 (2010)

Stochastic simulation results

F

Southampton 21 out of 20

Stochastic simulation results

Ę

Southampton 22 out of 20

"An odd kind of sympathy"

huygens'

V.⁹ clocks 1665.

22 febr. 1665.

Diebus 4 aut 5 horologiorum duorum novorum in quibus catenulæ [Fig. 75], miram concordiam obfervaveram, ita ut ne minimo quidem exceffu alterum ab altero fuperaretur. fed confonarent femper reciprocationes utriusque perpendiculi. unde cum parvo fpatio inter fe horologia diftarent, fympathiæ quandam³) quasi alterum ab altero afficeretur fufpicari cœpi. ut experimentum caperem turbavi alterius penduli reditus ne fimul incederent fed quadrante horæ poft vel femibora rurfus correction inveni Acknowledgements

Southampton

Sample:

Jacqueline Bloch and Aristide Lemaître

Engineering and Physical Sciences Research Council

Southampton

Threshold / coupling parameter

$$\begin{split} \dot{\psi_1} &= -\frac{1}{2} \left(\Gamma \psi_1 + \gamma \psi_2 \right), \\ \dot{\psi_2} &= -\frac{1}{2} \left(\Gamma \psi_2 + \gamma \psi_1 \right) \\ \psi_1 &= \sqrt{n_1} e^{i\theta_1} \\ \psi_2 &= \sqrt{n_2} e^{i\theta_2} \\ \dot{\psi_1} \psi_1 + \psi_1^* \dot{\psi_1} &= \dot{n_1} = -\Gamma n_1 - \gamma \sqrt{n_1 n_2} \cos(\theta_1 - \theta_2), \\ \dot{\psi_2} \psi_2 + \psi_2^* \dot{\psi_2} &= \dot{n_2} = -\Gamma n_2 - \gamma \sqrt{n_1 n_2} \cos(\theta_1 - \theta_2). \\ \text{if } n_1 &= n2 = n \Rightarrow \dot{n} = -[\Gamma + \gamma \cos(\theta_1 - \theta_2)]n \end{split}$$

Southampton

25 out of 17

Aleiner, Altshuler & Rubo, Phys. Rev. B 85, 121301 (2012)

Interferometry Setup

k-space / real-space vs. separation

Southampton 27 out of 17

Averaged threshold

